Misha Brukman 5560c9d49c Spell `necessary' correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7944 91177308-0d34-0410-b5e6-96231b3b80d8
2003-08-18 14:43:39 +00:00

748 lines
24 KiB
C++

//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Return error messages to caller instead of printing them out directly.
// TODO: Allow passing in an option to ignore the symbol table
//
//===----------------------------------------------------------------------===//
#include "ReaderInternals.h"
#include "Config/sys/mman.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Bytecode/Format.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "Config/sys/types.h"
#include "Config/sys/stat.h"
#include "Config/fcntl.h"
#include "Config/unistd.h"
#include <algorithm>
bool BytecodeParser::getTypeSlot(const Type *Ty, unsigned &Slot) {
if (Ty->isPrimitiveType()) {
Slot = Ty->getPrimitiveID();
} else {
// Check the function level types first...
TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(),
FunctionTypeValues.end(), Ty);
if (I != FunctionTypeValues.end()) {
Slot = FirstDerivedTyID+ModuleTypeValues.size()+
(&*I - &FunctionTypeValues[0]);
} else {
I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty);
if (I == ModuleTypeValues.end()) return true; // Didn't find type!
Slot = FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
}
}
//cerr << "getTypeSlot '" << Ty->getName() << "' = " << Slot << "\n";
return false;
}
const Type *BytecodeParser::getType(unsigned ID) {
if (ID < Type::NumPrimitiveIDs) {
const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID);
if (T) return T;
}
//cerr << "Looking up Type ID: " << ID << "\n";
const Value *V = getValue(Type::TypeTy, ID, false);
return cast_or_null<Type>(V);
}
int BytecodeParser::insertValue(Value *Val, ValueTable &ValueTab) {
assert((!HasImplicitZeroInitializer || !isa<Constant>(Val) ||
Val->getType()->isPrimitiveType() ||
!cast<Constant>(Val)->isNullValue()) &&
"Cannot read null values from bytecode!");
unsigned type;
if (getTypeSlot(Val->getType(), type)) return -1;
assert(type != Type::TypeTyID && "Types should never be insertValue'd!");
if (ValueTab.size() <= type) {
unsigned OldSize = ValueTab.size();
ValueTab.resize(type+1);
while (OldSize != type+1)
ValueTab[OldSize++] = new ValueList();
}
//cerr << "insertValue Values[" << type << "][" << ValueTab[type].size()
// << "] = " << Val << "\n";
ValueTab[type]->push_back(Val);
bool HasOffset = HasImplicitZeroInitializer &&
!Val->getType()->isPrimitiveType();
return ValueTab[type]->size()-1 + HasOffset;
}
void BytecodeParser::setValueTo(ValueTable &ValueTab, unsigned Slot,
Value *Val) {
assert(&ValueTab == &ModuleValues && "Can only setValueTo on Module values!");
unsigned type;
if (getTypeSlot(Val->getType(), type))
assert(0 && "getTypeSlot failed!");
assert((!HasImplicitZeroInitializer || Slot != 0) &&
"Cannot change zero init");
assert(type < ValueTab.size() && Slot <= ValueTab[type]->size());
ValueTab[type]->setOperand(Slot-HasImplicitZeroInitializer, Val);
}
Value *BytecodeParser::getValue(const Type *Ty, unsigned oNum, bool Create) {
unsigned Num = oNum;
unsigned type; // The type plane it lives in...
if (getTypeSlot(Ty, type)) return 0;
if (type == Type::TypeTyID) { // The 'type' plane has implicit values
assert(Create == false);
if (Num < Type::NumPrimitiveIDs) {
const Type *T = Type::getPrimitiveType((Type::PrimitiveID)Num);
if (T) return (Value*)T; // Asked for a primitive type...
}
// Otherwise, derived types need offset...
Num -= FirstDerivedTyID;
// Is it a module level type?
if (Num < ModuleTypeValues.size())
return (Value*)ModuleTypeValues[Num].get();
// Nope, is it a function level type?
Num -= ModuleTypeValues.size();
if (Num < FunctionTypeValues.size())
return (Value*)FunctionTypeValues[Num].get();
return 0;
}
if (HasImplicitZeroInitializer && type >= FirstDerivedTyID) {
if (Num == 0)
return Constant::getNullValue(Ty);
--Num;
}
if (type < ModuleValues.size()) {
if (Num < ModuleValues[type]->size())
return ModuleValues[type]->getOperand(Num);
Num -= ModuleValues[type]->size();
}
if (Values.size() > type && Values[type]->size() > Num)
return Values[type]->getOperand(Num);
if (!Create) return 0; // Do not create a placeholder?
Value *d = 0;
switch (Ty->getPrimitiveID()) {
case Type::LabelTyID:
d = new BBPHolder(Ty, oNum);
break;
default:
d = new ValPHolder(Ty, oNum);
break;
}
assert(d != 0 && "How did we not make something?");
if (insertValue(d, LateResolveValues) == -1) return 0;
return d;
}
/// getConstantValue - Just like getValue, except that it returns a null pointer
/// only on error. It always returns a constant (meaning that if the value is
/// defined, but is not a constant, that is an error). If the specified
/// constant hasn't been parsed yet, a placeholder is defined and used. Later,
/// after the real value is parsed, the placeholder is eliminated.
///
Constant *BytecodeParser::getConstantValue(const Type *Ty, unsigned Slot) {
if (Value *V = getValue(Ty, Slot, false))
return dyn_cast<Constant>(V); // If we already have the value parsed...
std::pair<const Type*, unsigned> Key(Ty, Slot);
GlobalRefsType::iterator I = GlobalRefs.lower_bound(Key);
if (I != GlobalRefs.end() && I->first == Key) {
BCR_TRACE(5, "Previous forward ref found!\n");
return cast<Constant>(I->second);
} else {
// Create a placeholder for the constant reference and
// keep track of the fact that we have a forward ref to recycle it
BCR_TRACE(5, "Creating new forward ref to a constant!\n");
Constant *C = new ConstPHolder(Ty, Slot);
// Keep track of the fact that we have a forward ref to recycle it
GlobalRefs.insert(I, std::make_pair(Key, C));
return C;
}
}
bool BytecodeParser::postResolveValues(ValueTable &ValTab) {
bool Error = false;
while (!ValTab.empty()) {
ValueList &DL = *ValTab.back();
ValTab.pop_back();
while (!DL.empty()) {
Value *D = DL.back();
unsigned IDNumber = getValueIDNumberFromPlaceHolder(D);
DL.pop_back();
Value *NewDef = getValue(D->getType(), IDNumber, false);
if (NewDef == 0) {
Error = true; // Unresolved thinger
std::cerr << "Unresolvable reference found: <"
<< *D->getType() << ">:" << IDNumber <<"!\n";
} else {
// Fixup all of the uses of this placeholder def...
D->replaceAllUsesWith(NewDef);
// Now that all the uses are gone, delete the placeholder...
// If we couldn't find a def (error case), then leak a little
delete D; // memory, 'cause otherwise we can't remove all uses!
}
}
delete &DL;
}
return Error;
}
bool BytecodeParser::ParseBasicBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
BasicBlock *&BB) {
BB = new BasicBlock();
while (Buf < EndBuf) {
Instruction *Inst;
if (ParseInstruction(Buf, EndBuf, Inst, /*HACK*/BB)) {
delete BB;
return true;
}
if (Inst == 0) { delete BB; return true; }
if (insertValue(Inst, Values) == -1) { delete BB; return true; }
BB->getInstList().push_back(Inst);
BCR_TRACE(4, Inst);
}
return false;
}
bool BytecodeParser::ParseSymbolTable(const unsigned char *&Buf,
const unsigned char *EndBuf,
SymbolTable *ST) {
while (Buf < EndBuf) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries, Typ;
if (read_vbr(Buf, EndBuf, NumEntries) ||
read_vbr(Buf, EndBuf, Typ)) return true;
const Type *Ty = getType(Typ);
if (Ty == 0) return true;
BCR_TRACE(3, "Plane Type: '" << Ty << "' with " << NumEntries <<
" entries\n");
for (unsigned i = 0; i < NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot;
if (read_vbr(Buf, EndBuf, slot)) return true;
std::string Name;
if (read(Buf, EndBuf, Name, false)) // Not aligned...
return true;
Value *V = getValue(Ty, slot, false); // Find mapping...
if (V == 0) {
BCR_TRACE(3, "FAILED LOOKUP: Slot #" << slot << "\n");
return true;
}
BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << *V;
if (!isa<Instruction>(V)) std::cerr << "\n");
V->setName(Name, ST);
}
}
if (Buf > EndBuf) return true;
return false;
}
void BytecodeParser::ResolveReferencesToValue(Value *NewV, unsigned Slot) {
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(NewV->getType(),
Slot));
if (I == GlobalRefs.end()) return; // Never forward referenced?
BCR_TRACE(3, "Mutating forward refs!\n");
Value *VPH = I->second; // Get the placeholder...
VPH->replaceAllUsesWith(NewV);
// If this is a global variable being resolved, remove the placeholder from
// the module...
if (GlobalValue* GVal = dyn_cast<GlobalValue>(NewV))
GVal->getParent()->getGlobalList().remove(cast<GlobalVariable>(VPH));
delete VPH; // Delete the old placeholder
GlobalRefs.erase(I); // Remove the map entry for it
}
bool BytecodeParser::ParseFunction(const unsigned char *&Buf,
const unsigned char *EndBuf) {
// Clear out the local values table...
if (FunctionSignatureList.empty()) {
Error = "Function found, but FunctionSignatureList empty!";
return true; // Unexpected function!
}
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
if (!hasInternalMarkerOnly) {
unsigned LinkageType;
if (read_vbr(Buf, EndBuf, LinkageType)) return true;
if (LinkageType & ~0x3) return true;
Linkage = (GlobalValue::LinkageTypes)LinkageType;
} else {
// We used to only support two linkage models: internal and external
unsigned isInternal;
if (read_vbr(Buf, EndBuf, isInternal)) return true;
if (isInternal) Linkage = GlobalValue::InternalLinkage;
}
Function *F = FunctionSignatureList.back().first;
unsigned FunctionSlot = FunctionSignatureList.back().second;
FunctionSignatureList.pop_back();
F->setLinkage(Linkage);
const FunctionType::ParamTypes &Params =F->getFunctionType()->getParamTypes();
Function::aiterator AI = F->abegin();
for (FunctionType::ParamTypes::const_iterator It = Params.begin();
It != Params.end(); ++It, ++AI) {
if (insertValue(AI, Values) == -1) {
Error = "Error reading function arguments!\n";
return true;
}
}
while (Buf < EndBuf) {
unsigned Type, Size;
const unsigned char *OldBuf = Buf;
if (readBlock(Buf, EndBuf, Type, Size)) {
Error = "Error reading Function level block!";
return true;
}
switch (Type) {
case BytecodeFormat::ConstantPool:
BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n");
if (ParseConstantPool(Buf, Buf+Size, Values, FunctionTypeValues))
return true;
break;
case BytecodeFormat::BasicBlock: {
BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n");
BasicBlock *BB;
if (ParseBasicBlock(Buf, Buf+Size, BB) ||
insertValue(BB, Values) == -1)
return true; // Parse error... :(
F->getBasicBlockList().push_back(BB);
break;
}
case BytecodeFormat::SymbolTable:
BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n");
if (ParseSymbolTable(Buf, Buf+Size, &F->getSymbolTable()))
return true;
break;
default:
BCR_TRACE(2, "BLOCK <unknown>:ignored! {\n");
Buf += Size;
if (OldBuf > Buf) return true; // Wrap around!
break;
}
BCR_TRACE(2, "} end block\n");
if (align32(Buf, EndBuf)) {
Error = "Error aligning Function level block!";
return true; // Malformed bc file, read past end of block.
}
}
if (postResolveValues(LateResolveValues)) {
Error = "Error resolving function values!";
return true; // Unresolvable references!
}
ResolveReferencesToValue(F, FunctionSlot);
// Clear out function level types...
FunctionTypeValues.clear();
freeTable(Values);
return false;
}
bool BytecodeParser::ParseModuleGlobalInfo(const unsigned char *&Buf,
const unsigned char *End){
if (!FunctionSignatureList.empty()) {
Error = "Two ModuleGlobalInfo packets found!";
return true; // Two ModuleGlobal blocks?
}
// Read global variables...
unsigned VarType;
if (read_vbr(Buf, End, VarType)) return true;
while (VarType != Type::VoidTyID) { // List is terminated by Void
unsigned SlotNo;
GlobalValue::LinkageTypes Linkage;
if (!hasInternalMarkerOnly) {
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer,
// bit2,3 = Linkage, bit4+ = slot#
SlotNo = VarType >> 4;
Linkage = (GlobalValue::LinkageTypes)((VarType >> 2) & 3);
} else {
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer,
// bit2 = isInternal, bit3+ = slot#
SlotNo = VarType >> 3;
Linkage = (VarType & 4) ? GlobalValue::InternalLinkage :
GlobalValue::ExternalLinkage;
}
const Type *Ty = getType(SlotNo);
if (!Ty || !isa<PointerType>(Ty)) {
Error = "Global not pointer type! Ty = " + Ty->getDescription();
return true;
}
const Type *ElTy = cast<PointerType>(Ty)->getElementType();
// Create the global variable...
GlobalVariable *GV = new GlobalVariable(ElTy, VarType & 1, Linkage,
0, "", TheModule);
int DestSlot = insertValue(GV, ModuleValues);
if (DestSlot == -1) return true;
BCR_TRACE(2, "Global Variable of type: " << *Ty << "\n");
ResolveReferencesToValue(GV, (unsigned)DestSlot);
if (VarType & 2) { // Does it have an initalizer?
unsigned InitSlot;
if (read_vbr(Buf, End, InitSlot)) return true;
GlobalInits.push_back(std::make_pair(GV, InitSlot));
}
if (read_vbr(Buf, End, VarType)) return true;
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature;
if (read_vbr(Buf, End, FnSignature)) return true;
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (!Ty || !isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
Error = "Function not ptr to func type! Ty = " + Ty->getDescription();
return true;
}
// We create functions by passing the underlying FunctionType to create...
Ty = cast<PointerType>(Ty)->getElementType();
// When the ModuleGlobalInfo section is read, we load the type of each
// function and the 'ModuleValues' slot that it lands in. We then load a
// placeholder into its slot to reserve it. When the function is loaded,
// this placeholder is replaced.
// Insert the placeholder...
Function *Func = new Function(cast<FunctionType>(Ty),
GlobalValue::InternalLinkage, "", TheModule);
int DestSlot = insertValue(Func, ModuleValues);
if (DestSlot == -1) return true;
ResolveReferencesToValue(Func, (unsigned)DestSlot);
// Keep track of this information in a list that is emptied as functions are
// loaded...
//
FunctionSignatureList.push_back(std::make_pair(Func, DestSlot));
if (read_vbr(Buf, End, FnSignature)) return true;
BCR_TRACE(2, "Function of type: " << Ty << "\n");
}
if (align32(Buf, End)) return true;
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
Buf = End;
return false;
}
bool BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned Version;
if (read_vbr(Buf, EndBuf, Version)) return true;
// Unpack version number: low four bits are for flags, top bits = version
isBigEndian = Version & 1;
hasLongPointers = Version & 2;
RevisionNum = Version >> 4;
// Default values for the current bytecode version
HasImplicitZeroInitializer = true;
hasInternalMarkerOnly = false;
FirstDerivedTyID = 14;
switch (RevisionNum) {
case 0: // Initial revision
// Version #0 didn't have any of the flags stored correctly, and in fact as
// only valid with a 14 in the flags values. Also, it does not support
// encoding zero initializers for arrays compactly.
//
if (Version != 14) return true; // Unknown revision 0 flags?
HasImplicitZeroInitializer = false;
isBigEndian = hasLongPointers = true;
hasInternalMarkerOnly = true;
break;
case 1:
// Version #1 has two bit fields: isBigEndian and hasLongPointers
hasInternalMarkerOnly = true;
break;
case 2:
// Version #2 added information about all 4 linkage types instead of just
// having internal and external.
break;
default:
Error = "Unknown bytecode version number!";
return true;
}
TheModule->setEndianness(isBigEndian ? Module::BigEndian :
Module::LittleEndian);
TheModule->setPointerSize(hasLongPointers ? Module::Pointer64 :
Module::Pointer32);
BCR_TRACE(1, "Bytecode Rev = " << (unsigned)RevisionNum << "\n");
BCR_TRACE(1, "BigEndian/LongPointers = " << isBigEndian << ","
<< hasLongPointers << "\n");
BCR_TRACE(1, "HasImplicitZeroInit = " << HasImplicitZeroInitializer << "\n");
return false;
}
bool BytecodeParser::ParseModule(const unsigned char *Buf,
const unsigned char *EndBuf) {
unsigned Type, Size;
if (readBlock(Buf, EndBuf, Type, Size)) return true;
if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) {
Error = "Expected Module packet!";
return true; // Hrm, not a class?
}
BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n");
FunctionSignatureList.clear(); // Just in case...
// Read into instance variables...
if (ParseVersionInfo(Buf, EndBuf)) return true;
if (align32(Buf, EndBuf)) return true;
while (Buf < EndBuf) {
const unsigned char *OldBuf = Buf;
if (readBlock(Buf, EndBuf, Type, Size)) return true;
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
BCR_TRACE(1, "BLOCK BytecodeFormat::GlobalTypePlane: {\n");
if (ParseGlobalTypes(Buf, Buf+Size)) return true;
break;
case BytecodeFormat::ModuleGlobalInfo:
BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n");
if (ParseModuleGlobalInfo(Buf, Buf+Size)) return true;
break;
case BytecodeFormat::ConstantPool:
BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n");
if (ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues))
return true;
break;
case BytecodeFormat::Function: {
BCR_TRACE(1, "BLOCK BytecodeFormat::Function: {\n");
if (ParseFunction(Buf, Buf+Size))
return true; // Error parsing function
break;
}
case BytecodeFormat::SymbolTable:
BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n");
if (ParseSymbolTable(Buf, Buf+Size, &TheModule->getSymbolTable()))
return true;
break;
default:
Error = "Expected Module Block!";
Buf += Size;
if (OldBuf > Buf) return true; // Wrap around!
break;
}
BCR_TRACE(1, "} end block\n");
if (align32(Buf, EndBuf)) return true;
}
// After the module constant pool has been read, we can safely initialize
// global variables...
while (!GlobalInits.empty()) {
GlobalVariable *GV = GlobalInits.back().first;
unsigned Slot = GlobalInits.back().second;
GlobalInits.pop_back();
// Look up the initializer value...
if (Value *V = getValue(GV->getType()->getElementType(), Slot, false)) {
if (GV->hasInitializer()) return true;
GV->setInitializer(cast<Constant>(V));
} else
return true;
}
if (!FunctionSignatureList.empty()) { // Expected more functions!
Error = "Function expected, but bytecode stream at end!";
return true;
}
BCR_TRACE(0, "} end block\n\n");
return false;
}
static inline Module *Error(std::string *ErrorStr, const char *Message) {
if (ErrorStr) *ErrorStr = Message;
return 0;
}
Module *BytecodeParser::ParseBytecode(const unsigned char *Buf,
const unsigned char *EndBuf,
const std::string &ModuleID) {
unsigned Sig;
// Read and check signature...
if (read(Buf, EndBuf, Sig) ||
Sig != ('l' | ('l' << 8) | ('v' << 16) | 'm' << 24))
return ::Error(&Error, "Invalid bytecode signature!");
TheModule = new Module(ModuleID);
if (ParseModule(Buf, EndBuf)) {
freeState(); // Must destroy handles before deleting module!
delete TheModule;
TheModule = 0;
}
return TheModule;
}
Module *ParseBytecodeBuffer(const unsigned char *Buffer, unsigned Length,
const std::string &ModuleID, std::string *ErrorStr){
BytecodeParser Parser;
unsigned char *PtrToDelete = 0;
if ((intptr_t)Buffer & 3) { // If the buffer is not 4 byte aligned...
// Allocate a new buffer to hold the bytecode...
PtrToDelete = new unsigned char[Length+4];
unsigned Offset = 4-((intptr_t)PtrToDelete & 3); // Make sure it's aligned
memcpy(PtrToDelete+Offset, Buffer, Length); // Copy it over
Buffer = PtrToDelete+Offset;
}
Module *R = Parser.ParseBytecode(Buffer, Buffer+Length, ModuleID);
if (ErrorStr) *ErrorStr = Parser.getError();
delete [] PtrToDelete; // Delete alignment buffer if necessary
return R;
}
/// FDHandle - Simple handle class to make sure a file descriptor gets closed
/// when the object is destroyed.
class FDHandle {
int FD;
public:
FDHandle(int fd) : FD(fd) {}
operator int() const { return FD; }
~FDHandle() {
if (FD != -1) close(FD);
}
};
// Parse and return a class file...
//
Module *ParseBytecodeFile(const std::string &Filename, std::string *ErrorStr) {
Module *Result = 0;
if (Filename != std::string("-")) { // Read from a file...
FDHandle FD = open(Filename.c_str(), O_RDONLY);
if (FD == -1)
return Error(ErrorStr, "Error opening file!");
// Stat the file to get its length...
struct stat StatBuf;
if (fstat(FD, &StatBuf) == -1 || StatBuf.st_size == 0)
return Error(ErrorStr, "Error stat'ing file!");
// mmap in the file all at once...
int Length = StatBuf.st_size;
unsigned char *Buffer = (unsigned char*)mmap(0, Length, PROT_READ,
MAP_PRIVATE, FD, 0);
if (Buffer == (unsigned char*)MAP_FAILED)
return Error(ErrorStr, "Error mmapping file!");
// Parse the bytecode we mmapped in
Result = ParseBytecodeBuffer(Buffer, Length, Filename, ErrorStr);
// Unmmap the bytecode...
munmap((char*)Buffer, Length);
} else { // Read from stdin
int BlockSize;
unsigned char Buffer[4096*4];
std::vector<unsigned char> FileData;
// Read in all of the data from stdin, we cannot mmap stdin...
while ((BlockSize = read(0 /*stdin*/, Buffer, 4096*4))) {
if (BlockSize == -1)
return Error(ErrorStr, "Error reading from stdin!");
FileData.insert(FileData.end(), Buffer, Buffer+BlockSize);
}
if (FileData.empty())
return Error(ErrorStr, "Standard Input empty!");
#define ALIGN_PTRS 0
#if ALIGN_PTRS
unsigned char *Buf =
(unsigned char*)mmap(0, FileData.size(), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
assert((Buf != (unsigned char*)-1) && "mmap returned error!");
memcpy(Buf, &FileData[0], FileData.size());
#else
unsigned char *Buf = &FileData[0];
#endif
Result = ParseBytecodeBuffer(Buf, FileData.size(), "<stdin>", ErrorStr);
#if ALIGN_PTRS
munmap((char*)Buf, FileData.size()); // Free mmap'd data area
#endif
}
return Result;
}