mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237072 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2352 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2352 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass lowers LLVM IR exception handling into something closer to what the
 | 
						|
// backend wants for functions using a personality function from a runtime
 | 
						|
// provided by MSVC. Functions with other personality functions are left alone
 | 
						|
// and may be prepared by other passes. In particular, all supported MSVC
 | 
						|
// personality functions require cleanup code to be outlined, and the C++
 | 
						|
// personality requires catch handler code to be outlined.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/ADT/TinyPtrVector.h"
 | 
						|
#include "llvm/Analysis/LibCallSemantics.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "winehprepare"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// This map is used to model frame variable usage during outlining, to
 | 
						|
// construct a structure type to hold the frame variables in a frame
 | 
						|
// allocation block, and to remap the frame variable allocas (including
 | 
						|
// spill locations as needed) to GEPs that get the variable from the
 | 
						|
// frame allocation structure.
 | 
						|
typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
 | 
						|
 | 
						|
// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
 | 
						|
// quite null.
 | 
						|
AllocaInst *getCatchObjectSentinel() {
 | 
						|
  return static_cast<AllocaInst *>(nullptr) + 1;
 | 
						|
}
 | 
						|
 | 
						|
typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
 | 
						|
 | 
						|
class LandingPadActions;
 | 
						|
class LandingPadMap;
 | 
						|
 | 
						|
typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
 | 
						|
typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
 | 
						|
 | 
						|
class WinEHPrepare : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid.
 | 
						|
  WinEHPrepare(const TargetMachine *TM = nullptr)
 | 
						|
      : FunctionPass(ID) {
 | 
						|
    if (TM)
 | 
						|
      TheTriple = Triple(TM->getTargetTriple());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &Fn) override;
 | 
						|
 | 
						|
  bool doFinalization(Module &M) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "Windows exception handling preparation";
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool prepareExceptionHandlers(Function &F,
 | 
						|
                                SmallVectorImpl<LandingPadInst *> &LPads);
 | 
						|
  void promoteLandingPadValues(LandingPadInst *LPad);
 | 
						|
  void demoteValuesLiveAcrossHandlers(Function &F,
 | 
						|
                                      SmallVectorImpl<LandingPadInst *> &LPads);
 | 
						|
  void findSEHEHReturnPoints(Function &F,
 | 
						|
                             SetVector<BasicBlock *> &EHReturnBlocks);
 | 
						|
  void findCXXEHReturnPoints(Function &F,
 | 
						|
                             SetVector<BasicBlock *> &EHReturnBlocks);
 | 
						|
  void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
 | 
						|
                                SetVector<BasicBlock*> &Targets);
 | 
						|
  void completeNestedLandingPad(Function *ParentFn,
 | 
						|
                                LandingPadInst *OutlinedLPad,
 | 
						|
                                const LandingPadInst *OriginalLPad,
 | 
						|
                                FrameVarInfoMap &VarInfo);
 | 
						|
  Function *createHandlerFunc(Type *RetTy, const Twine &Name, Module *M,
 | 
						|
                              Value *&ParentFP);
 | 
						|
  bool outlineHandler(ActionHandler *Action, Function *SrcFn,
 | 
						|
                      LandingPadInst *LPad, BasicBlock *StartBB,
 | 
						|
                      FrameVarInfoMap &VarInfo);
 | 
						|
  void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn);
 | 
						|
 | 
						|
  void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
 | 
						|
  CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
 | 
						|
                                 VisitedBlockSet &VisitedBlocks);
 | 
						|
  void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
 | 
						|
                           BasicBlock *EndBB);
 | 
						|
 | 
						|
  void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
 | 
						|
 | 
						|
  Triple TheTriple;
 | 
						|
 | 
						|
  // All fields are reset by runOnFunction.
 | 
						|
  DominatorTree *DT = nullptr;
 | 
						|
  EHPersonality Personality = EHPersonality::Unknown;
 | 
						|
  CatchHandlerMapTy CatchHandlerMap;
 | 
						|
  CleanupHandlerMapTy CleanupHandlerMap;
 | 
						|
  DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
 | 
						|
 | 
						|
  // This maps landing pad instructions found in outlined handlers to
 | 
						|
  // the landing pad instruction in the parent function from which they
 | 
						|
  // were cloned.  The cloned/nested landing pad is used as the key
 | 
						|
  // because the landing pad may be cloned into multiple handlers.
 | 
						|
  // This map will be used to add the llvm.eh.actions call to the nested
 | 
						|
  // landing pads after all handlers have been outlined.
 | 
						|
  DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
 | 
						|
 | 
						|
  // This maps blocks in the parent function which are destinations of
 | 
						|
  // catch handlers to cloned blocks in (other) outlined handlers. This
 | 
						|
  // handles the case where a nested landing pads has a catch handler that
 | 
						|
  // returns to a handler function rather than the parent function.
 | 
						|
  // The original block is used as the key here because there should only
 | 
						|
  // ever be one handler function from which the cloned block is not pruned.
 | 
						|
  // The original block will be pruned from the parent function after all
 | 
						|
  // handlers have been outlined.  This map will be used to adjust the
 | 
						|
  // return instructions of handlers which return to the block that was
 | 
						|
  // outlined into a handler.  This is done after all handlers have been
 | 
						|
  // outlined but before the outlined code is pruned from the parent function.
 | 
						|
  DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
 | 
						|
 | 
						|
  // Map from outlined handler to call to llvm.frameaddress(1). Only used for
 | 
						|
  // 32-bit EH.
 | 
						|
  DenseMap<Function *, Value *> HandlerToParentFP;
 | 
						|
 | 
						|
  AllocaInst *SEHExceptionCodeSlot = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
class WinEHFrameVariableMaterializer : public ValueMaterializer {
 | 
						|
public:
 | 
						|
  WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
 | 
						|
                                 FrameVarInfoMap &FrameVarInfo);
 | 
						|
  ~WinEHFrameVariableMaterializer() override {}
 | 
						|
 | 
						|
  Value *materializeValueFor(Value *V) override;
 | 
						|
 | 
						|
  void escapeCatchObject(Value *V);
 | 
						|
 | 
						|
private:
 | 
						|
  FrameVarInfoMap &FrameVarInfo;
 | 
						|
  IRBuilder<> Builder;
 | 
						|
};
 | 
						|
 | 
						|
class LandingPadMap {
 | 
						|
public:
 | 
						|
  LandingPadMap() : OriginLPad(nullptr) {}
 | 
						|
  void mapLandingPad(const LandingPadInst *LPad);
 | 
						|
 | 
						|
  bool isInitialized() { return OriginLPad != nullptr; }
 | 
						|
 | 
						|
  bool isOriginLandingPadBlock(const BasicBlock *BB) const;
 | 
						|
  bool isLandingPadSpecificInst(const Instruction *Inst) const;
 | 
						|
 | 
						|
  void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
 | 
						|
                     Value *SelectorValue) const;
 | 
						|
 | 
						|
private:
 | 
						|
  const LandingPadInst *OriginLPad;
 | 
						|
  // We will normally only see one of each of these instructions, but
 | 
						|
  // if more than one occurs for some reason we can handle that.
 | 
						|
  TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
 | 
						|
  TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
 | 
						|
};
 | 
						|
 | 
						|
class WinEHCloningDirectorBase : public CloningDirector {
 | 
						|
public:
 | 
						|
  WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
 | 
						|
                           FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
 | 
						|
      : Materializer(HandlerFn, ParentFP, VarInfo),
 | 
						|
        SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
 | 
						|
        Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
 | 
						|
        LPadMap(LPadMap), ParentFP(ParentFP) {}
 | 
						|
 | 
						|
  CloningAction handleInstruction(ValueToValueMapTy &VMap,
 | 
						|
                                  const Instruction *Inst,
 | 
						|
                                  BasicBlock *NewBB) override;
 | 
						|
 | 
						|
  virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | 
						|
                                         const Instruction *Inst,
 | 
						|
                                         BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
 | 
						|
                                       const Instruction *Inst,
 | 
						|
                                       BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | 
						|
                                        const Instruction *Inst,
 | 
						|
                                        BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
 | 
						|
                                     const InvokeInst *Invoke,
 | 
						|
                                     BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleResume(ValueToValueMapTy &VMap,
 | 
						|
                                     const ResumeInst *Resume,
 | 
						|
                                     BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
 | 
						|
                                      const CmpInst *Compare,
 | 
						|
                                      BasicBlock *NewBB) = 0;
 | 
						|
  virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | 
						|
                                         const LandingPadInst *LPad,
 | 
						|
                                         BasicBlock *NewBB) = 0;
 | 
						|
 | 
						|
  ValueMaterializer *getValueMaterializer() override { return &Materializer; }
 | 
						|
 | 
						|
protected:
 | 
						|
  WinEHFrameVariableMaterializer Materializer;
 | 
						|
  Type *SelectorIDType;
 | 
						|
  Type *Int8PtrType;
 | 
						|
  LandingPadMap &LPadMap;
 | 
						|
 | 
						|
  /// The value representing the parent frame pointer.
 | 
						|
  Value *ParentFP;
 | 
						|
};
 | 
						|
 | 
						|
class WinEHCatchDirector : public WinEHCloningDirectorBase {
 | 
						|
public:
 | 
						|
  WinEHCatchDirector(
 | 
						|
      Function *CatchFn, Value *ParentFP, Value *Selector,
 | 
						|
      FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
 | 
						|
      DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads)
 | 
						|
      : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
 | 
						|
        CurrentSelector(Selector->stripPointerCasts()),
 | 
						|
        ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {}
 | 
						|
 | 
						|
  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | 
						|
                                 const Instruction *Inst,
 | 
						|
                                 BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
 | 
						|
                               BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | 
						|
                                const Instruction *Inst,
 | 
						|
                                BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
 | 
						|
                             BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
 | 
						|
                             BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
 | 
						|
                              BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | 
						|
                                 const LandingPadInst *LPad,
 | 
						|
                                 BasicBlock *NewBB) override;
 | 
						|
 | 
						|
  Value *getExceptionVar() { return ExceptionObjectVar; }
 | 
						|
  TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
 | 
						|
 | 
						|
private:
 | 
						|
  Value *CurrentSelector;
 | 
						|
 | 
						|
  Value *ExceptionObjectVar;
 | 
						|
  TinyPtrVector<BasicBlock *> ReturnTargets;
 | 
						|
 | 
						|
  // This will be a reference to the field of the same name in the WinEHPrepare
 | 
						|
  // object which instantiates this WinEHCatchDirector object.
 | 
						|
  DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
 | 
						|
};
 | 
						|
 | 
						|
class WinEHCleanupDirector : public WinEHCloningDirectorBase {
 | 
						|
public:
 | 
						|
  WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
 | 
						|
                       FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
 | 
						|
      : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
 | 
						|
                                 LPadMap) {}
 | 
						|
 | 
						|
  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | 
						|
                                 const Instruction *Inst,
 | 
						|
                                 BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
 | 
						|
                               BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | 
						|
                                const Instruction *Inst,
 | 
						|
                                BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
 | 
						|
                             BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
 | 
						|
                             BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
 | 
						|
                              BasicBlock *NewBB) override;
 | 
						|
  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | 
						|
                                 const LandingPadInst *LPad,
 | 
						|
                                 BasicBlock *NewBB) override;
 | 
						|
};
 | 
						|
 | 
						|
class LandingPadActions {
 | 
						|
public:
 | 
						|
  LandingPadActions() : HasCleanupHandlers(false) {}
 | 
						|
 | 
						|
  void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
 | 
						|
  void insertCleanupHandler(CleanupHandler *Action) {
 | 
						|
    Actions.push_back(Action);
 | 
						|
    HasCleanupHandlers = true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool includesCleanup() const { return HasCleanupHandlers; }
 | 
						|
 | 
						|
  SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
 | 
						|
  SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
 | 
						|
  SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
 | 
						|
 | 
						|
private:
 | 
						|
  // Note that this class does not own the ActionHandler objects in this vector.
 | 
						|
  // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
 | 
						|
  // in the WinEHPrepare class.
 | 
						|
  SmallVector<ActionHandler *, 4> Actions;
 | 
						|
  bool HasCleanupHandlers;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char WinEHPrepare::ID = 0;
 | 
						|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
 | 
						|
                   false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
 | 
						|
  return new WinEHPrepare(TM);
 | 
						|
}
 | 
						|
 | 
						|
bool WinEHPrepare::runOnFunction(Function &Fn) {
 | 
						|
  // No need to prepare outlined handlers.
 | 
						|
  if (Fn.hasFnAttribute("wineh-parent"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<LandingPadInst *, 4> LPads;
 | 
						|
  SmallVector<ResumeInst *, 4> Resumes;
 | 
						|
  for (BasicBlock &BB : Fn) {
 | 
						|
    if (auto *LP = BB.getLandingPadInst())
 | 
						|
      LPads.push_back(LP);
 | 
						|
    if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
 | 
						|
      Resumes.push_back(Resume);
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to prepare functions that lack landing pads.
 | 
						|
  if (LPads.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Classify the personality to see what kind of preparation we need.
 | 
						|
  Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
 | 
						|
 | 
						|
  // Do nothing if this is not an MSVC personality.
 | 
						|
  if (!isMSVCEHPersonality(Personality))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  // If there were any landing pads, prepareExceptionHandlers will make changes.
 | 
						|
  prepareExceptionHandlers(Fn, LPads);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool WinEHPrepare::doFinalization(Module &M) { return false; }
 | 
						|
 | 
						|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
 | 
						|
                               Constant *&Selector, BasicBlock *&NextBB);
 | 
						|
 | 
						|
// Finds blocks reachable from the starting set Worklist. Does not follow unwind
 | 
						|
// edges or blocks listed in StopPoints.
 | 
						|
static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
 | 
						|
                                SetVector<BasicBlock *> &Worklist,
 | 
						|
                                const SetVector<BasicBlock *> *StopPoints) {
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Don't cross blocks that we should stop at.
 | 
						|
    if (StopPoints && StopPoints->count(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!ReachableBBs.insert(BB).second)
 | 
						|
      continue; // Already visited.
 | 
						|
 | 
						|
    // Don't follow unwind edges of invokes.
 | 
						|
    if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
 | 
						|
      Worklist.insert(II->getNormalDest());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, follow all successors.
 | 
						|
    Worklist.insert(succ_begin(BB), succ_end(BB));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to find an instruction where a block can be split before
 | 
						|
// a call to llvm.eh.begincatch and its operands.  If the block
 | 
						|
// begins with the begincatch call or one of its adjacent operands
 | 
						|
// the block will not be split.
 | 
						|
static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
 | 
						|
                                             IntrinsicInst *II) {
 | 
						|
  // If the begincatch call is already the first instruction in the block,
 | 
						|
  // don't split.
 | 
						|
  Instruction *FirstNonPHI = BB->getFirstNonPHI();
 | 
						|
  if (II == FirstNonPHI)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If either operand is in the same basic block as the instruction and
 | 
						|
  // isn't used by another instruction before the begincatch call, include it
 | 
						|
  // in the split block.
 | 
						|
  auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
 | 
						|
  auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
 | 
						|
 | 
						|
  Instruction *I = II->getPrevNode();
 | 
						|
  Instruction *LastI = II;
 | 
						|
 | 
						|
  while (I == Op0 || I == Op1) {
 | 
						|
    // If the block begins with one of the operands and there are no other
 | 
						|
    // instructions between the operand and the begincatch call, don't split.
 | 
						|
    if (I == FirstNonPHI)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    LastI = I;
 | 
						|
    I = I->getPrevNode();
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is at least one instruction in the block before the begincatch
 | 
						|
  // call and its operands, split the block at either the begincatch or
 | 
						|
  // its operand.
 | 
						|
  return LastI;
 | 
						|
}
 | 
						|
 | 
						|
/// Find all points where exceptional control rejoins normal control flow via
 | 
						|
/// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
 | 
						|
void WinEHPrepare::findCXXEHReturnPoints(
 | 
						|
    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
 | 
						|
  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = BBI;
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
 | 
						|
        Instruction *SplitPt =
 | 
						|
            findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
 | 
						|
        if (SplitPt) {
 | 
						|
          // Split the block before the llvm.eh.begincatch call to allow
 | 
						|
          // cleanup and catch code to be distinguished later.
 | 
						|
          // Do not update BBI because we still need to process the
 | 
						|
          // portion of the block that we are splitting off.
 | 
						|
          SplitBlock(BB, SplitPt, DT);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
 | 
						|
        // Split the block after the call to llvm.eh.endcatch if there is
 | 
						|
        // anything other than an unconditional branch, or if the successor
 | 
						|
        // starts with a phi.
 | 
						|
        auto *Br = dyn_cast<BranchInst>(I.getNextNode());
 | 
						|
        if (!Br || !Br->isUnconditional() ||
 | 
						|
            isa<PHINode>(Br->getSuccessor(0)->begin())) {
 | 
						|
          DEBUG(dbgs() << "splitting block " << BB->getName()
 | 
						|
                       << " with llvm.eh.endcatch\n");
 | 
						|
          BBI = SplitBlock(BB, I.getNextNode(), DT);
 | 
						|
        }
 | 
						|
        // The next BB is normal control flow.
 | 
						|
        EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isCatchAllLandingPad(const BasicBlock *BB) {
 | 
						|
  const LandingPadInst *LP = BB->getLandingPadInst();
 | 
						|
  if (!LP)
 | 
						|
    return false;
 | 
						|
  unsigned N = LP->getNumClauses();
 | 
						|
  return (N > 0 && LP->isCatch(N - 1) &&
 | 
						|
          isa<ConstantPointerNull>(LP->getClause(N - 1)));
 | 
						|
}
 | 
						|
 | 
						|
/// Find all points where exceptions control rejoins normal control flow via
 | 
						|
/// selector dispatch.
 | 
						|
void WinEHPrepare::findSEHEHReturnPoints(
 | 
						|
    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
 | 
						|
  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = BBI;
 | 
						|
    // If the landingpad is a catch-all, treat the whole lpad as if it is
 | 
						|
    // reachable from normal control flow.
 | 
						|
    // FIXME: This is imprecise. We need a better way of identifying where a
 | 
						|
    // catch-all starts and cleanups stop. As far as LLVM is concerned, there
 | 
						|
    // is no difference.
 | 
						|
    if (isCatchAllLandingPad(BB)) {
 | 
						|
      EHReturnBlocks.insert(BB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock *CatchHandler;
 | 
						|
    BasicBlock *NextBB;
 | 
						|
    Constant *Selector;
 | 
						|
    if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
 | 
						|
      // Split the edge if there is a phi node. Returning from EH to a phi node
 | 
						|
      // is just as impossible as having a phi after an indirectbr.
 | 
						|
      if (isa<PHINode>(CatchHandler->begin())) {
 | 
						|
        DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()
 | 
						|
                     << " to " << CatchHandler->getName() << '\n');
 | 
						|
        BBI = CatchHandler = SplitCriticalEdge(
 | 
						|
            BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
 | 
						|
      }
 | 
						|
      EHReturnBlocks.insert(CatchHandler);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Ensure that all values live into and out of exception handlers are stored
 | 
						|
/// in memory.
 | 
						|
/// FIXME: This falls down when values are defined in one handler and live into
 | 
						|
/// another handler. For example, a cleanup defines a value used only by a
 | 
						|
/// catch handler.
 | 
						|
void WinEHPrepare::demoteValuesLiveAcrossHandlers(
 | 
						|
    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
 | 
						|
  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
 | 
						|
               << F.getName() << '\n');
 | 
						|
 | 
						|
  // Build a set of all non-exceptional blocks and exceptional blocks.
 | 
						|
  // - Non-exceptional blocks are blocks reachable from the entry block while
 | 
						|
  //   not following invoke unwind edges.
 | 
						|
  // - Exceptional blocks are blocks reachable from landingpads. Analysis does
 | 
						|
  //   not follow llvm.eh.endcatch blocks, which mark a transition from
 | 
						|
  //   exceptional to normal control.
 | 
						|
  SmallPtrSet<BasicBlock *, 4> NormalBlocks;
 | 
						|
  SmallPtrSet<BasicBlock *, 4> EHBlocks;
 | 
						|
  SetVector<BasicBlock *> EHReturnBlocks;
 | 
						|
  SetVector<BasicBlock *> Worklist;
 | 
						|
 | 
						|
  if (Personality == EHPersonality::MSVC_CXX)
 | 
						|
    findCXXEHReturnPoints(F, EHReturnBlocks);
 | 
						|
  else
 | 
						|
    findSEHEHReturnPoints(F, EHReturnBlocks);
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "identified the following blocks as EH return points:\n";
 | 
						|
    for (BasicBlock *BB : EHReturnBlocks)
 | 
						|
      dbgs() << "  " << BB->getName() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
// Join points should not have phis at this point, unless they are a
 | 
						|
// landingpad, in which case we will demote their phis later.
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (BasicBlock *BB : EHReturnBlocks)
 | 
						|
    assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&
 | 
						|
           "non-lpad EH return block has phi");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Normal blocks are the blocks reachable from the entry block and all EH
 | 
						|
  // return points.
 | 
						|
  Worklist = EHReturnBlocks;
 | 
						|
  Worklist.insert(&F.getEntryBlock());
 | 
						|
  findReachableBlocks(NormalBlocks, Worklist, nullptr);
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "marked the following blocks as normal:\n";
 | 
						|
    for (BasicBlock *BB : NormalBlocks)
 | 
						|
      dbgs() << "  " << BB->getName() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  // Exceptional blocks are the blocks reachable from landingpads that don't
 | 
						|
  // cross EH return points.
 | 
						|
  Worklist.clear();
 | 
						|
  for (auto *LPI : LPads)
 | 
						|
    Worklist.insert(LPI->getParent());
 | 
						|
  findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "marked the following blocks as exceptional:\n";
 | 
						|
    for (BasicBlock *BB : EHBlocks)
 | 
						|
      dbgs() << "  " << BB->getName() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  SetVector<Argument *> ArgsToDemote;
 | 
						|
  SetVector<Instruction *> InstrsToDemote;
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    bool IsNormalBB = NormalBlocks.count(&BB);
 | 
						|
    bool IsEHBB = EHBlocks.count(&BB);
 | 
						|
    if (!IsNormalBB && !IsEHBB)
 | 
						|
      continue; // Blocks that are neither normal nor EH are unreachable.
 | 
						|
    for (Instruction &I : BB) {
 | 
						|
      for (Value *Op : I.operands()) {
 | 
						|
        // Don't demote static allocas, constants, and labels.
 | 
						|
        if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
 | 
						|
          continue;
 | 
						|
        auto *AI = dyn_cast<AllocaInst>(Op);
 | 
						|
        if (AI && AI->isStaticAlloca())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (auto *Arg = dyn_cast<Argument>(Op)) {
 | 
						|
          if (IsEHBB) {
 | 
						|
            DEBUG(dbgs() << "Demoting argument " << *Arg
 | 
						|
                         << " used by EH instr: " << I << "\n");
 | 
						|
            ArgsToDemote.insert(Arg);
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        auto *OpI = cast<Instruction>(Op);
 | 
						|
        BasicBlock *OpBB = OpI->getParent();
 | 
						|
        // If a value is produced and consumed in the same BB, we don't need to
 | 
						|
        // demote it.
 | 
						|
        if (OpBB == &BB)
 | 
						|
          continue;
 | 
						|
        bool IsOpNormalBB = NormalBlocks.count(OpBB);
 | 
						|
        bool IsOpEHBB = EHBlocks.count(OpBB);
 | 
						|
        if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
 | 
						|
          DEBUG({
 | 
						|
            dbgs() << "Demoting instruction live in-out from EH:\n";
 | 
						|
            dbgs() << "Instr: " << *OpI << '\n';
 | 
						|
            dbgs() << "User: " << I << '\n';
 | 
						|
          });
 | 
						|
          InstrsToDemote.insert(OpI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Demote values live into and out of handlers.
 | 
						|
  // FIXME: This demotion is inefficient. We should insert spills at the point
 | 
						|
  // of definition, insert one reload in each handler that uses the value, and
 | 
						|
  // insert reloads in the BB used to rejoin normal control flow.
 | 
						|
  Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
 | 
						|
  for (Instruction *I : InstrsToDemote)
 | 
						|
    DemoteRegToStack(*I, false, AllocaInsertPt);
 | 
						|
 | 
						|
  // Demote arguments separately, and only for uses in EH blocks.
 | 
						|
  for (Argument *Arg : ArgsToDemote) {
 | 
						|
    auto *Slot = new AllocaInst(Arg->getType(), nullptr,
 | 
						|
                                Arg->getName() + ".reg2mem", AllocaInsertPt);
 | 
						|
    SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
 | 
						|
    for (User *U : Users) {
 | 
						|
      auto *I = dyn_cast<Instruction>(U);
 | 
						|
      if (I && EHBlocks.count(I->getParent())) {
 | 
						|
        auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
 | 
						|
        U->replaceUsesOfWith(Arg, Reload);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    new StoreInst(Arg, Slot, AllocaInsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Demote landingpad phis, as the landingpad will be removed from the machine
 | 
						|
  // CFG.
 | 
						|
  for (LandingPadInst *LPI : LPads) {
 | 
						|
    BasicBlock *BB = LPI->getParent();
 | 
						|
    while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
 | 
						|
      DemotePHIToStack(Phi, AllocaInsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "
 | 
						|
               << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n");
 | 
						|
}
 | 
						|
 | 
						|
bool WinEHPrepare::prepareExceptionHandlers(
 | 
						|
    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
 | 
						|
  // Don't run on functions that are already prepared.
 | 
						|
  for (LandingPadInst *LPad : LPads) {
 | 
						|
    BasicBlock *LPadBB = LPad->getParent();
 | 
						|
    for (Instruction &Inst : *LPadBB)
 | 
						|
      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  demoteValuesLiveAcrossHandlers(F, LPads);
 | 
						|
 | 
						|
  // These containers are used to re-map frame variables that are used in
 | 
						|
  // outlined catch and cleanup handlers.  They will be populated as the
 | 
						|
  // handlers are outlined.
 | 
						|
  FrameVarInfoMap FrameVarInfo;
 | 
						|
 | 
						|
  bool HandlersOutlined = false;
 | 
						|
 | 
						|
  Module *M = F.getParent();
 | 
						|
  LLVMContext &Context = M->getContext();
 | 
						|
 | 
						|
  // Create a new function to receive the handler contents.
 | 
						|
  PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
 | 
						|
  Type *Int32Type = Type::getInt32Ty(Context);
 | 
						|
  Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
 | 
						|
 | 
						|
  if (isAsynchronousEHPersonality(Personality)) {
 | 
						|
    // FIXME: Switch the ehptr type to i32 and then switch this.
 | 
						|
    SEHExceptionCodeSlot =
 | 
						|
        new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
 | 
						|
                       F.getEntryBlock().getFirstInsertionPt());
 | 
						|
  }
 | 
						|
 | 
						|
  // This container stores the llvm.eh.recover and IndirectBr instructions
 | 
						|
  // that make up the body of each landing pad after it has been outlined.
 | 
						|
  // We need to defer the population of the target list for the indirectbr
 | 
						|
  // until all landing pads have been outlined so that we can handle the
 | 
						|
  // case of blocks in the target that are reached only from nested
 | 
						|
  // landing pads.
 | 
						|
  SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
 | 
						|
 | 
						|
  for (LandingPadInst *LPad : LPads) {
 | 
						|
    // Look for evidence that this landingpad has already been processed.
 | 
						|
    bool LPadHasActionList = false;
 | 
						|
    BasicBlock *LPadBB = LPad->getParent();
 | 
						|
    for (Instruction &Inst : *LPadBB) {
 | 
						|
      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
 | 
						|
        LPadHasActionList = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we've already outlined the handlers for this landingpad,
 | 
						|
    // there's nothing more to do here.
 | 
						|
    if (LPadHasActionList)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If either of the values in the aggregate returned by the landing pad is
 | 
						|
    // extracted and stored to memory, promote the stored value to a register.
 | 
						|
    promoteLandingPadValues(LPad);
 | 
						|
 | 
						|
    LandingPadActions Actions;
 | 
						|
    mapLandingPadBlocks(LPad, Actions);
 | 
						|
 | 
						|
    HandlersOutlined |= !Actions.actions().empty();
 | 
						|
    for (ActionHandler *Action : Actions) {
 | 
						|
      if (Action->hasBeenProcessed())
 | 
						|
        continue;
 | 
						|
      BasicBlock *StartBB = Action->getStartBlock();
 | 
						|
 | 
						|
      // SEH doesn't do any outlining for catches. Instead, pass the handler
 | 
						|
      // basic block addr to llvm.eh.actions and list the block as a return
 | 
						|
      // target.
 | 
						|
      if (isAsynchronousEHPersonality(Personality)) {
 | 
						|
        if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | 
						|
          processSEHCatchHandler(CatchAction, StartBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
 | 
						|
    }
 | 
						|
 | 
						|
    // Split the block after the landingpad instruction so that it is just a
 | 
						|
    // call to llvm.eh.actions followed by indirectbr.
 | 
						|
    assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed");
 | 
						|
    SplitBlock(LPadBB, LPad->getNextNode(), DT);
 | 
						|
    // Erase the branch inserted by the split so we can insert indirectbr.
 | 
						|
    LPadBB->getTerminator()->eraseFromParent();
 | 
						|
 | 
						|
    // Replace all extracted values with undef and ultimately replace the
 | 
						|
    // landingpad with undef.
 | 
						|
    SmallVector<Instruction *, 4> SEHCodeUses;
 | 
						|
    SmallVector<Instruction *, 4> EHUndefs;
 | 
						|
    for (User *U : LPad->users()) {
 | 
						|
      auto *E = dyn_cast<ExtractValueInst>(U);
 | 
						|
      if (!E)
 | 
						|
        continue;
 | 
						|
      assert(E->getNumIndices() == 1 &&
 | 
						|
             "Unexpected operation: extracting both landing pad values");
 | 
						|
      unsigned Idx = *E->idx_begin();
 | 
						|
      assert((Idx == 0 || Idx == 1) && "unexpected index");
 | 
						|
      if (Idx == 0 && isAsynchronousEHPersonality(Personality))
 | 
						|
        SEHCodeUses.push_back(E);
 | 
						|
      else
 | 
						|
        EHUndefs.push_back(E);
 | 
						|
    }
 | 
						|
    for (Instruction *E : EHUndefs) {
 | 
						|
      E->replaceAllUsesWith(UndefValue::get(E->getType()));
 | 
						|
      E->eraseFromParent();
 | 
						|
    }
 | 
						|
    LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
 | 
						|
 | 
						|
    // Rewrite uses of the exception pointer to loads of an alloca.
 | 
						|
    for (Instruction *E : SEHCodeUses) {
 | 
						|
      SmallVector<Use *, 4> Uses;
 | 
						|
      for (Use &U : E->uses())
 | 
						|
        Uses.push_back(&U);
 | 
						|
      for (Use *U : Uses) {
 | 
						|
        auto *I = cast<Instruction>(U->getUser());
 | 
						|
        if (isa<ResumeInst>(I))
 | 
						|
          continue;
 | 
						|
        LoadInst *LI;
 | 
						|
        if (auto *Phi = dyn_cast<PHINode>(I))
 | 
						|
          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false,
 | 
						|
                            Phi->getIncomingBlock(*U));
 | 
						|
        else
 | 
						|
          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I);
 | 
						|
        U->set(LI);
 | 
						|
      }
 | 
						|
      E->replaceAllUsesWith(UndefValue::get(E->getType()));
 | 
						|
      E->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a call to describe the actions for this landing pad.
 | 
						|
    std::vector<Value *> ActionArgs;
 | 
						|
    for (ActionHandler *Action : Actions) {
 | 
						|
      // Action codes from docs are: 0 cleanup, 1 catch.
 | 
						|
      if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | 
						|
        ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
 | 
						|
        ActionArgs.push_back(CatchAction->getSelector());
 | 
						|
        // Find the frame escape index of the exception object alloca in the
 | 
						|
        // parent.
 | 
						|
        int FrameEscapeIdx = -1;
 | 
						|
        Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
 | 
						|
        if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
 | 
						|
          auto I = FrameVarInfo.find(EHObj);
 | 
						|
          assert(I != FrameVarInfo.end() &&
 | 
						|
                 "failed to map llvm.eh.begincatch var");
 | 
						|
          FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
 | 
						|
        }
 | 
						|
        ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
 | 
						|
      } else {
 | 
						|
        ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
 | 
						|
      }
 | 
						|
      ActionArgs.push_back(Action->getHandlerBlockOrFunc());
 | 
						|
    }
 | 
						|
    CallInst *Recover =
 | 
						|
        CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
 | 
						|
 | 
						|
    if (isAsynchronousEHPersonality(Personality)) {
 | 
						|
      // SEH can create the target list directly, since catch handlers
 | 
						|
      // are not outlined.
 | 
						|
      SetVector<BasicBlock *> ReturnTargets;
 | 
						|
      for (ActionHandler *Action : Actions) {
 | 
						|
        if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | 
						|
          const auto &CatchTargets = CatchAction->getReturnTargets();
 | 
						|
          ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      IndirectBrInst *Branch =
 | 
						|
          IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
 | 
						|
      for (BasicBlock *Target : ReturnTargets)
 | 
						|
        Branch->addDestination(Target);
 | 
						|
    } else {
 | 
						|
      // C++ EH must defer populating the targets to handle the case of
 | 
						|
      // targets that are reached indirectly through nested landing pads.
 | 
						|
      IndirectBrInst *Branch =
 | 
						|
          IndirectBrInst::Create(Recover, 0, LPadBB);
 | 
						|
 | 
						|
      LPadImpls.push_back(std::make_pair(Recover, Branch));
 | 
						|
    }
 | 
						|
  } // End for each landingpad
 | 
						|
 | 
						|
  // If nothing got outlined, there is no more processing to be done.
 | 
						|
  if (!HandlersOutlined)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Replace any nested landing pad stubs with the correct action handler.
 | 
						|
  // This must be done before we remove unreachable blocks because it
 | 
						|
  // cleans up references to outlined blocks that will be deleted.
 | 
						|
  for (auto &LPadPair : NestedLPtoOriginalLP)
 | 
						|
    completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
 | 
						|
  NestedLPtoOriginalLP.clear();
 | 
						|
 | 
						|
  // Populate the indirectbr instructions' target lists if we deferred
 | 
						|
  // doing so above.
 | 
						|
  SetVector<BasicBlock*> CheckedTargets;
 | 
						|
  for (auto &LPadImplPair : LPadImpls) {
 | 
						|
    IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
 | 
						|
    IndirectBrInst *Branch = LPadImplPair.second;
 | 
						|
 | 
						|
    // Get a list of handlers called by 
 | 
						|
    SmallVector<ActionHandler *, 4> ActionList;
 | 
						|
    parseEHActions(Recover, ActionList);
 | 
						|
 | 
						|
    // Add an indirect branch listing possible successors of the catch handlers.
 | 
						|
    SetVector<BasicBlock *> ReturnTargets;
 | 
						|
    for (ActionHandler *Action : ActionList) {
 | 
						|
      if (auto *CA = dyn_cast<CatchHandler>(Action)) {
 | 
						|
        Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
 | 
						|
        getPossibleReturnTargets(&F, Handler, ReturnTargets);
 | 
						|
      }
 | 
						|
      delete Action;
 | 
						|
    }
 | 
						|
    ActionList.clear();
 | 
						|
    for (BasicBlock *Target : ReturnTargets) {
 | 
						|
      Branch->addDestination(Target);
 | 
						|
      // The target may be a block that we excepted to get pruned.
 | 
						|
      // If it is, it may contain a call to llvm.eh.endcatch.
 | 
						|
      if (CheckedTargets.insert(Target)) {
 | 
						|
        // Earlier preparations guarantee that all calls to llvm.eh.endcatch
 | 
						|
        // will be followed by an unconditional branch.
 | 
						|
        auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
 | 
						|
        if (Br && Br->isUnconditional() &&
 | 
						|
            Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
 | 
						|
          Instruction *Prev = Br->getPrevNode();
 | 
						|
          if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
 | 
						|
            Prev->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LPadImpls.clear();
 | 
						|
 | 
						|
  F.addFnAttr("wineh-parent", F.getName());
 | 
						|
 | 
						|
  // Delete any blocks that were only used by handlers that were outlined above.
 | 
						|
  removeUnreachableBlocks(F);
 | 
						|
 | 
						|
  BasicBlock *Entry = &F.getEntryBlock();
 | 
						|
  IRBuilder<> Builder(F.getParent()->getContext());
 | 
						|
  Builder.SetInsertPoint(Entry->getFirstInsertionPt());
 | 
						|
 | 
						|
  Function *FrameEscapeFn =
 | 
						|
      Intrinsic::getDeclaration(M, Intrinsic::frameescape);
 | 
						|
  Function *RecoverFrameFn =
 | 
						|
      Intrinsic::getDeclaration(M, Intrinsic::framerecover);
 | 
						|
  SmallVector<Value *, 8> AllocasToEscape;
 | 
						|
 | 
						|
  // Scan the entry block for an existing call to llvm.frameescape. We need to
 | 
						|
  // keep escaping those objects.
 | 
						|
  for (Instruction &I : F.front()) {
 | 
						|
    auto *II = dyn_cast<IntrinsicInst>(&I);
 | 
						|
    if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
 | 
						|
      auto Args = II->arg_operands();
 | 
						|
      AllocasToEscape.append(Args.begin(), Args.end());
 | 
						|
      II->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, replace all of the temporary allocas for frame variables used in
 | 
						|
  // the outlined handlers with calls to llvm.framerecover.
 | 
						|
  for (auto &VarInfoEntry : FrameVarInfo) {
 | 
						|
    Value *ParentVal = VarInfoEntry.first;
 | 
						|
    TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
 | 
						|
    AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);
 | 
						|
 | 
						|
    // FIXME: We should try to sink unescaped allocas from the parent frame into
 | 
						|
    // the child frame. If the alloca is escaped, we have to use the lifetime
 | 
						|
    // markers to ensure that the alloca is only live within the child frame.
 | 
						|
 | 
						|
    // Add this alloca to the list of things to escape.
 | 
						|
    AllocasToEscape.push_back(ParentAlloca);
 | 
						|
 | 
						|
    // Next replace all outlined allocas that are mapped to it.
 | 
						|
    for (AllocaInst *TempAlloca : Allocas) {
 | 
						|
      if (TempAlloca == getCatchObjectSentinel())
 | 
						|
        continue; // Skip catch parameter sentinels.
 | 
						|
      Function *HandlerFn = TempAlloca->getParent()->getParent();
 | 
						|
      llvm::Value *FP = HandlerToParentFP[HandlerFn];
 | 
						|
      assert(FP);
 | 
						|
 | 
						|
      // FIXME: Sink this framerecover into the blocks where it is used.
 | 
						|
      Builder.SetInsertPoint(TempAlloca);
 | 
						|
      Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
 | 
						|
      Value *RecoverArgs[] = {
 | 
						|
          Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
 | 
						|
          llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
 | 
						|
      Instruction *RecoveredAlloca =
 | 
						|
          Builder.CreateCall(RecoverFrameFn, RecoverArgs);
 | 
						|
 | 
						|
      // Add a pointer bitcast if the alloca wasn't an i8.
 | 
						|
      if (RecoveredAlloca->getType() != TempAlloca->getType()) {
 | 
						|
        RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
 | 
						|
        RecoveredAlloca = cast<Instruction>(
 | 
						|
            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
 | 
						|
      }
 | 
						|
      TempAlloca->replaceAllUsesWith(RecoveredAlloca);
 | 
						|
      TempAlloca->removeFromParent();
 | 
						|
      RecoveredAlloca->takeName(TempAlloca);
 | 
						|
      delete TempAlloca;
 | 
						|
    }
 | 
						|
  } // End for each FrameVarInfo entry.
 | 
						|
 | 
						|
  // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
 | 
						|
  // block.
 | 
						|
  Builder.SetInsertPoint(&F.getEntryBlock().back());
 | 
						|
  Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
 | 
						|
 | 
						|
  if (SEHExceptionCodeSlot) {
 | 
						|
    if (SEHExceptionCodeSlot->hasNUses(0))
 | 
						|
      SEHExceptionCodeSlot->eraseFromParent();
 | 
						|
    else if (isAllocaPromotable(SEHExceptionCodeSlot))
 | 
						|
      PromoteMemToReg(SEHExceptionCodeSlot, *DT);
 | 
						|
  }
 | 
						|
 | 
						|
  // Clean up the handler action maps we created for this function
 | 
						|
  DeleteContainerSeconds(CatchHandlerMap);
 | 
						|
  CatchHandlerMap.clear();
 | 
						|
  DeleteContainerSeconds(CleanupHandlerMap);
 | 
						|
  CleanupHandlerMap.clear();
 | 
						|
  HandlerToParentFP.clear();
 | 
						|
  DT = nullptr;
 | 
						|
  SEHExceptionCodeSlot = nullptr;
 | 
						|
 | 
						|
  return HandlersOutlined;
 | 
						|
}
 | 
						|
 | 
						|
void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
 | 
						|
  // If the return values of the landing pad instruction are extracted and
 | 
						|
  // stored to memory, we want to promote the store locations to reg values.
 | 
						|
  SmallVector<AllocaInst *, 2> EHAllocas;
 | 
						|
 | 
						|
  // The landingpad instruction returns an aggregate value.  Typically, its
 | 
						|
  // value will be passed to a pair of extract value instructions and the
 | 
						|
  // results of those extracts are often passed to store instructions.
 | 
						|
  // In unoptimized code the stored value will often be loaded and then stored
 | 
						|
  // again.
 | 
						|
  for (auto *U : LPad->users()) {
 | 
						|
    ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
 | 
						|
    if (!Extract)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (auto *EU : Extract->users()) {
 | 
						|
      if (auto *Store = dyn_cast<StoreInst>(EU)) {
 | 
						|
        auto *AV = cast<AllocaInst>(Store->getPointerOperand());
 | 
						|
        EHAllocas.push_back(AV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We can't do this without a dominator tree.
 | 
						|
  assert(DT);
 | 
						|
 | 
						|
  if (!EHAllocas.empty()) {
 | 
						|
    PromoteMemToReg(EHAllocas, *DT);
 | 
						|
    EHAllocas.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // After promotion, some extracts may be trivially dead. Remove them.
 | 
						|
  SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
 | 
						|
  for (auto *U : Users)
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(U);
 | 
						|
}
 | 
						|
 | 
						|
void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
 | 
						|
                                            Function *HandlerF,
 | 
						|
                                            SetVector<BasicBlock*> &Targets) {
 | 
						|
  for (BasicBlock &BB : *HandlerF) {
 | 
						|
    // If the handler contains landing pads, check for any
 | 
						|
    // handlers that may return directly to a block in the
 | 
						|
    // parent function.
 | 
						|
    if (auto *LPI = BB.getLandingPadInst()) {
 | 
						|
      IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
 | 
						|
      SmallVector<ActionHandler *, 4> ActionList;
 | 
						|
      parseEHActions(Recover, ActionList);
 | 
						|
      for (auto *Action : ActionList) {
 | 
						|
        if (auto *CH = dyn_cast<CatchHandler>(Action)) {
 | 
						|
          Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
 | 
						|
          getPossibleReturnTargets(ParentF, NestedF, Targets);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
 | 
						|
    if (!Ret)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handler functions must always return a block address.
 | 
						|
    BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
 | 
						|
 | 
						|
    // If this is the handler for a nested landing pad, the
 | 
						|
    // return address may have been remapped to a block in the
 | 
						|
    // parent handler.  We're not interested in those.
 | 
						|
    if (BA->getFunction() != ParentF)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Targets.insert(BA->getBasicBlock());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
 | 
						|
                                            LandingPadInst *OutlinedLPad,
 | 
						|
                                            const LandingPadInst *OriginalLPad,
 | 
						|
                                            FrameVarInfoMap &FrameVarInfo) {
 | 
						|
  // Get the nested block and erase the unreachable instruction that was
 | 
						|
  // temporarily inserted as its terminator.
 | 
						|
  LLVMContext &Context = ParentFn->getContext();
 | 
						|
  BasicBlock *OutlinedBB = OutlinedLPad->getParent();
 | 
						|
  assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
 | 
						|
  OutlinedBB->getTerminator()->eraseFromParent();
 | 
						|
  // That should leave OutlinedLPad as the last instruction in its block.
 | 
						|
  assert(&OutlinedBB->back() == OutlinedLPad);
 | 
						|
 | 
						|
  // The original landing pad will have already had its action intrinsic
 | 
						|
  // built by the outlining loop.  We need to clone that into the outlined
 | 
						|
  // location.  It may also be necessary to add references to the exception
 | 
						|
  // variables to the outlined handler in which this landing pad is nested
 | 
						|
  // and remap return instructions in the nested handlers that should return
 | 
						|
  // to an address in the outlined handler.
 | 
						|
  Function *OutlinedHandlerFn = OutlinedBB->getParent();
 | 
						|
  BasicBlock::const_iterator II = OriginalLPad;
 | 
						|
  ++II;
 | 
						|
  // The instruction after the landing pad should now be a call to eh.actions.
 | 
						|
  const Instruction *Recover = II;
 | 
						|
  assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>()));
 | 
						|
  IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover->clone());
 | 
						|
 | 
						|
  // Remap the exception variables into the outlined function.
 | 
						|
  SmallVector<BlockAddress *, 4> ActionTargets;
 | 
						|
  SmallVector<ActionHandler *, 4> ActionList;
 | 
						|
  parseEHActions(EHActions, ActionList);
 | 
						|
  for (auto *Action : ActionList) {
 | 
						|
    auto *Catch = dyn_cast<CatchHandler>(Action);
 | 
						|
    if (!Catch)
 | 
						|
      continue;
 | 
						|
    // The dyn_cast to function here selects C++ catch handlers and skips
 | 
						|
    // SEH catch handlers.
 | 
						|
    auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
 | 
						|
    if (!Handler)
 | 
						|
      continue;
 | 
						|
    // Visit all the return instructions, looking for places that return
 | 
						|
    // to a location within OutlinedHandlerFn.
 | 
						|
    for (BasicBlock &NestedHandlerBB : *Handler) {
 | 
						|
      auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
 | 
						|
      if (!Ret)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Handler functions must always return a block address.
 | 
						|
      BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
 | 
						|
      // The original target will have been in the main parent function,
 | 
						|
      // but if it is the address of a block that has been outlined, it
 | 
						|
      // should be a block that was outlined into OutlinedHandlerFn.
 | 
						|
      assert(BA->getFunction() == ParentFn);
 | 
						|
 | 
						|
      // Ignore targets that aren't part of OutlinedHandlerFn.
 | 
						|
      if (!LPadTargetBlocks.count(BA->getBasicBlock()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the return value is the address ofF a block that we
 | 
						|
      // previously outlined into the parent handler function, replace
 | 
						|
      // the return instruction and add the mapped target to the list
 | 
						|
      // of possible return addresses.
 | 
						|
      BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
 | 
						|
      assert(MappedBB->getParent() == OutlinedHandlerFn);
 | 
						|
      BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
 | 
						|
      Ret->eraseFromParent();
 | 
						|
      ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
 | 
						|
      ActionTargets.push_back(NewBA);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DeleteContainerPointers(ActionList);
 | 
						|
  ActionList.clear();
 | 
						|
  OutlinedBB->getInstList().push_back(EHActions);
 | 
						|
 | 
						|
  // Insert an indirect branch into the outlined landing pad BB.
 | 
						|
  IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB);
 | 
						|
  // Add the previously collected action targets.
 | 
						|
  for (auto *Target : ActionTargets)
 | 
						|
    IBr->addDestination(Target->getBasicBlock());
 | 
						|
}
 | 
						|
 | 
						|
// This function examines a block to determine whether the block ends with a
 | 
						|
// conditional branch to a catch handler based on a selector comparison.
 | 
						|
// This function is used both by the WinEHPrepare::findSelectorComparison() and
 | 
						|
// WinEHCleanupDirector::handleTypeIdFor().
 | 
						|
static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
 | 
						|
                               Constant *&Selector, BasicBlock *&NextBB) {
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  BasicBlock *TBB, *FBB;
 | 
						|
  Value *LHS, *RHS;
 | 
						|
 | 
						|
  if (!match(BB->getTerminator(),
 | 
						|
             m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!match(LHS,
 | 
						|
             m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
 | 
						|
      !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Pred == CmpInst::ICMP_EQ) {
 | 
						|
    CatchHandler = TBB;
 | 
						|
    NextBB = FBB;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pred == CmpInst::ICMP_NE) {
 | 
						|
    CatchHandler = FBB;
 | 
						|
    NextBB = TBB;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCatchBlock(BasicBlock *BB) {
 | 
						|
  for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | 
						|
       II != IE; ++II) {
 | 
						|
    if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static BasicBlock *createStubLandingPad(Function *Handler,
 | 
						|
                                        Value *PersonalityFn) {
 | 
						|
  // FIXME: Finish this!
 | 
						|
  LLVMContext &Context = Handler->getContext();
 | 
						|
  BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
 | 
						|
  Handler->getBasicBlockList().push_back(StubBB);
 | 
						|
  IRBuilder<> Builder(StubBB);
 | 
						|
  LandingPadInst *LPad = Builder.CreateLandingPad(
 | 
						|
      llvm::StructType::get(Type::getInt8PtrTy(Context),
 | 
						|
                            Type::getInt32Ty(Context), nullptr),
 | 
						|
      PersonalityFn, 0);
 | 
						|
  // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
 | 
						|
  Function *ActionIntrin =
 | 
						|
      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
 | 
						|
  Builder.CreateCall(ActionIntrin, "recover");
 | 
						|
  LPad->setCleanup(true);
 | 
						|
  Builder.CreateUnreachable();
 | 
						|
  return StubBB;
 | 
						|
}
 | 
						|
 | 
						|
// Cycles through the blocks in an outlined handler function looking for an
 | 
						|
// invoke instruction and inserts an invoke of llvm.donothing with an empty
 | 
						|
// landing pad if none is found.  The code that generates the .xdata tables for
 | 
						|
// the handler needs at least one landing pad to identify the parent function's
 | 
						|
// personality.
 | 
						|
void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
 | 
						|
                                                  Value *PersonalityFn) {
 | 
						|
  ReturnInst *Ret = nullptr;
 | 
						|
  UnreachableInst *Unreached = nullptr;
 | 
						|
  for (BasicBlock &BB : *Handler) {
 | 
						|
    TerminatorInst *Terminator = BB.getTerminator();
 | 
						|
    // If we find an invoke, there is nothing to be done.
 | 
						|
    auto *II = dyn_cast<InvokeInst>(Terminator);
 | 
						|
    if (II)
 | 
						|
      return;
 | 
						|
    // If we've already recorded a return instruction, keep looking for invokes.
 | 
						|
    if (!Ret)
 | 
						|
      Ret = dyn_cast<ReturnInst>(Terminator);
 | 
						|
    // If we haven't recorded an unreachable instruction, try this terminator.
 | 
						|
    if (!Unreached)
 | 
						|
      Unreached = dyn_cast<UnreachableInst>(Terminator);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we got this far, the handler contains no invokes.  We should have seen
 | 
						|
  // at least one return or unreachable instruction.  We'll insert an invoke of
 | 
						|
  // llvm.donothing ahead of that instruction.
 | 
						|
  assert(Ret || Unreached);
 | 
						|
  TerminatorInst *Term;
 | 
						|
  if (Ret)
 | 
						|
    Term = Ret;
 | 
						|
  else
 | 
						|
    Term = Unreached;
 | 
						|
  BasicBlock *OldRetBB = Term->getParent();
 | 
						|
  BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
 | 
						|
  // SplitBlock adds an unconditional branch instruction at the end of the
 | 
						|
  // parent block.  We want to replace that with an invoke call, so we can
 | 
						|
  // erase it now.
 | 
						|
  OldRetBB->getTerminator()->eraseFromParent();
 | 
						|
  BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn);
 | 
						|
  Function *F =
 | 
						|
      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
 | 
						|
  InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
 | 
						|
// usually doesn't build LLVM IR, so that's probably the wrong place.
 | 
						|
Function *WinEHPrepare::createHandlerFunc(Type *RetTy, const Twine &Name,
 | 
						|
                                          Module *M, Value *&ParentFP) {
 | 
						|
  // x64 uses a two-argument prototype where the parent FP is the second
 | 
						|
  // argument. x86 uses no arguments, just the incoming EBP value.
 | 
						|
  LLVMContext &Context = M->getContext();
 | 
						|
  FunctionType *FnType;
 | 
						|
  if (TheTriple.getArch() == Triple::x86_64) {
 | 
						|
    Type *Int8PtrType = Type::getInt8PtrTy(Context);
 | 
						|
    Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
 | 
						|
    FnType = FunctionType::get(RetTy, ArgTys, false);
 | 
						|
  } else {
 | 
						|
    FnType = FunctionType::get(RetTy, None, false);
 | 
						|
  }
 | 
						|
 | 
						|
  Function *Handler =
 | 
						|
      Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
 | 
						|
  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
 | 
						|
  Handler->getBasicBlockList().push_front(Entry);
 | 
						|
  if (TheTriple.getArch() == Triple::x86_64) {
 | 
						|
    ParentFP = &(Handler->getArgumentList().back());
 | 
						|
  } else {
 | 
						|
    assert(M);
 | 
						|
    Function *FrameAddressFn =
 | 
						|
        Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
 | 
						|
    Value *Args[1] = {ConstantInt::get(Type::getInt32Ty(Context), 1)};
 | 
						|
    ParentFP = CallInst::Create(FrameAddressFn, Args, "parent_fp",
 | 
						|
                                &Handler->getEntryBlock());
 | 
						|
  }
 | 
						|
  return Handler;
 | 
						|
}
 | 
						|
 | 
						|
bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
 | 
						|
                                  LandingPadInst *LPad, BasicBlock *StartBB,
 | 
						|
                                  FrameVarInfoMap &VarInfo) {
 | 
						|
  Module *M = SrcFn->getParent();
 | 
						|
  LLVMContext &Context = M->getContext();
 | 
						|
  Type *Int8PtrType = Type::getInt8PtrTy(Context);
 | 
						|
 | 
						|
  // Create a new function to receive the handler contents.
 | 
						|
  Value *ParentFP;
 | 
						|
  Function *Handler;
 | 
						|
  if (Action->getType() == Catch) {
 | 
						|
    Handler = createHandlerFunc(Int8PtrType, SrcFn->getName() + ".catch", M,
 | 
						|
                                ParentFP);
 | 
						|
  } else {
 | 
						|
    Handler = createHandlerFunc(Type::getVoidTy(Context),
 | 
						|
                                SrcFn->getName() + ".cleanup", M, ParentFP);
 | 
						|
  }
 | 
						|
  HandlerToParentFP[Handler] = ParentFP;
 | 
						|
  Handler->addFnAttr("wineh-parent", SrcFn->getName());
 | 
						|
  BasicBlock *Entry = &Handler->getEntryBlock();
 | 
						|
 | 
						|
  // Generate a standard prolog to setup the frame recovery structure.
 | 
						|
  IRBuilder<> Builder(Context);
 | 
						|
  Builder.SetInsertPoint(Entry);
 | 
						|
  Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
 | 
						|
 | 
						|
  std::unique_ptr<WinEHCloningDirectorBase> Director;
 | 
						|
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
 | 
						|
  LandingPadMap &LPadMap = LPadMaps[LPad];
 | 
						|
  if (!LPadMap.isInitialized())
 | 
						|
    LPadMap.mapLandingPad(LPad);
 | 
						|
  if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | 
						|
    Constant *Sel = CatchAction->getSelector();
 | 
						|
    Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel,
 | 
						|
                                          VarInfo, LPadMap,
 | 
						|
                                          NestedLPtoOriginalLP));
 | 
						|
    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
 | 
						|
                          ConstantInt::get(Type::getInt32Ty(Context), 1));
 | 
						|
  } else {
 | 
						|
    Director.reset(
 | 
						|
        new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
 | 
						|
    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
 | 
						|
                          UndefValue::get(Type::getInt32Ty(Context)));
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<ReturnInst *, 8> Returns;
 | 
						|
  ClonedCodeInfo OutlinedFunctionInfo;
 | 
						|
 | 
						|
  // If the start block contains PHI nodes, we need to map them.
 | 
						|
  BasicBlock::iterator II = StartBB->begin();
 | 
						|
  while (auto *PN = dyn_cast<PHINode>(II)) {
 | 
						|
    bool Mapped = false;
 | 
						|
    // Look for PHI values that we have already mapped (such as the selector).
 | 
						|
    for (Value *Val : PN->incoming_values()) {
 | 
						|
      if (VMap.count(Val)) {
 | 
						|
        VMap[PN] = VMap[Val];
 | 
						|
        Mapped = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we didn't find a match for this value, map it as an undef.
 | 
						|
    if (!Mapped) {
 | 
						|
      VMap[PN] = UndefValue::get(PN->getType());
 | 
						|
    }
 | 
						|
    ++II;
 | 
						|
  }
 | 
						|
 | 
						|
  // The landing pad value may be used by PHI nodes.  It will ultimately be
 | 
						|
  // eliminated, but we need it in the map for intermediate handling.
 | 
						|
  VMap[LPad] = UndefValue::get(LPad->getType());
 | 
						|
 | 
						|
  // Skip over PHIs and, if applicable, landingpad instructions.
 | 
						|
  II = StartBB->getFirstInsertionPt();
 | 
						|
 | 
						|
  CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
 | 
						|
                            /*ModuleLevelChanges=*/false, Returns, "",
 | 
						|
                            &OutlinedFunctionInfo, Director.get());
 | 
						|
 | 
						|
  // Move all the instructions in the cloned "entry" block into our entry block.
 | 
						|
  // Depending on how the parent function was laid out, the block that will
 | 
						|
  // correspond to the outlined entry block may not be the first block in the
 | 
						|
  // list.  We can recognize it, however, as the cloned block which has no
 | 
						|
  // predecessors.  Any other block wouldn't have been cloned if it didn't
 | 
						|
  // have a predecessor which was also cloned.
 | 
						|
  Function::iterator ClonedIt = std::next(Function::iterator(Entry));
 | 
						|
  while (!pred_empty(ClonedIt))
 | 
						|
    ++ClonedIt;
 | 
						|
  BasicBlock *ClonedEntryBB = ClonedIt;
 | 
						|
  assert(ClonedEntryBB);
 | 
						|
  Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
 | 
						|
  ClonedEntryBB->eraseFromParent();
 | 
						|
 | 
						|
  // Make sure we can identify the handler's personality later.
 | 
						|
  addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn());
 | 
						|
 | 
						|
  if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | 
						|
    WinEHCatchDirector *CatchDirector =
 | 
						|
        reinterpret_cast<WinEHCatchDirector *>(Director.get());
 | 
						|
    CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
 | 
						|
    CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
 | 
						|
 | 
						|
    // Look for blocks that are not part of the landing pad that we just
 | 
						|
    // outlined but terminate with a call to llvm.eh.endcatch and a
 | 
						|
    // branch to a block that is in the handler we just outlined.
 | 
						|
    // These blocks will be part of a nested landing pad that intends to
 | 
						|
    // return to an address in this handler.  This case is best handled
 | 
						|
    // after both landing pads have been outlined, so for now we'll just
 | 
						|
    // save the association of the blocks in LPadTargetBlocks.  The
 | 
						|
    // return instructions which are created from these branches will be
 | 
						|
    // replaced after all landing pads have been outlined.
 | 
						|
    for (const auto MapEntry : VMap) {
 | 
						|
      // VMap maps all values and blocks that were just cloned, but dead
 | 
						|
      // blocks which were pruned will map to nullptr.
 | 
						|
      if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
 | 
						|
        continue;
 | 
						|
      const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
 | 
						|
      for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
 | 
						|
        auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
 | 
						|
        if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
 | 
						|
          continue;
 | 
						|
        BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
 | 
						|
        --II;
 | 
						|
        if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
 | 
						|
          // This would indicate that a nested landing pad wants to return
 | 
						|
          // to a block that is outlined into two different handlers.
 | 
						|
          assert(!LPadTargetBlocks.count(MappedBB));
 | 
						|
          LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // End if (CatchAction)
 | 
						|
 | 
						|
  Action->setHandlerBlockOrFunc(Handler);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This BB must end in a selector dispatch. All we need to do is pass the
 | 
						|
/// handler block to llvm.eh.actions and list it as a possible indirectbr
 | 
						|
/// target.
 | 
						|
void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
 | 
						|
                                          BasicBlock *StartBB) {
 | 
						|
  BasicBlock *HandlerBB;
 | 
						|
  BasicBlock *NextBB;
 | 
						|
  Constant *Selector;
 | 
						|
  bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
 | 
						|
  if (Res) {
 | 
						|
    // If this was EH dispatch, this must be a conditional branch to the handler
 | 
						|
    // block.
 | 
						|
    // FIXME: Handle instructions in the dispatch block. Currently we drop them,
 | 
						|
    // leading to crashes if some optimization hoists stuff here.
 | 
						|
    assert(CatchAction->getSelector() && HandlerBB &&
 | 
						|
           "expected catch EH dispatch");
 | 
						|
  } else {
 | 
						|
    // This must be a catch-all. Split the block after the landingpad.
 | 
						|
    assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
 | 
						|
    HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
 | 
						|
  }
 | 
						|
  IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
 | 
						|
  Function *EHCodeFn = Intrinsic::getDeclaration(
 | 
						|
      StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
 | 
						|
  Value *Code = Builder.CreateCall(EHCodeFn, "sehcode");
 | 
						|
  Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
 | 
						|
  Builder.CreateStore(Code, SEHExceptionCodeSlot);
 | 
						|
  CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
 | 
						|
  TinyPtrVector<BasicBlock *> Targets(HandlerBB);
 | 
						|
  CatchAction->setReturnTargets(Targets);
 | 
						|
}
 | 
						|
 | 
						|
void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
 | 
						|
  // Each instance of this class should only ever be used to map a single
 | 
						|
  // landing pad.
 | 
						|
  assert(OriginLPad == nullptr || OriginLPad == LPad);
 | 
						|
 | 
						|
  // If the landing pad has already been mapped, there's nothing more to do.
 | 
						|
  if (OriginLPad == LPad)
 | 
						|
    return;
 | 
						|
 | 
						|
  OriginLPad = LPad;
 | 
						|
 | 
						|
  // The landingpad instruction returns an aggregate value.  Typically, its
 | 
						|
  // value will be passed to a pair of extract value instructions and the
 | 
						|
  // results of those extracts will have been promoted to reg values before
 | 
						|
  // this routine is called.
 | 
						|
  for (auto *U : LPad->users()) {
 | 
						|
    const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
 | 
						|
    if (!Extract)
 | 
						|
      continue;
 | 
						|
    assert(Extract->getNumIndices() == 1 &&
 | 
						|
           "Unexpected operation: extracting both landing pad values");
 | 
						|
    unsigned int Idx = *(Extract->idx_begin());
 | 
						|
    assert((Idx == 0 || Idx == 1) &&
 | 
						|
           "Unexpected operation: extracting an unknown landing pad element");
 | 
						|
    if (Idx == 0) {
 | 
						|
      ExtractedEHPtrs.push_back(Extract);
 | 
						|
    } else if (Idx == 1) {
 | 
						|
      ExtractedSelectors.push_back(Extract);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
 | 
						|
  return BB->getLandingPadInst() == OriginLPad;
 | 
						|
}
 | 
						|
 | 
						|
bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
 | 
						|
  if (Inst == OriginLPad)
 | 
						|
    return true;
 | 
						|
  for (auto *Extract : ExtractedEHPtrs) {
 | 
						|
    if (Inst == Extract)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  for (auto *Extract : ExtractedSelectors) {
 | 
						|
    if (Inst == Extract)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
 | 
						|
                                  Value *SelectorValue) const {
 | 
						|
  // Remap all landing pad extract instructions to the specified values.
 | 
						|
  for (auto *Extract : ExtractedEHPtrs)
 | 
						|
    VMap[Extract] = EHPtrValue;
 | 
						|
  for (auto *Extract : ExtractedSelectors)
 | 
						|
    VMap[Extract] = SelectorValue;
 | 
						|
}
 | 
						|
 | 
						|
static bool isFrameAddressCall(const Value *V) {
 | 
						|
  return match(const_cast<Value *>(V),
 | 
						|
               m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  // If this is one of the boilerplate landing pad instructions, skip it.
 | 
						|
  // The instruction will have already been remapped in VMap.
 | 
						|
  if (LPadMap.isLandingPadSpecificInst(Inst))
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
 | 
						|
  // Nested landing pads will be cloned as stubs, with just the
 | 
						|
  // landingpad instruction and an unreachable instruction. When
 | 
						|
  // all landingpads have been outlined, we'll replace this with the
 | 
						|
  // llvm.eh.actions call and indirect branch created when the
 | 
						|
  // landing pad was outlined.
 | 
						|
  if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
 | 
						|
    return handleLandingPad(VMap, LPad, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
 | 
						|
    return handleInvoke(VMap, Invoke, NewBB);
 | 
						|
 | 
						|
  if (auto *Resume = dyn_cast<ResumeInst>(Inst))
 | 
						|
    return handleResume(VMap, Resume, NewBB);
 | 
						|
 | 
						|
  if (auto *Cmp = dyn_cast<CmpInst>(Inst))
 | 
						|
    return handleCompare(VMap, Cmp, NewBB);
 | 
						|
 | 
						|
  if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
 | 
						|
    return handleBeginCatch(VMap, Inst, NewBB);
 | 
						|
  if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
 | 
						|
    return handleEndCatch(VMap, Inst, NewBB);
 | 
						|
  if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
 | 
						|
    return handleTypeIdFor(VMap, Inst, NewBB);
 | 
						|
 | 
						|
  // When outlining llvm.frameaddress(i32 0), remap that to the second argument,
 | 
						|
  // which is the FP of the parent.
 | 
						|
  if (isFrameAddressCall(Inst)) {
 | 
						|
    VMap[Inst] = ParentFP;
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
  }
 | 
						|
 | 
						|
  // Continue with the default cloning behavior.
 | 
						|
  return CloningDirector::CloneInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
 | 
						|
    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
 | 
						|
  Instruction *NewInst = LPad->clone();
 | 
						|
  if (LPad->hasName())
 | 
						|
    NewInst->setName(LPad->getName());
 | 
						|
  // Save this correlation for later processing.
 | 
						|
  NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
 | 
						|
  VMap[LPad] = NewInst;
 | 
						|
  BasicBlock::InstListType &InstList = NewBB->getInstList();
 | 
						|
  InstList.push_back(NewInst);
 | 
						|
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  // The argument to the call is some form of the first element of the
 | 
						|
  // landingpad aggregate value, but that doesn't matter.  It isn't used
 | 
						|
  // here.
 | 
						|
  // The second argument is an outparameter where the exception object will be
 | 
						|
  // stored. Typically the exception object is a scalar, but it can be an
 | 
						|
  // aggregate when catching by value.
 | 
						|
  // FIXME: Leave something behind to indicate where the exception object lives
 | 
						|
  // for this handler. Should it be part of llvm.eh.actions?
 | 
						|
  assert(ExceptionObjectVar == nullptr && "Multiple calls to "
 | 
						|
                                          "llvm.eh.begincatch found while "
 | 
						|
                                          "outlining catch handler.");
 | 
						|
  ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
 | 
						|
  if (isa<ConstantPointerNull>(ExceptionObjectVar))
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
  assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&
 | 
						|
         "catch parameter is not static alloca");
 | 
						|
  Materializer.escapeCatchObject(ExceptionObjectVar);
 | 
						|
  return CloningDirector::SkipInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction
 | 
						|
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
 | 
						|
                                   const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
 | 
						|
  // It might be interesting to track whether or not we are inside a catch
 | 
						|
  // function, but that might make the algorithm more brittle than it needs
 | 
						|
  // to be.
 | 
						|
 | 
						|
  // The end catch call can occur in one of two places: either in a
 | 
						|
  // landingpad block that is part of the catch handlers exception mechanism,
 | 
						|
  // or at the end of the catch block.  However, a catch-all handler may call
 | 
						|
  // end catch from the original landing pad.  If the call occurs in a nested
 | 
						|
  // landing pad block, we must skip it and continue so that the landing pad
 | 
						|
  // gets cloned.
 | 
						|
  auto *ParentBB = IntrinCall->getParent();
 | 
						|
  if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
 | 
						|
  // If an end catch occurs anywhere else we want to terminate the handler
 | 
						|
  // with a return to the code that follows the endcatch call.  If the
 | 
						|
  // next instruction is not an unconditional branch, we need to split the
 | 
						|
  // block to provide a clear target for the return instruction.
 | 
						|
  BasicBlock *ContinueBB;
 | 
						|
  auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
 | 
						|
  const BranchInst *Branch = dyn_cast<BranchInst>(Next);
 | 
						|
  if (!Branch || !Branch->isUnconditional()) {
 | 
						|
    // We're interrupting the cloning process at this location, so the
 | 
						|
    // const_cast we're doing here will not cause a problem.
 | 
						|
    ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
 | 
						|
                            const_cast<Instruction *>(cast<Instruction>(Next)));
 | 
						|
  } else {
 | 
						|
    ContinueBB = Branch->getSuccessor(0);
 | 
						|
  }
 | 
						|
 | 
						|
  ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
 | 
						|
  ReturnTargets.push_back(ContinueBB);
 | 
						|
 | 
						|
  // We just added a terminator to the cloned block.
 | 
						|
  // Tell the caller to stop processing the current basic block so that
 | 
						|
  // the branch instruction will be skipped.
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
 | 
						|
  Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
 | 
						|
  // This causes a replacement that will collapse the landing pad CFG based
 | 
						|
  // on the filter function we intend to match.
 | 
						|
  if (Selector == CurrentSelector)
 | 
						|
    VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
 | 
						|
  else
 | 
						|
    VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
 | 
						|
  // Tell the caller not to clone this instruction.
 | 
						|
  return CloningDirector::SkipInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction
 | 
						|
WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
 | 
						|
                                 const InvokeInst *Invoke, BasicBlock *NewBB) {
 | 
						|
  return CloningDirector::CloneInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction
 | 
						|
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
 | 
						|
                                 const ResumeInst *Resume, BasicBlock *NewBB) {
 | 
						|
  // Resume instructions shouldn't be reachable from catch handlers.
 | 
						|
  // We still need to handle it, but it will be pruned.
 | 
						|
  BasicBlock::InstListType &InstList = NewBB->getInstList();
 | 
						|
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction
 | 
						|
WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
 | 
						|
                                  const CmpInst *Compare, BasicBlock *NewBB) {
 | 
						|
  const IntrinsicInst *IntrinCall = nullptr;
 | 
						|
  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | 
						|
    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
 | 
						|
  } else if (match(Compare->getOperand(1),
 | 
						|
                   m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | 
						|
    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
 | 
						|
  }
 | 
						|
  if (IntrinCall) {
 | 
						|
    Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
 | 
						|
    // This causes a replacement that will collapse the landing pad CFG based
 | 
						|
    // on the filter function we intend to match.
 | 
						|
    if (Selector == CurrentSelector->stripPointerCasts()) {
 | 
						|
      VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
 | 
						|
    } else {
 | 
						|
      VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
 | 
						|
    }
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
  }
 | 
						|
  return CloningDirector::CloneInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
 | 
						|
    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
 | 
						|
  // The MS runtime will terminate the process if an exception occurs in a
 | 
						|
  // cleanup handler, so we shouldn't encounter landing pads in the actual
 | 
						|
  // cleanup code, but they may appear in catch blocks.  Depending on where
 | 
						|
  // we started cloning we may see one, but it will get dropped during dead
 | 
						|
  // block pruning.
 | 
						|
  Instruction *NewInst = new UnreachableInst(NewBB->getContext());
 | 
						|
  VMap[LPad] = NewInst;
 | 
						|
  BasicBlock::InstListType &InstList = NewBB->getInstList();
 | 
						|
  InstList.push_back(NewInst);
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  // Cleanup code may flow into catch blocks or the catch block may be part
 | 
						|
  // of a branch that will be optimized away.  We'll insert a return
 | 
						|
  // instruction now, but it may be pruned before the cloning process is
 | 
						|
  // complete.
 | 
						|
  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  // Cleanup handlers nested within catch handlers may begin with a call to
 | 
						|
  // eh.endcatch.  We can just ignore that instruction.
 | 
						|
  return CloningDirector::SkipInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
 | 
						|
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | 
						|
  // If we encounter a selector comparison while cloning a cleanup handler,
 | 
						|
  // we want to stop cloning immediately.  Anything after the dispatch
 | 
						|
  // will be outlined into a different handler.
 | 
						|
  BasicBlock *CatchHandler;
 | 
						|
  Constant *Selector;
 | 
						|
  BasicBlock *NextBB;
 | 
						|
  if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
 | 
						|
                         CatchHandler, Selector, NextBB)) {
 | 
						|
    ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | 
						|
    return CloningDirector::StopCloningBB;
 | 
						|
  }
 | 
						|
  // If eg.typeid.for is called for any other reason, it can be ignored.
 | 
						|
  VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
 | 
						|
  return CloningDirector::SkipInstruction;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
 | 
						|
    ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
 | 
						|
  // All invokes in cleanup handlers can be replaced with calls.
 | 
						|
  SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
 | 
						|
  // Insert a normal call instruction...
 | 
						|
  CallInst *NewCall =
 | 
						|
      CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
 | 
						|
                       Invoke->getName(), NewBB);
 | 
						|
  NewCall->setCallingConv(Invoke->getCallingConv());
 | 
						|
  NewCall->setAttributes(Invoke->getAttributes());
 | 
						|
  NewCall->setDebugLoc(Invoke->getDebugLoc());
 | 
						|
  VMap[Invoke] = NewCall;
 | 
						|
 | 
						|
  // Remap the operands.
 | 
						|
  llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
 | 
						|
 | 
						|
  // Insert an unconditional branch to the normal destination.
 | 
						|
  BranchInst::Create(Invoke->getNormalDest(), NewBB);
 | 
						|
 | 
						|
  // The unwind destination won't be cloned into the new function, so
 | 
						|
  // we don't need to clean up its phi nodes.
 | 
						|
 | 
						|
  // We just added a terminator to the cloned block.
 | 
						|
  // Tell the caller to stop processing the current basic block.
 | 
						|
  return CloningDirector::CloneSuccessors;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
 | 
						|
    ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
 | 
						|
  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | 
						|
 | 
						|
  // We just added a terminator to the cloned block.
 | 
						|
  // Tell the caller to stop processing the current basic block so that
 | 
						|
  // the branch instruction will be skipped.
 | 
						|
  return CloningDirector::StopCloningBB;
 | 
						|
}
 | 
						|
 | 
						|
CloningDirector::CloningAction
 | 
						|
WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
 | 
						|
                                    const CmpInst *Compare, BasicBlock *NewBB) {
 | 
						|
  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
 | 
						|
      match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | 
						|
    VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
 | 
						|
    return CloningDirector::SkipInstruction;
 | 
						|
  }
 | 
						|
  return CloningDirector::CloneInstruction;
 | 
						|
}
 | 
						|
 | 
						|
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
 | 
						|
    Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
 | 
						|
    : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
 | 
						|
  BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
 | 
						|
 | 
						|
  // New allocas should be inserted in the entry block, but after the parent FP
 | 
						|
  // is established if it is an instruction.
 | 
						|
  Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
 | 
						|
  if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
 | 
						|
    InsertPoint = FPInst->getNextNode();
 | 
						|
  Builder.SetInsertPoint(EntryBB, InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
 | 
						|
  // If we're asked to materialize a static alloca, we temporarily create an
 | 
						|
  // alloca in the outlined function and add this to the FrameVarInfo map.  When
 | 
						|
  // all the outlining is complete, we'll replace these temporary allocas with
 | 
						|
  // calls to llvm.framerecover.
 | 
						|
  if (auto *AV = dyn_cast<AllocaInst>(V)) {
 | 
						|
    assert(AV->isStaticAlloca() &&
 | 
						|
           "cannot materialize un-demoted dynamic alloca");
 | 
						|
    AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
 | 
						|
    Builder.Insert(NewAlloca, AV->getName());
 | 
						|
    FrameVarInfo[AV].push_back(NewAlloca);
 | 
						|
    return NewAlloca;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<Instruction>(V) || isa<Argument>(V)) {
 | 
						|
    Function *Parent = isa<Instruction>(V)
 | 
						|
                           ? cast<Instruction>(V)->getParent()->getParent()
 | 
						|
                           : cast<Argument>(V)->getParent();
 | 
						|
    errs()
 | 
						|
        << "Failed to demote instruction used in exception handler of function "
 | 
						|
        << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
 | 
						|
    errs() << "  " << *V << '\n';
 | 
						|
    report_fatal_error("WinEHPrepare failed to demote instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't materialize other values.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
 | 
						|
  // Catch parameter objects have to live in the parent frame. When we see a use
 | 
						|
  // of a catch parameter, add a sentinel to the multimap to indicate that it's
 | 
						|
  // used from another handler. This will prevent us from trying to sink the
 | 
						|
  // alloca into the handler and ensure that the catch parameter is present in
 | 
						|
  // the call to llvm.frameescape.
 | 
						|
  FrameVarInfo[V].push_back(getCatchObjectSentinel());
 | 
						|
}
 | 
						|
 | 
						|
// This function maps the catch and cleanup handlers that are reachable from the
 | 
						|
// specified landing pad. The landing pad sequence will have this basic shape:
 | 
						|
//
 | 
						|
//  <cleanup handler>
 | 
						|
//  <selector comparison>
 | 
						|
//  <catch handler>
 | 
						|
//  <cleanup handler>
 | 
						|
//  <selector comparison>
 | 
						|
//  <catch handler>
 | 
						|
//  <cleanup handler>
 | 
						|
//  ...
 | 
						|
//
 | 
						|
// Any of the cleanup slots may be absent.  The cleanup slots may be occupied by
 | 
						|
// any arbitrary control flow, but all paths through the cleanup code must
 | 
						|
// eventually reach the next selector comparison and no path can skip to a
 | 
						|
// different selector comparisons, though some paths may terminate abnormally.
 | 
						|
// Therefore, we will use a depth first search from the start of any given
 | 
						|
// cleanup block and stop searching when we find the next selector comparison.
 | 
						|
//
 | 
						|
// If the landingpad instruction does not have a catch clause, we will assume
 | 
						|
// that any instructions other than selector comparisons and catch handlers can
 | 
						|
// be ignored.  In practice, these will only be the boilerplate instructions.
 | 
						|
//
 | 
						|
// The catch handlers may also have any control structure, but we are only
 | 
						|
// interested in the start of the catch handlers, so we don't need to actually
 | 
						|
// follow the flow of the catch handlers.  The start of the catch handlers can
 | 
						|
// be located from the compare instructions, but they can be skipped in the
 | 
						|
// flow by following the contrary branch.
 | 
						|
void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
 | 
						|
                                       LandingPadActions &Actions) {
 | 
						|
  unsigned int NumClauses = LPad->getNumClauses();
 | 
						|
  unsigned int HandlersFound = 0;
 | 
						|
  BasicBlock *BB = LPad->getParent();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
 | 
						|
 | 
						|
  if (NumClauses == 0) {
 | 
						|
    findCleanupHandlers(Actions, BB, nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  VisitedBlockSet VisitedBlocks;
 | 
						|
 | 
						|
  while (HandlersFound != NumClauses) {
 | 
						|
    BasicBlock *NextBB = nullptr;
 | 
						|
 | 
						|
    // Skip over filter clauses.
 | 
						|
    if (LPad->isFilter(HandlersFound)) {
 | 
						|
      ++HandlersFound;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if the clause we're looking for is a catch-all.
 | 
						|
    // If so, the catch begins immediately.
 | 
						|
    Constant *ExpectedSelector =
 | 
						|
        LPad->getClause(HandlersFound)->stripPointerCasts();
 | 
						|
    if (isa<ConstantPointerNull>(ExpectedSelector)) {
 | 
						|
      // The catch all must occur last.
 | 
						|
      assert(HandlersFound == NumClauses - 1);
 | 
						|
 | 
						|
      // There can be additional selector dispatches in the call chain that we
 | 
						|
      // need to ignore.
 | 
						|
      BasicBlock *CatchBlock = nullptr;
 | 
						|
      Constant *Selector;
 | 
						|
      while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
 | 
						|
        DEBUG(dbgs() << "  Found extra catch dispatch in block "
 | 
						|
                     << CatchBlock->getName() << "\n");
 | 
						|
        BB = NextBB;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add the catch handler to the action list.
 | 
						|
      CatchHandler *Action = nullptr;
 | 
						|
      if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
 | 
						|
        // If the CatchHandlerMap already has an entry for this BB, re-use it.
 | 
						|
        Action = CatchHandlerMap[BB];
 | 
						|
        assert(Action->getSelector() == ExpectedSelector);
 | 
						|
      } else {
 | 
						|
        // We don't expect a selector dispatch, but there may be a call to
 | 
						|
        // llvm.eh.begincatch, which separates catch handling code from
 | 
						|
        // cleanup code in the same control flow.  This call looks for the
 | 
						|
        // begincatch intrinsic.
 | 
						|
        Action = findCatchHandler(BB, NextBB, VisitedBlocks);
 | 
						|
        if (Action) {
 | 
						|
          // For C++ EH, check if there is any interesting cleanup code before
 | 
						|
          // we begin the catch. This is important because cleanups cannot
 | 
						|
          // rethrow exceptions but code called from catches can. For SEH, it
 | 
						|
          // isn't important if some finally code before a catch-all is executed
 | 
						|
          // out of line or after recovering from the exception.
 | 
						|
          if (Personality == EHPersonality::MSVC_CXX)
 | 
						|
            findCleanupHandlers(Actions, BB, BB);
 | 
						|
        } else {
 | 
						|
          // If an action was not found, it means that the control flows
 | 
						|
          // directly into the catch-all handler and there is no cleanup code.
 | 
						|
          // That's an expected situation and we must create a catch action.
 | 
						|
          // Since this is a catch-all handler, the selector won't actually
 | 
						|
          // appear in the code anywhere.  ExpectedSelector here is the constant
 | 
						|
          // null ptr that we got from the landing pad instruction.
 | 
						|
          Action = new CatchHandler(BB, ExpectedSelector, nullptr);
 | 
						|
          CatchHandlerMap[BB] = Action;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Actions.insertCatchHandler(Action);
 | 
						|
      DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
 | 
						|
      ++HandlersFound;
 | 
						|
 | 
						|
      // Once we reach a catch-all, don't expect to hit a resume instruction.
 | 
						|
      BB = nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
 | 
						|
    assert(CatchAction);
 | 
						|
 | 
						|
    // See if there is any interesting code executed before the dispatch.
 | 
						|
    findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
 | 
						|
 | 
						|
    // When the source program contains multiple nested try blocks the catch
 | 
						|
    // handlers can get strung together in such a way that we can encounter
 | 
						|
    // a dispatch for a selector that we've already had a handler for.
 | 
						|
    if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
 | 
						|
      ++HandlersFound;
 | 
						|
 | 
						|
      // Add the catch handler to the action list.
 | 
						|
      DEBUG(dbgs() << "  Found catch dispatch in block "
 | 
						|
                   << CatchAction->getStartBlock()->getName() << "\n");
 | 
						|
      Actions.insertCatchHandler(CatchAction);
 | 
						|
    } else {
 | 
						|
      // Under some circumstances optimized IR will flow unconditionally into a
 | 
						|
      // handler block without checking the selector.  This can only happen if
 | 
						|
      // the landing pad has a catch-all handler and the handler for the
 | 
						|
      // preceeding catch clause is identical to the catch-call handler
 | 
						|
      // (typically an empty catch).  In this case, the handler must be shared
 | 
						|
      // by all remaining clauses.
 | 
						|
      if (isa<ConstantPointerNull>(
 | 
						|
              CatchAction->getSelector()->stripPointerCasts())) {
 | 
						|
        DEBUG(dbgs() << "  Applying early catch-all handler in block "
 | 
						|
                     << CatchAction->getStartBlock()->getName()
 | 
						|
                     << "  to all remaining clauses.\n");
 | 
						|
        Actions.insertCatchHandler(CatchAction);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  Found extra catch dispatch in block "
 | 
						|
                   << CatchAction->getStartBlock()->getName() << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Move on to the block after the catch handler.
 | 
						|
    BB = NextBB;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't wind up in a catch-all, see if there is any interesting code
 | 
						|
  // executed before the resume.
 | 
						|
  findCleanupHandlers(Actions, BB, BB);
 | 
						|
 | 
						|
  // It's possible that some optimization moved code into a landingpad that
 | 
						|
  // wasn't
 | 
						|
  // previously being used for cleanup.  If that happens, we need to execute
 | 
						|
  // that
 | 
						|
  // extra code from a cleanup handler.
 | 
						|
  if (Actions.includesCleanup() && !LPad->isCleanup())
 | 
						|
    LPad->setCleanup(true);
 | 
						|
}
 | 
						|
 | 
						|
// This function searches starting with the input block for the next
 | 
						|
// block that terminates with a branch whose condition is based on a selector
 | 
						|
// comparison.  This may be the input block.  See the mapLandingPadBlocks
 | 
						|
// comments for a discussion of control flow assumptions.
 | 
						|
//
 | 
						|
CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
 | 
						|
                                             BasicBlock *&NextBB,
 | 
						|
                                             VisitedBlockSet &VisitedBlocks) {
 | 
						|
  // See if we've already found a catch handler use it.
 | 
						|
  // Call count() first to avoid creating a null entry for blocks
 | 
						|
  // we haven't seen before.
 | 
						|
  if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
 | 
						|
    CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
 | 
						|
    NextBB = Action->getNextBB();
 | 
						|
    return Action;
 | 
						|
  }
 | 
						|
 | 
						|
  // VisitedBlocks applies only to the current search.  We still
 | 
						|
  // need to consider blocks that we've visited while mapping other
 | 
						|
  // landing pads.
 | 
						|
  VisitedBlocks.insert(BB);
 | 
						|
 | 
						|
  BasicBlock *CatchBlock = nullptr;
 | 
						|
  Constant *Selector = nullptr;
 | 
						|
 | 
						|
  // If this is the first time we've visited this block from any landing pad
 | 
						|
  // look to see if it is a selector dispatch block.
 | 
						|
  if (!CatchHandlerMap.count(BB)) {
 | 
						|
    if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
 | 
						|
      CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
 | 
						|
      CatchHandlerMap[BB] = Action;
 | 
						|
      return Action;
 | 
						|
    }
 | 
						|
    // If we encounter a block containing an llvm.eh.begincatch before we
 | 
						|
    // find a selector dispatch block, the handler is assumed to be
 | 
						|
    // reached unconditionally.  This happens for catch-all blocks, but
 | 
						|
    // it can also happen for other catch handlers that have been combined
 | 
						|
    // with the catch-all handler during optimization.
 | 
						|
    if (isCatchBlock(BB)) {
 | 
						|
      PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
 | 
						|
      Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
 | 
						|
      CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
 | 
						|
      CatchHandlerMap[BB] = Action;
 | 
						|
      return Action;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit each successor, looking for the dispatch.
 | 
						|
  // FIXME: We expect to find the dispatch quickly, so this will probably
 | 
						|
  //        work better as a breadth first search.
 | 
						|
  for (BasicBlock *Succ : successors(BB)) {
 | 
						|
    if (VisitedBlocks.count(Succ))
 | 
						|
      continue;
 | 
						|
 | 
						|
    CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
 | 
						|
    if (Action)
 | 
						|
      return Action;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// These are helper functions to combine repeated code from findCleanupHandlers.
 | 
						|
static void createCleanupHandler(LandingPadActions &Actions,
 | 
						|
                                 CleanupHandlerMapTy &CleanupHandlerMap,
 | 
						|
                                 BasicBlock *BB) {
 | 
						|
  CleanupHandler *Action = new CleanupHandler(BB);
 | 
						|
  CleanupHandlerMap[BB] = Action;
 | 
						|
  Actions.insertCleanupHandler(Action);
 | 
						|
  DEBUG(dbgs() << "  Found cleanup code in block "
 | 
						|
               << Action->getStartBlock()->getName() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
 | 
						|
                                         Instruction *MaybeCall) {
 | 
						|
  // Look for finally blocks that Clang has already outlined for us.
 | 
						|
  //   %fp = call i8* @llvm.frameaddress(i32 0)
 | 
						|
  //   call void @"fin$parent"(iN 1, i8* %fp)
 | 
						|
  if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
 | 
						|
    MaybeCall = MaybeCall->getNextNode();
 | 
						|
  CallSite FinallyCall(MaybeCall);
 | 
						|
  if (!FinallyCall || FinallyCall.arg_size() != 2)
 | 
						|
    return CallSite();
 | 
						|
  if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
 | 
						|
    return CallSite();
 | 
						|
  if (!isFrameAddressCall(FinallyCall.getArgument(1)))
 | 
						|
    return CallSite();
 | 
						|
  return FinallyCall;
 | 
						|
}
 | 
						|
 | 
						|
static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
 | 
						|
  // Skip single ubr blocks.
 | 
						|
  while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
 | 
						|
    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (Br && Br->isUnconditional())
 | 
						|
      BB = Br->getSuccessor(0);
 | 
						|
    else
 | 
						|
      return BB;
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
// This function searches starting with the input block for the next block that
 | 
						|
// contains code that is not part of a catch handler and would not be eliminated
 | 
						|
// during handler outlining.
 | 
						|
//
 | 
						|
void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
 | 
						|
                                       BasicBlock *StartBB, BasicBlock *EndBB) {
 | 
						|
  // Here we will skip over the following:
 | 
						|
  //
 | 
						|
  // landing pad prolog:
 | 
						|
  //
 | 
						|
  // Unconditional branches
 | 
						|
  //
 | 
						|
  // Selector dispatch
 | 
						|
  //
 | 
						|
  // Resume pattern
 | 
						|
  //
 | 
						|
  // Anything else marks the start of an interesting block
 | 
						|
 | 
						|
  BasicBlock *BB = StartBB;
 | 
						|
  // Anything other than an unconditional branch will kick us out of this loop
 | 
						|
  // one way or another.
 | 
						|
  while (BB) {
 | 
						|
    BB = followSingleUnconditionalBranches(BB);
 | 
						|
    // If we've already scanned this block, don't scan it again.  If it is
 | 
						|
    // a cleanup block, there will be an action in the CleanupHandlerMap.
 | 
						|
    // If we've scanned it and it is not a cleanup block, there will be a
 | 
						|
    // nullptr in the CleanupHandlerMap.  If we have not scanned it, there will
 | 
						|
    // be no entry in the CleanupHandlerMap.  We must call count() first to
 | 
						|
    // avoid creating a null entry for blocks we haven't scanned.
 | 
						|
    if (CleanupHandlerMap.count(BB)) {
 | 
						|
      if (auto *Action = CleanupHandlerMap[BB]) {
 | 
						|
        Actions.insertCleanupHandler(Action);
 | 
						|
        DEBUG(dbgs() << "  Found cleanup code in block "
 | 
						|
                     << Action->getStartBlock()->getName() << "\n");
 | 
						|
        // FIXME: This cleanup might chain into another, and we need to discover
 | 
						|
        // that.
 | 
						|
        return;
 | 
						|
      } else {
 | 
						|
        // Here we handle the case where the cleanup handler map contains a
 | 
						|
        // value for this block but the value is a nullptr.  This means that
 | 
						|
        // we have previously analyzed the block and determined that it did
 | 
						|
        // not contain any cleanup code.  Based on the earlier analysis, we
 | 
						|
        // know the the block must end in either an unconditional branch, a
 | 
						|
        // resume or a conditional branch that is predicated on a comparison
 | 
						|
        // with a selector.  Either the resume or the selector dispatch
 | 
						|
        // would terminate the search for cleanup code, so the unconditional
 | 
						|
        // branch is the only case for which we might need to continue
 | 
						|
        // searching.
 | 
						|
        BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
 | 
						|
        if (SuccBB == BB || SuccBB == EndBB)
 | 
						|
          return;
 | 
						|
        BB = SuccBB;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create an entry in the cleanup handler map for this block.  Initially
 | 
						|
    // we create an entry that says this isn't a cleanup block.  If we find
 | 
						|
    // cleanup code, the caller will replace this entry.
 | 
						|
    CleanupHandlerMap[BB] = nullptr;
 | 
						|
 | 
						|
    TerminatorInst *Terminator = BB->getTerminator();
 | 
						|
 | 
						|
    // Landing pad blocks have extra instructions we need to accept.
 | 
						|
    LandingPadMap *LPadMap = nullptr;
 | 
						|
    if (BB->isLandingPad()) {
 | 
						|
      LandingPadInst *LPad = BB->getLandingPadInst();
 | 
						|
      LPadMap = &LPadMaps[LPad];
 | 
						|
      if (!LPadMap->isInitialized())
 | 
						|
        LPadMap->mapLandingPad(LPad);
 | 
						|
    }
 | 
						|
 | 
						|
    // Look for the bare resume pattern:
 | 
						|
    //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
 | 
						|
    //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
 | 
						|
    //   resume { i8*, i32 } %lpad.val2
 | 
						|
    if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
 | 
						|
      InsertValueInst *Insert1 = nullptr;
 | 
						|
      InsertValueInst *Insert2 = nullptr;
 | 
						|
      Value *ResumeVal = Resume->getOperand(0);
 | 
						|
      // If the resume value isn't a phi or landingpad value, it should be a
 | 
						|
      // series of insertions. Identify them so we can avoid them when scanning
 | 
						|
      // for cleanups.
 | 
						|
      if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
 | 
						|
        Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
 | 
						|
        if (!Insert2)
 | 
						|
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
        Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
 | 
						|
        if (!Insert1)
 | 
						|
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
      }
 | 
						|
      for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | 
						|
           II != IE; ++II) {
 | 
						|
        Instruction *Inst = II;
 | 
						|
        if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | 
						|
          continue;
 | 
						|
        if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
 | 
						|
          continue;
 | 
						|
        if (!Inst->hasOneUse() ||
 | 
						|
            (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
 | 
						|
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
 | 
						|
    if (Branch && Branch->isConditional()) {
 | 
						|
      // Look for the selector dispatch.
 | 
						|
      //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
 | 
						|
      //   %matches = icmp eq i32 %sel, %2
 | 
						|
      //   br i1 %matches, label %catch14, label %eh.resume
 | 
						|
      CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
 | 
						|
      if (!Compare || !Compare->isEquality())
 | 
						|
        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
      for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | 
						|
           II != IE; ++II) {
 | 
						|
        Instruction *Inst = II;
 | 
						|
        if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | 
						|
          continue;
 | 
						|
        if (Inst == Compare || Inst == Branch)
 | 
						|
          continue;
 | 
						|
        if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
 | 
						|
          continue;
 | 
						|
        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
      }
 | 
						|
      // The selector dispatch block should always terminate our search.
 | 
						|
      assert(BB == EndBB);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isAsynchronousEHPersonality(Personality)) {
 | 
						|
      // If this is a landingpad block, split the block at the first non-landing
 | 
						|
      // pad instruction.
 | 
						|
      Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
 | 
						|
      if (LPadMap) {
 | 
						|
        while (MaybeCall != BB->getTerminator() &&
 | 
						|
               LPadMap->isLandingPadSpecificInst(MaybeCall))
 | 
						|
          MaybeCall = MaybeCall->getNextNode();
 | 
						|
      }
 | 
						|
 | 
						|
      // Look for outlined finally calls.
 | 
						|
      if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
 | 
						|
        Function *Fin = FinallyCall.getCalledFunction();
 | 
						|
        assert(Fin && "outlined finally call should be direct");
 | 
						|
        auto *Action = new CleanupHandler(BB);
 | 
						|
        Action->setHandlerBlockOrFunc(Fin);
 | 
						|
        Actions.insertCleanupHandler(Action);
 | 
						|
        CleanupHandlerMap[BB] = Action;
 | 
						|
        DEBUG(dbgs() << "  Found frontend-outlined finally call to "
 | 
						|
                     << Fin->getName() << " in block "
 | 
						|
                     << Action->getStartBlock()->getName() << "\n");
 | 
						|
 | 
						|
        // Split the block if there were more interesting instructions and look
 | 
						|
        // for finally calls in the normal successor block.
 | 
						|
        BasicBlock *SuccBB = BB;
 | 
						|
        if (FinallyCall.getInstruction() != BB->getTerminator() &&
 | 
						|
            FinallyCall.getInstruction()->getNextNode() !=
 | 
						|
                BB->getTerminator()) {
 | 
						|
          SuccBB =
 | 
						|
              SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
 | 
						|
        } else {
 | 
						|
          if (FinallyCall.isInvoke()) {
 | 
						|
            SuccBB =
 | 
						|
                cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
 | 
						|
          } else {
 | 
						|
            SuccBB = BB->getUniqueSuccessor();
 | 
						|
            assert(SuccBB &&
 | 
						|
                   "splitOutlinedFinallyCalls didn't insert a branch");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        BB = SuccBB;
 | 
						|
        if (BB == EndBB)
 | 
						|
          return;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Anything else is either a catch block or interesting cleanup code.
 | 
						|
    for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | 
						|
         II != IE; ++II) {
 | 
						|
      Instruction *Inst = II;
 | 
						|
      if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | 
						|
        continue;
 | 
						|
      // Unconditional branches fall through to this loop.
 | 
						|
      if (Inst == Branch)
 | 
						|
        continue;
 | 
						|
      // If this is a catch block, there is no cleanup code to be found.
 | 
						|
      if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
 | 
						|
        return;
 | 
						|
      // If this a nested landing pad, it may contain an endcatch call.
 | 
						|
      if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
 | 
						|
        return;
 | 
						|
      // Anything else makes this interesting cleanup code.
 | 
						|
      return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Only unconditional branches in empty blocks should get this far.
 | 
						|
    assert(Branch && Branch->isUnconditional());
 | 
						|
    if (BB == EndBB)
 | 
						|
      return;
 | 
						|
    BB = Branch->getSuccessor(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This is a public function, declared in WinEHFuncInfo.h and is also
 | 
						|
// referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
 | 
						|
void llvm::parseEHActions(const IntrinsicInst *II,
 | 
						|
                          SmallVectorImpl<ActionHandler *> &Actions) {
 | 
						|
  for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
 | 
						|
    uint64_t ActionKind =
 | 
						|
        cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
 | 
						|
    if (ActionKind == /*catch=*/1) {
 | 
						|
      auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
 | 
						|
      ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
 | 
						|
      int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
 | 
						|
      Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
 | 
						|
      I += 4;
 | 
						|
      auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr);
 | 
						|
      CH->setHandlerBlockOrFunc(Handler);
 | 
						|
      CH->setExceptionVarIndex(EHObjIndexVal);
 | 
						|
      Actions.push_back(CH);
 | 
						|
    } else if (ActionKind == 0) {
 | 
						|
      Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
 | 
						|
      I += 2;
 | 
						|
      auto *CH = new CleanupHandler(/*BB=*/nullptr);
 | 
						|
      CH->setHandlerBlockOrFunc(Handler);
 | 
						|
      Actions.push_back(CH);
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Expected either a catch or cleanup handler!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::reverse(Actions.begin(), Actions.end());
 | 
						|
}
 |