mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
f042660197
into Analysis as a standalone function, since there's no need for it to be in VMCore. Also, update it to use isKnownNonZero and other goodies available in Analysis, making it more precise, enabling more aggressive optimization. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
838 lines
31 KiB
C++
838 lines
31 KiB
C++
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs loop invariant code motion, attempting to remove as much
|
|
// code from the body of a loop as possible. It does this by either hoisting
|
|
// code into the preheader block, or by sinking code to the exit blocks if it is
|
|
// safe. This pass also promotes must-aliased memory locations in the loop to
|
|
// live in registers, thus hoisting and sinking "invariant" loads and stores.
|
|
//
|
|
// This pass uses alias analysis for two purposes:
|
|
//
|
|
// 1. Moving loop invariant loads and calls out of loops. If we can determine
|
|
// that a load or call inside of a loop never aliases anything stored to,
|
|
// we can hoist it or sink it like any other instruction.
|
|
// 2. Scalar Promotion of Memory - If there is a store instruction inside of
|
|
// the loop, we try to move the store to happen AFTER the loop instead of
|
|
// inside of the loop. This can only happen if a few conditions are true:
|
|
// A. The pointer stored through is loop invariant
|
|
// B. There are no stores or loads in the loop which _may_ alias the
|
|
// pointer. There are no calls in the loop which mod/ref the pointer.
|
|
// If these conditions are true, we can promote the loads and stores in the
|
|
// loop of the pointer to use a temporary alloca'd variable. We then use
|
|
// the SSAUpdater to construct the appropriate SSA form for the value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "licm"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumSunk , "Number of instructions sunk out of loop");
|
|
STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
|
|
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
|
|
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
|
|
STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
|
|
|
|
static cl::opt<bool>
|
|
DisablePromotion("disable-licm-promotion", cl::Hidden,
|
|
cl::desc("Disable memory promotion in LICM pass"));
|
|
|
|
namespace {
|
|
struct LICM : public LoopPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
LICM() : LoopPass(ID) {
|
|
initializeLICMPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved("scalar-evolution");
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
}
|
|
|
|
bool doFinalization() {
|
|
assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
AliasAnalysis *AA; // Current AliasAnalysis information
|
|
LoopInfo *LI; // Current LoopInfo
|
|
DominatorTree *DT; // Dominator Tree for the current Loop.
|
|
|
|
TargetData *TD; // TargetData for constant folding.
|
|
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
|
|
|
|
// State that is updated as we process loops.
|
|
bool Changed; // Set to true when we change anything.
|
|
BasicBlock *Preheader; // The preheader block of the current loop...
|
|
Loop *CurLoop; // The current loop we are working on...
|
|
AliasSetTracker *CurAST; // AliasSet information for the current loop...
|
|
DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
|
|
|
|
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
|
|
void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
|
|
|
|
/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
|
|
/// set.
|
|
void deleteAnalysisValue(Value *V, Loop *L);
|
|
|
|
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in
|
|
/// reverse depth first order w.r.t the DominatorTree. This allows us to
|
|
/// visit uses before definitions, allowing us to sink a loop body in one
|
|
/// pass without iteration.
|
|
///
|
|
void SinkRegion(DomTreeNode *N);
|
|
|
|
/// HoistRegion - Walk the specified region of the CFG (defined by all
|
|
/// blocks dominated by the specified block, and that are in the current
|
|
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
|
|
/// visit definitions before uses, allowing us to hoist a loop body in one
|
|
/// pass without iteration.
|
|
///
|
|
void HoistRegion(DomTreeNode *N);
|
|
|
|
/// inSubLoop - Little predicate that returns true if the specified basic
|
|
/// block is in a subloop of the current one, not the current one itself.
|
|
///
|
|
bool inSubLoop(BasicBlock *BB) {
|
|
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
|
|
return LI->getLoopFor(BB) != CurLoop;
|
|
}
|
|
|
|
/// sink - When an instruction is found to only be used outside of the loop,
|
|
/// this function moves it to the exit blocks and patches up SSA form as
|
|
/// needed.
|
|
///
|
|
void sink(Instruction &I);
|
|
|
|
/// hoist - When an instruction is found to only use loop invariant operands
|
|
/// that is safe to hoist, this instruction is called to do the dirty work.
|
|
///
|
|
void hoist(Instruction &I);
|
|
|
|
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
|
|
/// is not a trapping instruction or if it is a trapping instruction and is
|
|
/// guaranteed to execute.
|
|
///
|
|
bool isSafeToExecuteUnconditionally(Instruction &I);
|
|
|
|
/// isGuaranteedToExecute - Check that the instruction is guaranteed to
|
|
/// execute.
|
|
///
|
|
bool isGuaranteedToExecute(Instruction &I);
|
|
|
|
/// pointerInvalidatedByLoop - Return true if the body of this loop may
|
|
/// store into the memory location pointed to by V.
|
|
///
|
|
bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
|
|
const MDNode *TBAAInfo) {
|
|
// Check to see if any of the basic blocks in CurLoop invalidate *V.
|
|
return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
|
|
}
|
|
|
|
bool canSinkOrHoistInst(Instruction &I);
|
|
bool isNotUsedInLoop(Instruction &I);
|
|
|
|
void PromoteAliasSet(AliasSet &AS);
|
|
};
|
|
}
|
|
|
|
char LICM::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
|
|
|
|
Pass *llvm::createLICMPass() { return new LICM(); }
|
|
|
|
/// Hoist expressions out of the specified loop. Note, alias info for inner
|
|
/// loop is not preserved so it is not a good idea to run LICM multiple
|
|
/// times on one loop.
|
|
///
|
|
bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
Changed = false;
|
|
|
|
// Get our Loop and Alias Analysis information...
|
|
LI = &getAnalysis<LoopInfo>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
|
|
CurAST = new AliasSetTracker(*AA);
|
|
// Collect Alias info from subloops.
|
|
for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
|
|
LoopItr != LoopItrE; ++LoopItr) {
|
|
Loop *InnerL = *LoopItr;
|
|
AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
|
|
assert(InnerAST && "Where is my AST?");
|
|
|
|
// What if InnerLoop was modified by other passes ?
|
|
CurAST->add(*InnerAST);
|
|
|
|
// Once we've incorporated the inner loop's AST into ours, we don't need the
|
|
// subloop's anymore.
|
|
delete InnerAST;
|
|
LoopToAliasSetMap.erase(InnerL);
|
|
}
|
|
|
|
CurLoop = L;
|
|
|
|
// Get the preheader block to move instructions into...
|
|
Preheader = L->getLoopPreheader();
|
|
|
|
// Loop over the body of this loop, looking for calls, invokes, and stores.
|
|
// Because subloops have already been incorporated into AST, we skip blocks in
|
|
// subloops.
|
|
//
|
|
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
|
|
I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
|
|
CurAST->add(*BB); // Incorporate the specified basic block
|
|
}
|
|
|
|
// We want to visit all of the instructions in this loop... that are not parts
|
|
// of our subloops (they have already had their invariants hoisted out of
|
|
// their loop, into this loop, so there is no need to process the BODIES of
|
|
// the subloops).
|
|
//
|
|
// Traverse the body of the loop in depth first order on the dominator tree so
|
|
// that we are guaranteed to see definitions before we see uses. This allows
|
|
// us to sink instructions in one pass, without iteration. After sinking
|
|
// instructions, we perform another pass to hoist them out of the loop.
|
|
//
|
|
if (L->hasDedicatedExits())
|
|
SinkRegion(DT->getNode(L->getHeader()));
|
|
if (Preheader)
|
|
HoistRegion(DT->getNode(L->getHeader()));
|
|
|
|
// Now that all loop invariants have been removed from the loop, promote any
|
|
// memory references to scalars that we can.
|
|
if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
|
|
// Loop over all of the alias sets in the tracker object.
|
|
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
|
|
I != E; ++I)
|
|
PromoteAliasSet(*I);
|
|
}
|
|
|
|
// Clear out loops state information for the next iteration
|
|
CurLoop = 0;
|
|
Preheader = 0;
|
|
|
|
// If this loop is nested inside of another one, save the alias information
|
|
// for when we process the outer loop.
|
|
if (L->getParentLoop())
|
|
LoopToAliasSetMap[L] = CurAST;
|
|
else
|
|
delete CurAST;
|
|
return Changed;
|
|
}
|
|
|
|
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in
|
|
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
|
|
/// uses before definitions, allowing us to sink a loop body in one pass without
|
|
/// iteration.
|
|
///
|
|
void LICM::SinkRegion(DomTreeNode *N) {
|
|
assert(N != 0 && "Null dominator tree node?");
|
|
BasicBlock *BB = N->getBlock();
|
|
|
|
// If this subregion is not in the top level loop at all, exit.
|
|
if (!CurLoop->contains(BB)) return;
|
|
|
|
// We are processing blocks in reverse dfo, so process children first.
|
|
const std::vector<DomTreeNode*> &Children = N->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
SinkRegion(Children[i]);
|
|
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (inSubLoop(BB)) return;
|
|
|
|
for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
|
|
Instruction &I = *--II;
|
|
|
|
// If the instruction is dead, we would try to sink it because it isn't used
|
|
// in the loop, instead, just delete it.
|
|
if (isInstructionTriviallyDead(&I)) {
|
|
DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
|
|
++II;
|
|
CurAST->deleteValue(&I);
|
|
I.eraseFromParent();
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if we can sink this instruction to the exit blocks
|
|
// of the loop. We can do this if the all users of the instruction are
|
|
// outside of the loop. In this case, it doesn't even matter if the
|
|
// operands of the instruction are loop invariant.
|
|
//
|
|
if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
|
|
++II;
|
|
sink(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in depth
|
|
/// first order w.r.t the DominatorTree. This allows us to visit definitions
|
|
/// before uses, allowing us to hoist a loop body in one pass without iteration.
|
|
///
|
|
void LICM::HoistRegion(DomTreeNode *N) {
|
|
assert(N != 0 && "Null dominator tree node?");
|
|
BasicBlock *BB = N->getBlock();
|
|
|
|
// If this subregion is not in the top level loop at all, exit.
|
|
if (!CurLoop->contains(BB)) return;
|
|
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (!inSubLoop(BB))
|
|
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
|
|
Instruction &I = *II++;
|
|
|
|
// Try constant folding this instruction. If all the operands are
|
|
// constants, it is technically hoistable, but it would be better to just
|
|
// fold it.
|
|
if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
|
|
DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
|
|
CurAST->copyValue(&I, C);
|
|
CurAST->deleteValue(&I);
|
|
I.replaceAllUsesWith(C);
|
|
I.eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// Try hoisting the instruction out to the preheader. We can only do this
|
|
// if all of the operands of the instruction are loop invariant and if it
|
|
// is safe to hoist the instruction.
|
|
//
|
|
if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
|
|
isSafeToExecuteUnconditionally(I))
|
|
hoist(I);
|
|
}
|
|
|
|
const std::vector<DomTreeNode*> &Children = N->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
HoistRegion(Children[i]);
|
|
}
|
|
|
|
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
|
|
/// instruction.
|
|
///
|
|
bool LICM::canSinkOrHoistInst(Instruction &I) {
|
|
// Loads have extra constraints we have to verify before we can hoist them.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (!LI->isUnordered())
|
|
return false; // Don't hoist volatile/atomic loads!
|
|
|
|
// Loads from constant memory are always safe to move, even if they end up
|
|
// in the same alias set as something that ends up being modified.
|
|
if (AA->pointsToConstantMemory(LI->getOperand(0)))
|
|
return true;
|
|
if (LI->getMetadata("invariant.load"))
|
|
return true;
|
|
|
|
// Don't hoist loads which have may-aliased stores in loop.
|
|
uint64_t Size = 0;
|
|
if (LI->getType()->isSized())
|
|
Size = AA->getTypeStoreSize(LI->getType());
|
|
return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
|
|
LI->getMetadata(LLVMContext::MD_tbaa));
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Don't sink or hoist dbg info; it's legal, but not useful.
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
return false;
|
|
|
|
// Handle simple cases by querying alias analysis.
|
|
AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
|
|
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
|
|
return true;
|
|
if (AliasAnalysis::onlyReadsMemory(Behavior)) {
|
|
// If this call only reads from memory and there are no writes to memory
|
|
// in the loop, we can hoist or sink the call as appropriate.
|
|
bool FoundMod = false;
|
|
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
|
|
I != E; ++I) {
|
|
AliasSet &AS = *I;
|
|
if (!AS.isForwardingAliasSet() && AS.isMod()) {
|
|
FoundMod = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!FoundMod) return true;
|
|
}
|
|
|
|
// FIXME: This should use mod/ref information to see if we can hoist or sink
|
|
// the call.
|
|
|
|
return false;
|
|
}
|
|
|
|
// Otherwise these instructions are hoistable/sinkable
|
|
return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
|
|
isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
|
|
isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
|
|
isa<ShuffleVectorInst>(I);
|
|
}
|
|
|
|
/// isNotUsedInLoop - Return true if the only users of this instruction are
|
|
/// outside of the loop. If this is true, we can sink the instruction to the
|
|
/// exit blocks of the loop.
|
|
///
|
|
bool LICM::isNotUsedInLoop(Instruction &I) {
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
// PHI node uses occur in predecessor blocks!
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == &I)
|
|
if (CurLoop->contains(PN->getIncomingBlock(i)))
|
|
return false;
|
|
} else if (CurLoop->contains(User)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// sink - When an instruction is found to only be used outside of the loop,
|
|
/// this function moves it to the exit blocks and patches up SSA form as needed.
|
|
/// This method is guaranteed to remove the original instruction from its
|
|
/// position, and may either delete it or move it to outside of the loop.
|
|
///
|
|
void LICM::sink(Instruction &I) {
|
|
DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
|
|
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
if (isa<LoadInst>(I)) ++NumMovedLoads;
|
|
else if (isa<CallInst>(I)) ++NumMovedCalls;
|
|
++NumSunk;
|
|
Changed = true;
|
|
|
|
// The case where there is only a single exit node of this loop is common
|
|
// enough that we handle it as a special (more efficient) case. It is more
|
|
// efficient to handle because there are no PHI nodes that need to be placed.
|
|
if (ExitBlocks.size() == 1) {
|
|
if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
|
|
// Instruction is not used, just delete it.
|
|
CurAST->deleteValue(&I);
|
|
// If I has users in unreachable blocks, eliminate.
|
|
// If I is not void type then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
I.eraseFromParent();
|
|
} else {
|
|
// Move the instruction to the start of the exit block, after any PHI
|
|
// nodes in it.
|
|
I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
|
|
|
|
// This instruction is no longer in the AST for the current loop, because
|
|
// we just sunk it out of the loop. If we just sunk it into an outer
|
|
// loop, we will rediscover the operation when we process it.
|
|
CurAST->deleteValue(&I);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ExitBlocks.empty()) {
|
|
// The instruction is actually dead if there ARE NO exit blocks.
|
|
CurAST->deleteValue(&I);
|
|
// If I has users in unreachable blocks, eliminate.
|
|
// If I is not void type then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
I.eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
|
|
// hard work of inserting PHI nodes as necessary.
|
|
SmallVector<PHINode*, 8> NewPHIs;
|
|
SSAUpdater SSA(&NewPHIs);
|
|
|
|
if (!I.use_empty())
|
|
SSA.Initialize(I.getType(), I.getName());
|
|
|
|
// Insert a copy of the instruction in each exit block of the loop that is
|
|
// dominated by the instruction. Each exit block is known to only be in the
|
|
// ExitBlocks list once.
|
|
BasicBlock *InstOrigBB = I.getParent();
|
|
unsigned NumInserted = 0;
|
|
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
|
|
BasicBlock *ExitBlock = ExitBlocks[i];
|
|
|
|
if (!DT->dominates(InstOrigBB, ExitBlock))
|
|
continue;
|
|
|
|
// Insert the code after the last PHI node.
|
|
BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
|
|
|
|
// If this is the first exit block processed, just move the original
|
|
// instruction, otherwise clone the original instruction and insert
|
|
// the copy.
|
|
Instruction *New;
|
|
if (NumInserted++ == 0) {
|
|
I.moveBefore(InsertPt);
|
|
New = &I;
|
|
} else {
|
|
New = I.clone();
|
|
if (!I.getName().empty())
|
|
New->setName(I.getName()+".le");
|
|
ExitBlock->getInstList().insert(InsertPt, New);
|
|
}
|
|
|
|
// Now that we have inserted the instruction, inform SSAUpdater.
|
|
if (!I.use_empty())
|
|
SSA.AddAvailableValue(ExitBlock, New);
|
|
}
|
|
|
|
// If the instruction doesn't dominate any exit blocks, it must be dead.
|
|
if (NumInserted == 0) {
|
|
CurAST->deleteValue(&I);
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
I.eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Next, rewrite uses of the instruction, inserting PHI nodes as needed.
|
|
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
|
|
// Grab the use before incrementing the iterator.
|
|
Use &U = UI.getUse();
|
|
// Increment the iterator before removing the use from the list.
|
|
++UI;
|
|
SSA.RewriteUseAfterInsertions(U);
|
|
}
|
|
|
|
// Update CurAST for NewPHIs if I had pointer type.
|
|
if (I.getType()->isPointerTy())
|
|
for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
|
|
CurAST->copyValue(&I, NewPHIs[i]);
|
|
|
|
// Finally, remove the instruction from CurAST. It is no longer in the loop.
|
|
CurAST->deleteValue(&I);
|
|
}
|
|
|
|
/// hoist - When an instruction is found to only use loop invariant operands
|
|
/// that is safe to hoist, this instruction is called to do the dirty work.
|
|
///
|
|
void LICM::hoist(Instruction &I) {
|
|
DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
|
|
<< I << "\n");
|
|
|
|
// Move the new node to the Preheader, before its terminator.
|
|
I.moveBefore(Preheader->getTerminator());
|
|
|
|
if (isa<LoadInst>(I)) ++NumMovedLoads;
|
|
else if (isa<CallInst>(I)) ++NumMovedCalls;
|
|
++NumHoisted;
|
|
Changed = true;
|
|
}
|
|
|
|
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
|
|
/// not a trapping instruction or if it is a trapping instruction and is
|
|
/// guaranteed to execute.
|
|
///
|
|
bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
|
|
// If it is not a trapping instruction, it is always safe to hoist.
|
|
if (isSafeToSpeculativelyExecute(&Inst))
|
|
return true;
|
|
|
|
return isGuaranteedToExecute(Inst);
|
|
}
|
|
|
|
bool LICM::isGuaranteedToExecute(Instruction &Inst) {
|
|
// Otherwise we have to check to make sure that the instruction dominates all
|
|
// of the exit blocks. If it doesn't, then there is a path out of the loop
|
|
// which does not execute this instruction, so we can't hoist it.
|
|
|
|
// If the instruction is in the header block for the loop (which is very
|
|
// common), it is always guaranteed to dominate the exit blocks. Since this
|
|
// is a common case, and can save some work, check it now.
|
|
if (Inst.getParent() == CurLoop->getHeader())
|
|
return true;
|
|
|
|
// Get the exit blocks for the current loop.
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
CurLoop->getExitBlocks(ExitBlocks);
|
|
|
|
// Verify that the block dominates each of the exit blocks of the loop.
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
class LoopPromoter : public LoadAndStorePromoter {
|
|
Value *SomePtr; // Designated pointer to store to.
|
|
SmallPtrSet<Value*, 4> &PointerMustAliases;
|
|
SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
|
|
AliasSetTracker &AST;
|
|
DebugLoc DL;
|
|
int Alignment;
|
|
public:
|
|
LoopPromoter(Value *SP,
|
|
const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
|
|
SmallPtrSet<Value*, 4> &PMA,
|
|
SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
|
|
DebugLoc dl, int alignment)
|
|
: LoadAndStorePromoter(Insts, S), SomePtr(SP),
|
|
PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
|
|
Alignment(alignment) {}
|
|
|
|
virtual bool isInstInList(Instruction *I,
|
|
const SmallVectorImpl<Instruction*> &) const {
|
|
Value *Ptr;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
Ptr = LI->getOperand(0);
|
|
else
|
|
Ptr = cast<StoreInst>(I)->getPointerOperand();
|
|
return PointerMustAliases.count(Ptr);
|
|
}
|
|
|
|
virtual void doExtraRewritesBeforeFinalDeletion() const {
|
|
// Insert stores after in the loop exit blocks. Each exit block gets a
|
|
// store of the live-out values that feed them. Since we've already told
|
|
// the SSA updater about the defs in the loop and the preheader
|
|
// definition, it is all set and we can start using it.
|
|
for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
|
|
BasicBlock *ExitBlock = LoopExitBlocks[i];
|
|
Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
|
|
Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
|
|
StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
|
|
NewSI->setAlignment(Alignment);
|
|
NewSI->setDebugLoc(DL);
|
|
}
|
|
}
|
|
|
|
virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
|
|
// Update alias analysis.
|
|
AST.copyValue(LI, V);
|
|
}
|
|
virtual void instructionDeleted(Instruction *I) const {
|
|
AST.deleteValue(I);
|
|
}
|
|
};
|
|
} // end anon namespace
|
|
|
|
/// PromoteAliasSet - Try to promote memory values to scalars by sinking
|
|
/// stores out of the loop and moving loads to before the loop. We do this by
|
|
/// looping over the stores in the loop, looking for stores to Must pointers
|
|
/// which are loop invariant.
|
|
///
|
|
void LICM::PromoteAliasSet(AliasSet &AS) {
|
|
// We can promote this alias set if it has a store, if it is a "Must" alias
|
|
// set, if the pointer is loop invariant, and if we are not eliminating any
|
|
// volatile loads or stores.
|
|
if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
|
|
AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
|
|
return;
|
|
|
|
assert(!AS.empty() &&
|
|
"Must alias set should have at least one pointer element in it!");
|
|
Value *SomePtr = AS.begin()->getValue();
|
|
|
|
// It isn't safe to promote a load/store from the loop if the load/store is
|
|
// conditional. For example, turning:
|
|
//
|
|
// for () { if (c) *P += 1; }
|
|
//
|
|
// into:
|
|
//
|
|
// tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
|
|
//
|
|
// is not safe, because *P may only be valid to access if 'c' is true.
|
|
//
|
|
// It is safe to promote P if all uses are direct load/stores and if at
|
|
// least one is guaranteed to be executed.
|
|
bool GuaranteedToExecute = false;
|
|
|
|
SmallVector<Instruction*, 64> LoopUses;
|
|
SmallPtrSet<Value*, 4> PointerMustAliases;
|
|
|
|
// We start with an alignment of one and try to find instructions that allow
|
|
// us to prove better alignment.
|
|
unsigned Alignment = 1;
|
|
|
|
// Check that all of the pointers in the alias set have the same type. We
|
|
// cannot (yet) promote a memory location that is loaded and stored in
|
|
// different sizes.
|
|
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
|
|
Value *ASIV = ASI->getValue();
|
|
PointerMustAliases.insert(ASIV);
|
|
|
|
// Check that all of the pointers in the alias set have the same type. We
|
|
// cannot (yet) promote a memory location that is loaded and stored in
|
|
// different sizes.
|
|
if (SomePtr->getType() != ASIV->getType())
|
|
return;
|
|
|
|
for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
|
|
UI != UE; ++UI) {
|
|
// Ignore instructions that are outside the loop.
|
|
Instruction *Use = dyn_cast<Instruction>(*UI);
|
|
if (!Use || !CurLoop->contains(Use))
|
|
continue;
|
|
|
|
// If there is an non-load/store instruction in the loop, we can't promote
|
|
// it.
|
|
if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
|
|
assert(!load->isVolatile() && "AST broken");
|
|
if (!load->isSimple())
|
|
return;
|
|
} else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
|
|
// Stores *of* the pointer are not interesting, only stores *to* the
|
|
// pointer.
|
|
if (Use->getOperand(1) != ASIV)
|
|
continue;
|
|
assert(!store->isVolatile() && "AST broken");
|
|
if (!store->isSimple())
|
|
return;
|
|
|
|
// Note that we only check GuaranteedToExecute inside the store case
|
|
// so that we do not introduce stores where they did not exist before
|
|
// (which would break the LLVM concurrency model).
|
|
|
|
// If the alignment of this instruction allows us to specify a more
|
|
// restrictive (and performant) alignment and if we are sure this
|
|
// instruction will be executed, update the alignment.
|
|
// Larger is better, with the exception of 0 being the best alignment.
|
|
unsigned InstAlignment = store->getAlignment();
|
|
if ((InstAlignment > Alignment || InstAlignment == 0)
|
|
&& (Alignment != 0))
|
|
if (isGuaranteedToExecute(*Use)) {
|
|
GuaranteedToExecute = true;
|
|
Alignment = InstAlignment;
|
|
}
|
|
|
|
if (!GuaranteedToExecute)
|
|
GuaranteedToExecute = isGuaranteedToExecute(*Use);
|
|
|
|
} else
|
|
return; // Not a load or store.
|
|
|
|
LoopUses.push_back(Use);
|
|
}
|
|
}
|
|
|
|
// If there isn't a guaranteed-to-execute instruction, we can't promote.
|
|
if (!GuaranteedToExecute)
|
|
return;
|
|
|
|
// Otherwise, this is safe to promote, lets do it!
|
|
DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
|
|
Changed = true;
|
|
++NumPromoted;
|
|
|
|
// Grab a debug location for the inserted loads/stores; given that the
|
|
// inserted loads/stores have little relation to the original loads/stores,
|
|
// this code just arbitrarily picks a location from one, since any debug
|
|
// location is better than none.
|
|
DebugLoc DL = LoopUses[0]->getDebugLoc();
|
|
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
// We use the SSAUpdater interface to insert phi nodes as required.
|
|
SmallVector<PHINode*, 16> NewPHIs;
|
|
SSAUpdater SSA(&NewPHIs);
|
|
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
|
|
*CurAST, DL, Alignment);
|
|
|
|
// Set up the preheader to have a definition of the value. It is the live-out
|
|
// value from the preheader that uses in the loop will use.
|
|
LoadInst *PreheaderLoad =
|
|
new LoadInst(SomePtr, SomePtr->getName()+".promoted",
|
|
Preheader->getTerminator());
|
|
PreheaderLoad->setAlignment(Alignment);
|
|
PreheaderLoad->setDebugLoc(DL);
|
|
SSA.AddAvailableValue(Preheader, PreheaderLoad);
|
|
|
|
// Rewrite all the loads in the loop and remember all the definitions from
|
|
// stores in the loop.
|
|
Promoter.run(LoopUses);
|
|
|
|
// If the SSAUpdater didn't use the load in the preheader, just zap it now.
|
|
if (PreheaderLoad->use_empty())
|
|
PreheaderLoad->eraseFromParent();
|
|
}
|
|
|
|
|
|
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
|
|
void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
|
|
AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
|
|
if (!AST)
|
|
return;
|
|
|
|
AST->copyValue(From, To);
|
|
}
|
|
|
|
/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
|
|
/// set.
|
|
void LICM::deleteAnalysisValue(Value *V, Loop *L) {
|
|
AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
|
|
if (!AST)
|
|
return;
|
|
|
|
AST->deleteValue(V);
|
|
}
|