mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41118 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			836 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveInterval analysis pass which is used
 | |
| // by the Linear Scan Register allocator. This pass linearizes the
 | |
| // basic blocks of the function in DFS order and uses the
 | |
| // LiveVariables pass to conservatively compute live intervals for
 | |
| // each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "liveintervals"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   // Hidden options for help debugging.
 | |
|   cl::opt<bool> DisableReMat("disable-rematerialization", 
 | |
|                               cl::init(false), cl::Hidden);
 | |
| }
 | |
| 
 | |
| STATISTIC(numIntervals, "Number of original intervals");
 | |
| STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
 | |
| STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
 | |
| 
 | |
| char LiveIntervals::ID = 0;
 | |
| namespace {
 | |
|   RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
 | |
| }
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addRequired<LiveVariables>();
 | |
|   AU.addPreservedID(PHIEliminationID);
 | |
|   AU.addRequiredID(PHIEliminationID);
 | |
|   AU.addRequiredID(TwoAddressInstructionPassID);
 | |
|   AU.addRequired<LoopInfo>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory() {
 | |
|   mi2iMap_.clear();
 | |
|   i2miMap_.clear();
 | |
|   r2iMap_.clear();
 | |
|   for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
 | |
|     delete ClonedMIs[i];
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   tm_ = &fn.getTarget();
 | |
|   mri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   lv_ = &getAnalysis<LiveVariables>();
 | |
|   allocatableRegs_ = mri_->getAllocatableSet(fn);
 | |
| 
 | |
|   // Number MachineInstrs and MachineBasicBlocks.
 | |
|   // Initialize MBB indexes to a sentinal.
 | |
|   MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
 | |
|   
 | |
|   unsigned MIIndex = 0;
 | |
|   for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
 | |
|        MBB != E; ++MBB) {
 | |
|     unsigned StartIdx = MIIndex;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|          I != E; ++I) {
 | |
|       bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
 | |
|       assert(inserted && "multiple MachineInstr -> index mappings");
 | |
|       i2miMap_.push_back(I);
 | |
|       MIIndex += InstrSlots::NUM;
 | |
|     }
 | |
| 
 | |
|     // Set the MBB2IdxMap entry for this MBB.
 | |
|     MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
 | |
|   }
 | |
| 
 | |
|   computeIntervals();
 | |
| 
 | |
|   numIntervals += getNumIntervals();
 | |
| 
 | |
|   DOUT << "********** INTERVALS **********\n";
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     I->second.print(DOUT, mri_);
 | |
|     DOUT << "\n";
 | |
|   }
 | |
| 
 | |
|   numIntervalsAfter += getNumIntervals();
 | |
|   DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void LiveIntervals::print(std::ostream &O, const Module* ) const {
 | |
|   O << "********** INTERVALS **********\n";
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     I->second.print(DOUT, mri_);
 | |
|     DOUT << "\n";
 | |
|   }
 | |
| 
 | |
|   O << "********** MACHINEINSTRS **********\n";
 | |
|   for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
 | |
|     for (MachineBasicBlock::iterator mii = mbbi->begin(),
 | |
|            mie = mbbi->end(); mii != mie; ++mii) {
 | |
|       O << getInstructionIndex(mii) << '\t' << *mii;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Not called?
 | |
| /// CreateNewLiveInterval - Create a new live interval with the given live
 | |
| /// ranges. The new live interval will have an infinite spill weight.
 | |
| LiveInterval&
 | |
| LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
 | |
|                                      const std::vector<LiveRange> &LRs) {
 | |
|   const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
 | |
| 
 | |
|   // Create a new virtual register for the spill interval.
 | |
|   unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
 | |
| 
 | |
|   // Replace the old virtual registers in the machine operands with the shiny
 | |
|   // new one.
 | |
|   for (std::vector<LiveRange>::const_iterator
 | |
|          I = LRs.begin(), E = LRs.end(); I != E; ++I) {
 | |
|     unsigned Index = getBaseIndex(I->start);
 | |
|     unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
 | |
| 
 | |
|     for (; Index != End; Index += InstrSlots::NUM) {
 | |
|       // Skip deleted instructions
 | |
|       while (Index != End && !getInstructionFromIndex(Index))
 | |
|         Index += InstrSlots::NUM;
 | |
| 
 | |
|       if (Index == End) break;
 | |
| 
 | |
|       MachineInstr *MI = getInstructionFromIndex(Index);
 | |
| 
 | |
|       for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
 | |
|         MachineOperand &MOp = MI->getOperand(J);
 | |
|         if (MOp.isRegister() && MOp.getReg() == LI->reg)
 | |
|           MOp.setReg(NewVReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LiveInterval &NewLI = getOrCreateInterval(NewVReg);
 | |
| 
 | |
|   // The spill weight is now infinity as it cannot be spilled again
 | |
|   NewLI.weight = float(HUGE_VAL);
 | |
| 
 | |
|   for (std::vector<LiveRange>::const_iterator
 | |
|          I = LRs.begin(), E = LRs.end(); I != E; ++I) {
 | |
|     DOUT << "  Adding live range " << *I << " to new interval\n";
 | |
|     NewLI.addRange(*I);
 | |
|   }
 | |
|             
 | |
|   DOUT << "Created new live interval " << NewLI << "\n";
 | |
|   return NewLI;
 | |
| }
 | |
| 
 | |
| /// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
 | |
| /// two addr elimination.
 | |
| static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
 | |
|                                 const TargetInstrInfo *TII) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO1 = MI->getOperand(i);
 | |
|     if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
 | |
|       for (unsigned j = i+1; j < e; ++j) {
 | |
|         MachineOperand &MO2 = MI->getOperand(j);
 | |
|         if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
 | |
|             MI->getInstrDescriptor()->
 | |
|             getOperandConstraint(j, TOI::TIED_TO) == (int)i)
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if the definition MI of the specified
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li, unsigned ValNum,
 | |
|                                        MachineInstr *MI) {
 | |
|   if (DisableReMat)
 | |
|     return false;
 | |
| 
 | |
|   if (tii_->isTriviallyReMaterializable(MI))
 | |
|     return true;
 | |
| 
 | |
|   int FrameIdx = 0;
 | |
|   if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
 | |
|       !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
 | |
|     return false;
 | |
| 
 | |
|   // This is a load from fixed stack slot. It can be rematerialized unless it's
 | |
|   // re-defined by a two-address instruction.
 | |
|   for (unsigned i = 0, e = li.getNumValNums(); i != e; ++i) {
 | |
|     if (i == ValNum)
 | |
|       continue;
 | |
|     unsigned DefIdx = li.getDefForValNum(i);
 | |
|     if (DefIdx == ~1U)
 | |
|       continue; // Dead val#.
 | |
|     MachineInstr *DefMI = (DefIdx == ~0u)
 | |
|       ? NULL : getInstructionFromIndex(DefIdx);
 | |
|     if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
 | |
|                                          unsigned index, unsigned i,
 | |
|                                          int slot, unsigned reg) {
 | |
|   MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
 | |
|   if (fmi) {
 | |
|     // Attempt to fold the memory reference into the instruction. If
 | |
|     // we can do this, we don't need to insert spill code.
 | |
|     if (lv_)
 | |
|       lv_->instructionChanged(MI, fmi);
 | |
|     MachineBasicBlock &MBB = *MI->getParent();
 | |
|     vrm.virtFolded(reg, MI, i, fmi);
 | |
|     mi2iMap_.erase(MI);
 | |
|     i2miMap_[index/InstrSlots::NUM] = fmi;
 | |
|     mi2iMap_[fmi] = index;
 | |
|     MI = MBB.insert(MBB.erase(MI), fmi);
 | |
|     ++numFolded;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::vector<LiveInterval*> LiveIntervals::
 | |
| addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
 | |
|   // since this is called after the analysis is done we don't know if
 | |
|   // LiveVariables is available
 | |
|   lv_ = getAnalysisToUpdate<LiveVariables>();
 | |
| 
 | |
|   std::vector<LiveInterval*> added;
 | |
| 
 | |
|   assert(li.weight != HUGE_VALF &&
 | |
|          "attempt to spill already spilled interval!");
 | |
| 
 | |
|   DOUT << "\t\t\t\tadding intervals for spills for interval: ";
 | |
|   li.print(DOUT, mri_);
 | |
|   DOUT << '\n';
 | |
| 
 | |
|   const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
 | |
| 
 | |
|   unsigned NumValNums = li.getNumValNums();
 | |
|   SmallVector<MachineInstr*, 4> ReMatDefs;
 | |
|   ReMatDefs.resize(NumValNums, NULL);
 | |
|   SmallVector<MachineInstr*, 4> ReMatOrigDefs;
 | |
|   ReMatOrigDefs.resize(NumValNums, NULL);
 | |
|   SmallVector<int, 4> ReMatIds;
 | |
|   ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
 | |
|   BitVector ReMatDelete(NumValNums);
 | |
|   unsigned slot = VirtRegMap::MAX_STACK_SLOT;
 | |
| 
 | |
|   bool NeedStackSlot = false;
 | |
|   for (unsigned i = 0; i != NumValNums; ++i) {
 | |
|     unsigned DefIdx = li.getDefForValNum(i);
 | |
|     if (DefIdx == ~1U)
 | |
|       continue; // Dead val#.
 | |
|     // Is the def for the val# rematerializable?
 | |
|     MachineInstr *DefMI = (DefIdx == ~0u)
 | |
|       ? NULL : getInstructionFromIndex(DefIdx);
 | |
|     if (DefMI && isReMaterializable(li, i, DefMI)) {
 | |
|       // Remember how to remat the def of this val#.
 | |
|       ReMatOrigDefs[i] = DefMI;
 | |
|       // Original def may be modified so we have to make a copy here. vrm must
 | |
|       // delete these!
 | |
|       ReMatDefs[i] = DefMI = DefMI->clone();
 | |
|       vrm.setVirtIsReMaterialized(reg, DefMI);
 | |
| 
 | |
|       bool CanDelete = true;
 | |
|       const SmallVector<unsigned, 4> &kills = li.getKillsForValNum(i);
 | |
|       for (unsigned j = 0, ee = kills.size(); j != ee; ++j) {
 | |
|         unsigned KillIdx = kills[j];
 | |
|         MachineInstr *KillMI = (KillIdx & 1)
 | |
|           ? NULL : getInstructionFromIndex(KillIdx);
 | |
|         // Kill is a phi node, not all of its uses can be rematerialized.
 | |
|         // It must not be deleted.
 | |
|         if (!KillMI) {
 | |
|           CanDelete = false;
 | |
|           // Need a stack slot if there is any live range where uses cannot be
 | |
|           // rematerialized.
 | |
|           NeedStackSlot = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (CanDelete)
 | |
|         ReMatDelete.set(i);
 | |
|     } else {
 | |
|       // Need a stack slot if there is any live range where uses cannot be
 | |
|       // rematerialized.
 | |
|       NeedStackSlot = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // One stack slot per live interval.
 | |
|   if (NeedStackSlot)
 | |
|     slot = vrm.assignVirt2StackSlot(reg);
 | |
| 
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|     MachineInstr *DefMI = ReMatDefs[I->ValId];
 | |
|     MachineInstr *OrigDefMI = ReMatOrigDefs[I->ValId];
 | |
|     bool DefIsReMat = DefMI != NULL;
 | |
|     bool CanDelete = ReMatDelete[I->ValId];
 | |
|     int LdSlot = 0;
 | |
|     bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
 | |
|     unsigned index = getBaseIndex(I->start);
 | |
|     unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
 | |
|     for (; index != end; index += InstrSlots::NUM) {
 | |
|       // skip deleted instructions
 | |
|       while (index != end && !getInstructionFromIndex(index))
 | |
|         index += InstrSlots::NUM;
 | |
|       if (index == end) break;
 | |
| 
 | |
|       MachineInstr *MI = getInstructionFromIndex(index);
 | |
| 
 | |
|     RestartInstruction:
 | |
|       for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|         MachineOperand& mop = MI->getOperand(i);
 | |
|         if (mop.isRegister() && mop.getReg() == li.reg) {
 | |
|           if (DefIsReMat) {
 | |
|             // If this is the rematerializable definition MI itself and
 | |
|             // all of its uses are rematerialized, simply delete it.
 | |
|             if (MI == OrigDefMI) {
 | |
|               if (CanDelete) {
 | |
|                 RemoveMachineInstrFromMaps(MI);
 | |
|                 MI->eraseFromParent();
 | |
|                 break;
 | |
|               } else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
 | |
|                 // Folding the load/store can completely change the instruction
 | |
|                 // in unpredictable ways, rescan it from the beginning.
 | |
|                 goto RestartInstruction;
 | |
|             } else if (isLoadSS &&
 | |
|                        tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
 | |
|               // FIXME: Other rematerializable loads can be folded as well.
 | |
|               // Folding the load/store can completely change the
 | |
|               // instruction in unpredictable ways, rescan it from
 | |
|               // the beginning.
 | |
|               goto RestartInstruction;
 | |
|             }
 | |
|           } else {
 | |
|             if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
 | |
|               // Folding the load/store can completely change the instruction in
 | |
|               // unpredictable ways, rescan it from the beginning.
 | |
|               goto RestartInstruction;
 | |
|           }
 | |
| 
 | |
|           // Create a new virtual register for the spill interval.
 | |
|           unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
 | |
|             
 | |
|           // Scan all of the operands of this instruction rewriting operands
 | |
|           // to use NewVReg instead of li.reg as appropriate.  We do this for
 | |
|           // two reasons:
 | |
|           //
 | |
|           //   1. If the instr reads the same spilled vreg multiple times, we
 | |
|           //      want to reuse the NewVReg.
 | |
|           //   2. If the instr is a two-addr instruction, we are required to
 | |
|           //      keep the src/dst regs pinned.
 | |
|           //
 | |
|           // Keep track of whether we replace a use and/or def so that we can
 | |
|           // create the spill interval with the appropriate range. 
 | |
|           mop.setReg(NewVReg);
 | |
|             
 | |
|           bool HasUse = mop.isUse();
 | |
|           bool HasDef = mop.isDef();
 | |
|           for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
 | |
|             if (MI->getOperand(j).isReg() &&
 | |
|                 MI->getOperand(j).getReg() == li.reg) {
 | |
|               MI->getOperand(j).setReg(NewVReg);
 | |
|               HasUse |= MI->getOperand(j).isUse();
 | |
|               HasDef |= MI->getOperand(j).isDef();
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           vrm.grow();
 | |
|           if (DefIsReMat) {
 | |
|             vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
 | |
|             if (ReMatIds[I->ValId] == VirtRegMap::MAX_STACK_SLOT) {
 | |
|               // Each valnum may have its own remat id.
 | |
|               ReMatIds[I->ValId] = vrm.assignVirtReMatId(NewVReg);
 | |
|             } else {
 | |
|               vrm.assignVirtReMatId(NewVReg, ReMatIds[I->ValId]);
 | |
|             }
 | |
|             if (!CanDelete || (HasUse && HasDef)) {
 | |
|               // If this is a two-addr instruction then its use operands are
 | |
|               // rematerializable but its def is not. It should be assigned a
 | |
|               // stack slot.
 | |
|               vrm.assignVirt2StackSlot(NewVReg, slot);
 | |
|             }
 | |
|           } else {
 | |
|             vrm.assignVirt2StackSlot(NewVReg, slot);
 | |
|           }
 | |
| 
 | |
|           // create a new register interval for this spill / remat.
 | |
|           LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
|           assert(nI.empty());
 | |
| 
 | |
|           // the spill weight is now infinity as it
 | |
|           // cannot be spilled again
 | |
|           nI.weight = HUGE_VALF;
 | |
| 
 | |
|           if (HasUse) {
 | |
|             LiveRange LR(getLoadIndex(index), getUseIndex(index),
 | |
|                          nI.getNextValue(~0U, 0));
 | |
|             DOUT << " +" << LR;
 | |
|             nI.addRange(LR);
 | |
|           }
 | |
|           if (HasDef) {
 | |
|             LiveRange LR(getDefIndex(index), getStoreIndex(index),
 | |
|                          nI.getNextValue(~0U, 0));
 | |
|             DOUT << " +" << LR;
 | |
|             nI.addRange(LR);
 | |
|           }
 | |
|             
 | |
|           added.push_back(&nI);
 | |
| 
 | |
|           // update live variables if it is available
 | |
|           if (lv_)
 | |
|             lv_->addVirtualRegisterKilled(NewVReg, MI);
 | |
|             
 | |
|           DOUT << "\t\t\t\tadded new interval: ";
 | |
|           nI.print(DOUT, mri_);
 | |
|           DOUT << '\n';
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return added;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::printRegName(unsigned reg) const {
 | |
|   if (MRegisterInfo::isPhysicalRegister(reg))
 | |
|     cerr << mri_->getName(reg);
 | |
|   else
 | |
|     cerr << "%reg" << reg;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
 | |
|                                              MachineBasicBlock::iterator mi,
 | |
|                                              unsigned MIIdx,
 | |
|                                              LiveInterval &interval) {
 | |
|   DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | |
|   LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | |
| 
 | |
|   // Virtual registers may be defined multiple times (due to phi
 | |
|   // elimination and 2-addr elimination).  Much of what we do only has to be
 | |
|   // done once for the vreg.  We use an empty interval to detect the first
 | |
|   // time we see a vreg.
 | |
|   if (interval.empty()) {
 | |
|     // Get the Idx of the defining instructions.
 | |
|     unsigned defIndex = getDefIndex(MIIdx);
 | |
|     unsigned ValNum;
 | |
|     unsigned SrcReg, DstReg;
 | |
|     if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
 | |
|       ValNum = interval.getNextValue(defIndex, 0);
 | |
|     else
 | |
|       ValNum = interval.getNextValue(defIndex, SrcReg);
 | |
|     
 | |
|     assert(ValNum == 0 && "First value in interval is not 0?");
 | |
|     ValNum = 0;  // Clue in the optimizer.
 | |
| 
 | |
|     // Loop over all of the blocks that the vreg is defined in.  There are
 | |
|     // two cases we have to handle here.  The most common case is a vreg
 | |
|     // whose lifetime is contained within a basic block.  In this case there
 | |
|     // will be a single kill, in MBB, which comes after the definition.
 | |
|     if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | |
|       // FIXME: what about dead vars?
 | |
|       unsigned killIdx;
 | |
|       if (vi.Kills[0] != mi)
 | |
|         killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
 | |
|       else
 | |
|         killIdx = defIndex+1;
 | |
| 
 | |
|       // If the kill happens after the definition, we have an intra-block
 | |
|       // live range.
 | |
|       if (killIdx > defIndex) {
 | |
|         assert(vi.AliveBlocks.none() &&
 | |
|                "Shouldn't be alive across any blocks!");
 | |
|         LiveRange LR(defIndex, killIdx, ValNum);
 | |
|         interval.addRange(LR);
 | |
|         DOUT << " +" << LR << "\n";
 | |
|         interval.addKillForValNum(ValNum, killIdx);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The other case we handle is when a virtual register lives to the end
 | |
|     // of the defining block, potentially live across some blocks, then is
 | |
|     // live into some number of blocks, but gets killed.  Start by adding a
 | |
|     // range that goes from this definition to the end of the defining block.
 | |
|     LiveRange NewLR(defIndex,
 | |
|                     getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | |
|                     ValNum);
 | |
|     DOUT << " +" << NewLR;
 | |
|     interval.addRange(NewLR);
 | |
| 
 | |
|     // Iterate over all of the blocks that the variable is completely
 | |
|     // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | |
|     // live interval.
 | |
|     for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
 | |
|       if (vi.AliveBlocks[i]) {
 | |
|         MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
 | |
|         if (!MBB->empty()) {
 | |
|           LiveRange LR(getMBBStartIdx(i),
 | |
|                        getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
 | |
|                        ValNum);
 | |
|           interval.addRange(LR);
 | |
|           DOUT << " +" << LR;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, this virtual register is live from the start of any killing
 | |
|     // block to the 'use' slot of the killing instruction.
 | |
|     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | |
|       MachineInstr *Kill = vi.Kills[i];
 | |
|       unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
 | |
|       LiveRange LR(getMBBStartIdx(Kill->getParent()),
 | |
|                    killIdx, ValNum);
 | |
|       interval.addRange(LR);
 | |
|       interval.addKillForValNum(ValNum, killIdx);
 | |
|       DOUT << " +" << LR;
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // If this is the second time we see a virtual register definition, it
 | |
|     // must be due to phi elimination or two addr elimination.  If this is
 | |
|     // the result of two address elimination, then the vreg is one of the
 | |
|     // def-and-use register operand.
 | |
|     if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
 | |
|       // If this is a two-address definition, then we have already processed
 | |
|       // the live range.  The only problem is that we didn't realize there
 | |
|       // are actually two values in the live interval.  Because of this we
 | |
|       // need to take the LiveRegion that defines this register and split it
 | |
|       // into two values.
 | |
|       unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
 | |
|       unsigned RedefIndex = getDefIndex(MIIdx);
 | |
| 
 | |
|       const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
 | |
|       unsigned OldEnd = OldLR->end;
 | |
| 
 | |
|       // Delete the initial value, which should be short and continuous,
 | |
|       // because the 2-addr copy must be in the same MBB as the redef.
 | |
|       interval.removeRange(DefIndex, RedefIndex);
 | |
| 
 | |
|       // Two-address vregs should always only be redefined once.  This means
 | |
|       // that at this point, there should be exactly one value number in it.
 | |
|       assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
 | |
| 
 | |
|       // The new value number (#1) is defined by the instruction we claimed
 | |
|       // defined value #0.
 | |
|       unsigned ValNo = interval.getNextValue(0, 0);
 | |
|       interval.copyValNumInfo(ValNo, 0);
 | |
|       
 | |
|       // Value#0 is now defined by the 2-addr instruction.
 | |
|       interval.setDefForValNum(0, RedefIndex);
 | |
|       interval.setSrcRegForValNum(0, 0);
 | |
|       
 | |
|       // Add the new live interval which replaces the range for the input copy.
 | |
|       LiveRange LR(DefIndex, RedefIndex, ValNo);
 | |
|       DOUT << " replace range with " << LR;
 | |
|       interval.addRange(LR);
 | |
|       interval.addKillForValNum(ValNo, RedefIndex);
 | |
|       interval.removeKillForValNum(ValNo, RedefIndex, OldEnd);
 | |
| 
 | |
|       // If this redefinition is dead, we need to add a dummy unit live
 | |
|       // range covering the def slot.
 | |
|       if (lv_->RegisterDefIsDead(mi, interval.reg))
 | |
|         interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
 | |
| 
 | |
|       DOUT << " RESULT: ";
 | |
|       interval.print(DOUT, mri_);
 | |
| 
 | |
|     } else {
 | |
|       // Otherwise, this must be because of phi elimination.  If this is the
 | |
|       // first redefinition of the vreg that we have seen, go back and change
 | |
|       // the live range in the PHI block to be a different value number.
 | |
|       if (interval.containsOneValue()) {
 | |
|         assert(vi.Kills.size() == 1 &&
 | |
|                "PHI elimination vreg should have one kill, the PHI itself!");
 | |
| 
 | |
|         // Remove the old range that we now know has an incorrect number.
 | |
|         MachineInstr *Killer = vi.Kills[0];
 | |
|         unsigned Start = getMBBStartIdx(Killer->getParent());
 | |
|         unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
 | |
|         DOUT << " Removing [" << Start << "," << End << "] from: ";
 | |
|         interval.print(DOUT, mri_); DOUT << "\n";
 | |
|         interval.removeRange(Start, End);
 | |
|         interval.addKillForValNum(0, Start+1); // odd # means phi node
 | |
|         DOUT << " RESULT: "; interval.print(DOUT, mri_);
 | |
| 
 | |
|         // Replace the interval with one of a NEW value number.  Note that this
 | |
|         // value number isn't actually defined by an instruction, weird huh? :)
 | |
|         LiveRange LR(Start, End, interval.getNextValue(~0, 0));
 | |
|         DOUT << " replace range with " << LR;
 | |
|         interval.addRange(LR);
 | |
|         interval.addKillForValNum(LR.ValId, End);
 | |
|         DOUT << " RESULT: "; interval.print(DOUT, mri_);
 | |
|       }
 | |
| 
 | |
|       // In the case of PHI elimination, each variable definition is only
 | |
|       // live until the end of the block.  We've already taken care of the
 | |
|       // rest of the live range.
 | |
|       unsigned defIndex = getDefIndex(MIIdx);
 | |
|       
 | |
|       unsigned ValNum;
 | |
|       unsigned SrcReg, DstReg;
 | |
|       if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
 | |
|         ValNum = interval.getNextValue(defIndex, 0);
 | |
|       else
 | |
|         ValNum = interval.getNextValue(defIndex, SrcReg);
 | |
|       
 | |
|       unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
 | |
|       LiveRange LR(defIndex, killIndex, ValNum);
 | |
|       interval.addRange(LR);
 | |
|       interval.addKillForValNum(ValNum, killIndex-1); // odd # means phi node
 | |
|       DOUT << " +" << LR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DOUT << '\n';
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | |
|                                               MachineBasicBlock::iterator mi,
 | |
|                                               unsigned MIIdx,
 | |
|                                               LiveInterval &interval,
 | |
|                                               unsigned SrcReg) {
 | |
|   // A physical register cannot be live across basic block, so its
 | |
|   // lifetime must end somewhere in its defining basic block.
 | |
|   DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | |
| 
 | |
|   unsigned baseIndex = MIIdx;
 | |
|   unsigned start = getDefIndex(baseIndex);
 | |
|   unsigned end = start;
 | |
| 
 | |
|   // If it is not used after definition, it is considered dead at
 | |
|   // the instruction defining it. Hence its interval is:
 | |
|   // [defSlot(def), defSlot(def)+1)
 | |
|   if (lv_->RegisterDefIsDead(mi, interval.reg)) {
 | |
|     DOUT << " dead";
 | |
|     end = getDefIndex(start) + 1;
 | |
|     goto exit;
 | |
|   }
 | |
| 
 | |
|   // If it is not dead on definition, it must be killed by a
 | |
|   // subsequent instruction. Hence its interval is:
 | |
|   // [defSlot(def), useSlot(kill)+1)
 | |
|   while (++mi != MBB->end()) {
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|     if (lv_->KillsRegister(mi, interval.reg)) {
 | |
|       DOUT << " killed";
 | |
|       end = getUseIndex(baseIndex) + 1;
 | |
|       goto exit;
 | |
|     } else if (lv_->ModifiesRegister(mi, interval.reg)) {
 | |
|       // Another instruction redefines the register before it is ever read.
 | |
|       // Then the register is essentially dead at the instruction that defines
 | |
|       // it. Hence its interval is:
 | |
|       // [defSlot(def), defSlot(def)+1)
 | |
|       DOUT << " dead";
 | |
|       end = getDefIndex(start) + 1;
 | |
|       goto exit;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // The only case we should have a dead physreg here without a killing or
 | |
|   // instruction where we know it's dead is if it is live-in to the function
 | |
|   // and never used.
 | |
|   assert(!SrcReg && "physreg was not killed in defining block!");
 | |
|   end = getDefIndex(start) + 1;  // It's dead.
 | |
| 
 | |
| exit:
 | |
|   assert(start < end && "did not find end of interval?");
 | |
| 
 | |
|   // Already exists? Extend old live interval.
 | |
|   LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
 | |
|   unsigned Id = (OldLR != interval.end())
 | |
|     ? OldLR->ValId : interval.getNextValue(start, SrcReg);
 | |
|   LiveRange LR(start, end, Id);
 | |
|   interval.addRange(LR);
 | |
|   interval.addKillForValNum(LR.ValId, end);
 | |
|   DOUT << " +" << LR << '\n';
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator MI,
 | |
|                                       unsigned MIIdx,
 | |
|                                       unsigned reg) {
 | |
|   if (MRegisterInfo::isVirtualRegister(reg))
 | |
|     handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
 | |
|   else if (allocatableRegs_[reg]) {
 | |
|     unsigned SrcReg, DstReg;
 | |
|     if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
 | |
|       SrcReg = 0;
 | |
|     handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
 | |
|     // Def of a register also defines its sub-registers.
 | |
|     for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
 | |
|       // Avoid processing some defs more than once.
 | |
|       if (!MI->findRegisterDefOperand(*AS))
 | |
|         handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
 | |
|                                          unsigned MIIdx,
 | |
|                                          LiveInterval &interval, bool isAlias) {
 | |
|   DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
 | |
| 
 | |
|   // Look for kills, if it reaches a def before it's killed, then it shouldn't
 | |
|   // be considered a livein.
 | |
|   MachineBasicBlock::iterator mi = MBB->begin();
 | |
|   unsigned baseIndex = MIIdx;
 | |
|   unsigned start = baseIndex;
 | |
|   unsigned end = start;
 | |
|   while (mi != MBB->end()) {
 | |
|     if (lv_->KillsRegister(mi, interval.reg)) {
 | |
|       DOUT << " killed";
 | |
|       end = getUseIndex(baseIndex) + 1;
 | |
|       goto exit;
 | |
|     } else if (lv_->ModifiesRegister(mi, interval.reg)) {
 | |
|       // Another instruction redefines the register before it is ever read.
 | |
|       // Then the register is essentially dead at the instruction that defines
 | |
|       // it. Hence its interval is:
 | |
|       // [defSlot(def), defSlot(def)+1)
 | |
|       DOUT << " dead";
 | |
|       end = getDefIndex(start) + 1;
 | |
|       goto exit;
 | |
|     }
 | |
| 
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|     ++mi;
 | |
|   }
 | |
| 
 | |
| exit:
 | |
|   // Live-in register might not be used at all.
 | |
|   if (end == MIIdx) {
 | |
|     if (isAlias) {
 | |
|       DOUT << " dead";
 | |
|       end = getDefIndex(MIIdx) + 1;
 | |
|     } else {
 | |
|       DOUT << " live through";
 | |
|       end = baseIndex;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LiveRange LR(start, end, interval.getNextValue(start, 0));
 | |
|   interval.addRange(LR);
 | |
|   interval.addKillForValNum(LR.ValId, end);
 | |
|   DOUT << " +" << LR << '\n';
 | |
| }
 | |
| 
 | |
| /// computeIntervals - computes the live intervals for virtual
 | |
| /// registers. for some ordering of the machine instructions [1,N] a
 | |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for
 | |
| /// which a variable is live
 | |
| void LiveIntervals::computeIntervals() {
 | |
|   DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
 | |
|        << "********** Function: "
 | |
|        << ((Value*)mf_->getFunction())->getName() << '\n';
 | |
|   // Track the index of the current machine instr.
 | |
|   unsigned MIIndex = 0;
 | |
|   for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
 | |
| 
 | |
|     MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
 | |
| 
 | |
|     if (MBB->livein_begin() != MBB->livein_end()) {
 | |
|       // Create intervals for live-ins to this BB first.
 | |
|       for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
 | |
|              LE = MBB->livein_end(); LI != LE; ++LI) {
 | |
|         handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
 | |
|         // Multiple live-ins can alias the same register.
 | |
|         for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
 | |
|           if (!hasInterval(*AS))
 | |
|             handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
 | |
|                                  true);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     for (; MI != miEnd; ++MI) {
 | |
|       DOUT << MIIndex << "\t" << *MI;
 | |
| 
 | |
|       // Handle defs.
 | |
|       for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         // handle register defs - build intervals
 | |
|         if (MO.isRegister() && MO.getReg() && MO.isDef())
 | |
|           handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
 | |
|       }
 | |
|       
 | |
|       MIIndex += InstrSlots::NUM;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LiveInterval LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
 | |
|                        HUGE_VALF : 0.0F;
 | |
|   return LiveInterval(reg, Weight);
 | |
| }
 |