mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
8328f1d9a6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4003 91177308-0d34-0410-b5e6-96231b3b80d8
1766 lines
78 KiB
HTML
1766 lines
78 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
|
<html><head><title>LLVM Programmer's Manual</title></head>
|
|
|
|
<body bgcolor=white>
|
|
|
|
<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
|
|
</tr></table>
|
|
|
|
<ol>
|
|
<li><a href="#introduction">Introduction</a>
|
|
<li><a href="#general">General Information</a>
|
|
<ul>
|
|
<li><a href="#stl">The C++ Standard Template Library</a>
|
|
<!--
|
|
<li>The <tt>-time-passes</tt> option
|
|
<li>How to use the LLVM Makefile system
|
|
<li>How to write a regression test
|
|
-->
|
|
</ul>
|
|
<li><a href="#apis">Important and useful LLVM APIs</a>
|
|
<ul>
|
|
<li><a href="#isa">The <tt>isa<></tt>, <tt>cast<></tt> and
|
|
<tt>dyn_cast<></tt> templates</a>
|
|
<li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &
|
|
<tt>-debug</tt> option</a>
|
|
<li><a href="#Statistic">The <tt>Statistic</tt> template &
|
|
<tt>-stats</tt> option</a>
|
|
<!--
|
|
<li>The <tt>InstVisitor</tt> template
|
|
<li>The general graph API
|
|
-->
|
|
</ul>
|
|
<li><a href="#common">Helpful Hints for Common Operations</a>
|
|
<ul>
|
|
<li><a href="#inspection">Basic Inspection and Traversal Routines</a>
|
|
<ul>
|
|
<li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
|
|
in a <tt>Function</tt></a>
|
|
<li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
|
|
in a <tt>BasicBlock</tt></a>
|
|
<li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
|
|
in a <tt>Function</tt></a>
|
|
<li><a href="#iterate_convert">Turning an iterator into a class
|
|
pointer</a>
|
|
<li><a href="#iterate_complex">Finding call sites: a more complex
|
|
example</a>
|
|
<li><a href="#iterate_chains">Iterating over def-use & use-def
|
|
chains</a>
|
|
</ul>
|
|
<li><a href="#simplechanges">Making simple changes</a>
|
|
<ul>
|
|
<li><a href="#schanges_creating">Creating and inserting new
|
|
<tt>Instruction</tt>s</a>
|
|
<li><a href="#schanges_deleting">Deleting
|
|
<tt>Instruction</tt>s</a>
|
|
<li><a href="#schanges_replacing">Replacing an
|
|
<tt>Instruction</tt> with another <tt>Value</tt></a>
|
|
</ul>
|
|
<!--
|
|
<li>Working with the Control Flow Graph
|
|
<ul>
|
|
<li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
|
|
<li>
|
|
<li>
|
|
</ul>
|
|
-->
|
|
</ul>
|
|
<li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
|
|
<ul>
|
|
<li><a href="#Value">The <tt>Value</tt> class</a>
|
|
<ul>
|
|
<li><a href="#User">The <tt>User</tt> class</a>
|
|
<ul>
|
|
<li><a href="#Instruction">The <tt>Instruction</tt> class</a>
|
|
<ul>
|
|
<li>
|
|
</ul>
|
|
<li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
|
|
<ul>
|
|
<li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
|
|
<li><a href="#Function">The <tt>Function</tt> class</a>
|
|
<li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
|
|
</ul>
|
|
<li><a href="#Module">The <tt>Module</tt> class</a>
|
|
<li><a href="#Constant">The <tt>Constant</tt> class</a>
|
|
<ul>
|
|
<li>
|
|
<li>
|
|
</ul>
|
|
</ul>
|
|
<li><a href="#Type">The <tt>Type</tt> class</a>
|
|
<li><a href="#Argument">The <tt>Argument</tt> class</a>
|
|
</ul>
|
|
<li>The <tt>SymbolTable</tt> class
|
|
<li>The <tt>ilist</tt> and <tt>iplist</tt> classes
|
|
<ul>
|
|
<li>Creating, inserting, moving and deleting from LLVM lists
|
|
</ul>
|
|
<li>Important iterator invalidation semantics to be aware of
|
|
</ul>
|
|
|
|
<p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
|
|
<a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
|
|
<a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
|
|
</ol>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="introduction">Introduction
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
This document is meant to highlight some of the important classes and interfaces
|
|
available in the LLVM source-base. This manual is not intended to explain what
|
|
LLVM is, how it works, and what LLVM code looks like. It assumes that you know
|
|
the basics of LLVM and are interested in writing transformations or otherwise
|
|
analyzing or manipulating the code.<p>
|
|
|
|
This document should get you oriented so that you can find your way in the
|
|
continuously growing source code that makes up the LLVM infrastructure. Note
|
|
that this manual is not intended to serve as a replacement for reading the
|
|
source code, so if you think there should be a method in one of these classes to
|
|
do something, but it's not listed, check the source. Links to the <a
|
|
href="/doxygen/">doxygen</a> sources are provided to make this as easy as
|
|
possible.<p>
|
|
|
|
The first section of this document describes general information that is useful
|
|
to know when working in the LLVM infrastructure, and the second describes the
|
|
Core LLVM classes. In the future this manual will be extended with information
|
|
describing how to use extension libraries, such as dominator information, CFG
|
|
traversal routines, and useful utilities like the <tt><a
|
|
href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="general">General Information
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
This section contains general information that is useful if you are working in
|
|
the LLVM source-base, but that isn't specific to any particular API.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="stl">The C++ Standard Template Library</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
|
|
more than you are used to, or have seen before. Because of this, you might want
|
|
to do a little background reading in the techniques used and capabilities of the
|
|
library. There are many good pages that discuss the STL, and several books on
|
|
the subject that you can get, so it will not be discussed in this document.<p>
|
|
|
|
Here are some useful links:<p>
|
|
<ol>
|
|
<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
|
|
Library reference</a> - an excellent reference for the STL and other parts of
|
|
the standard C++ library.<br>
|
|
|
|
<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
|
|
Questions</a>
|
|
|
|
<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
|
|
Contains a useful <a
|
|
href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
|
|
STL</a>.
|
|
|
|
<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
|
|
Page</a>
|
|
|
|
</ol><p>
|
|
|
|
You are also encouraged to take a look at the <a
|
|
href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
|
|
to write maintainable code more than where to put your curly braces.<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="apis">Important and useful LLVM APIs
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
Here we highlight some LLVM APIs that are generally useful and good to know
|
|
about when writing transformations.<p>
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="isa">The isa<>, cast<> and dyn_cast<> templates</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The LLVM source-base makes extensive use of a custom form of RTTI. These
|
|
templates have many similarities to the C++ <tt>dynamic_cast<></tt>
|
|
operator, but they don't have some drawbacks (primarily stemming from the fact
|
|
that <tt>dynamic_cast<></tt> only works on classes that have a v-table).
|
|
Because they are used so often, you must know what they do and how they work.
|
|
All of these templates are defined in the <a
|
|
href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
|
|
that you very rarely have to include this file directly).<p>
|
|
|
|
<dl>
|
|
|
|
<dt><tt>isa<></tt>:
|
|
|
|
<dd>The <tt>isa<></tt> operator works exactly like the Java
|
|
"<tt>instanceof</tt>" operator. It returns true or false depending on whether a
|
|
reference or pointer points to an instance of the specified class. This can be
|
|
very useful for constraint checking of various sorts (example below).<p>
|
|
|
|
|
|
<dt><tt>cast<></tt>:
|
|
|
|
<dd>The <tt>cast<></tt> operator is a "checked cast" operation. It
|
|
converts a pointer or reference from a base class to a derived cast, causing an
|
|
assertion failure if it is not really an instance of the right type. This
|
|
should be used in cases where you have some information that makes you believe
|
|
that something is of the right type. An example of the <tt>isa<></tt> and
|
|
<tt>cast<></tt> template is:<p>
|
|
|
|
<pre>
|
|
static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
|
|
if (isa<<a href="#Constant">Constant</a>>(V) || isa<<a href="#Argument">Argument</a>>(V) || isa<<a href="#GlobalValue">GlobalValue</a>>(V))
|
|
return true;
|
|
|
|
<i>// Otherwise, it must be an instruction...</i>
|
|
return !L->contains(cast<<a href="#Instruction">Instruction</a>>(V)->getParent());
|
|
</pre><p>
|
|
|
|
Note that you should <b>not</b> use an <tt>isa<></tt> test followed by a
|
|
<tt>cast<></tt>, for that use the <tt>dyn_cast<></tt> operator.<p>
|
|
|
|
|
|
<dt><tt>dyn_cast<></tt>:
|
|
|
|
<dd>The <tt>dyn_cast<></tt> operator is a "checking cast" operation. It
|
|
checks to see if the operand is of the specified type, and if so, returns a
|
|
pointer to it (this operator does not work with references). If the operand is
|
|
not of the correct type, a null pointer is returned. Thus, this works very much
|
|
like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
|
|
circumstances. Typically, the <tt>dyn_cast<></tt> operator is used in an
|
|
<tt>if</tt> statement or some other flow control statement like this:<p>
|
|
|
|
<pre>
|
|
if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast<<a href="#AllocationInst">AllocationInst</a>>(Val)) {
|
|
...
|
|
}
|
|
</pre><p>
|
|
|
|
This form of the <tt>if</tt> statement effectively combines together a call to
|
|
<tt>isa<></tt> and a call to <tt>cast<></tt> into one statement,
|
|
which is very convenient.<p>
|
|
|
|
Another common example is:<p>
|
|
|
|
<pre>
|
|
<i>// Loop over all of the phi nodes in a basic block</i>
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast<<a href="#PHINode">PHINode</a>>(&*BBI); ++BBI)
|
|
cerr << *PN;
|
|
</pre><p>
|
|
|
|
Note that the <tt>dyn_cast<></tt> operator, like C++'s
|
|
<tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused. In
|
|
particular you should not use big chained <tt>if/then/else</tt> blocks to check
|
|
for lots of different variants of classes. If you find yourself wanting to do
|
|
this, it is much cleaner and more efficient to use the InstVisitor class to
|
|
dispatch over the instruction type directly.<p>
|
|
|
|
|
|
<dt><tt>cast_or_null<></tt>:
|
|
|
|
<dd>The <tt>cast_or_null<></tt> operator works just like the
|
|
<tt>cast<></tt> operator, except that it allows for a null pointer as an
|
|
argument (which it then propagates). This can sometimes be useful, allowing you
|
|
to combine several null checks into one.<p>
|
|
|
|
|
|
<dt><tt>dyn_cast_or_null<></tt>:
|
|
|
|
<dd>The <tt>dyn_cast_or_null<></tt> operator works just like the
|
|
<tt>dyn_cast<></tt> operator, except that it allows for a null pointer as
|
|
an argument (which it then propagates). This can sometimes be useful, allowing
|
|
you to combine several null checks into one.<p>
|
|
|
|
</dl>
|
|
|
|
These five templates can be used with any classes, whether they have a v-table
|
|
or not. To add support for these templates, you simply need to add
|
|
<tt>classof</tt> static methods to the class you are interested casting to.
|
|
Describing this is currently outside the scope of this document, but there are
|
|
lots of examples in the LLVM source base.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="DEBUG">The <tt>DEBUG()</tt> macro & <tt>-debug</tt> option</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Often when working on your pass you will put a bunch of debugging printouts and
|
|
other code into your pass. After you get it working, you want to remove
|
|
it... but you may need it again in the future (to work out new bugs that you run
|
|
across).<p>
|
|
|
|
Naturally, because of this, you don't want to delete the debug printouts, but
|
|
you don't want them to always be noisy. A standard compromise is to comment
|
|
them out, allowing you to enable them if you need them in the future.<p>
|
|
|
|
The "<tt><a
|
|
href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
|
|
file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
|
|
this problem. Basically, you can put arbitrary code into the argument of the
|
|
<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' is run with the
|
|
'<tt>-debug</tt>' command line argument:
|
|
|
|
<pre>
|
|
...
|
|
DEBUG(std::cerr << "I am here!\n");
|
|
...
|
|
</pre><p>
|
|
|
|
Then you can run your pass like this:<p>
|
|
|
|
<pre>
|
|
$ opt < a.bc > /dev/null -mypass
|
|
<no output>
|
|
$ opt < a.bc > /dev/null -mypass -debug
|
|
I am here!
|
|
$
|
|
</pre><p>
|
|
|
|
Using the <tt>DEBUG()</tt> macro instead of a home brewed solution allows you to
|
|
now have to create "yet another" command line option for the debug output for
|
|
your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized
|
|
builds, so they do not cause a performance impact at all.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Statistic">The <tt>Statistic</tt> template & <tt>-stats</tt>
|
|
option</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The "<tt><a
|
|
href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
|
|
file provides a template named <tt>Statistic</tt> that is used as a unified way
|
|
to keeping track of what the LLVM compiler is doing and how effective various
|
|
optimizations are. It is useful to see what optimizations are contributing to
|
|
making a particular program run faster.<p>
|
|
|
|
Often you may run your pass on some big program, and you're interested to see
|
|
how many times it makes a certain transformation. Although you can do this with
|
|
hand inspection, or some ad-hoc method, this is a real pain and not very useful
|
|
for big programs. Using the <tt>Statistic</tt> template makes it very easy to
|
|
keep track of this information, and the calculated information is presented in a
|
|
uniform manner with the rest of the passes being executed.<p>
|
|
|
|
There are many examples of <tt>Statistic</tt> users, but this basics of using it
|
|
are as follows:<p>
|
|
|
|
<ol>
|
|
<li>Define your statistic like this:<p>
|
|
|
|
<pre>
|
|
static Statistic<> NumXForms("mypassname", "The # of times I did stuff");
|
|
</pre><p>
|
|
|
|
The <tt>Statistic</tt> template can emulate just about any data-type, but if you
|
|
do not specify a template argument, it defaults to acting like an unsigned int
|
|
counter (this is usually what you want).<p>
|
|
|
|
<li>Whenever you make a transformation, bump the counter:<p>
|
|
|
|
<pre>
|
|
++NumXForms; // I did stuff
|
|
</pre><p>
|
|
|
|
</ol><p>
|
|
|
|
That's all you have to do. To get '<tt>opt</tt>' to print out the statistics
|
|
gathered, use the '<tt>-stats</tt>' option:<p>
|
|
|
|
<pre>
|
|
$ opt -stats -mypassname < program.bc > /dev/null
|
|
... statistic output ...
|
|
</pre><p>
|
|
|
|
When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives
|
|
a report that looks like this:<p>
|
|
|
|
<pre>
|
|
7646 bytecodewriter - Number of normal instructions
|
|
725 bytecodewriter - Number of oversized instructions
|
|
129996 bytecodewriter - Number of bytecode bytes written
|
|
2817 raise - Number of insts DCEd or constprop'd
|
|
3213 raise - Number of cast-of-self removed
|
|
5046 raise - Number of expression trees converted
|
|
75 raise - Number of other getelementptr's formed
|
|
138 raise - Number of load/store peepholes
|
|
42 deadtypeelim - Number of unused typenames removed from symtab
|
|
392 funcresolve - Number of varargs functions resolved
|
|
27 globaldce - Number of global variables removed
|
|
2 adce - Number of basic blocks removed
|
|
134 cee - Number of branches revectored
|
|
49 cee - Number of setcc instruction eliminated
|
|
532 gcse - Number of loads removed
|
|
2919 gcse - Number of instructions removed
|
|
86 indvars - Number of cannonical indvars added
|
|
87 indvars - Number of aux indvars removed
|
|
25 instcombine - Number of dead inst eliminate
|
|
434 instcombine - Number of insts combined
|
|
248 licm - Number of load insts hoisted
|
|
1298 licm - Number of insts hoisted to a loop pre-header
|
|
3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
|
|
75 mem2reg - Number of alloca's promoted
|
|
1444 cfgsimplify - Number of blocks simplified
|
|
</pre><p>
|
|
|
|
Obviously, with so many optimizations, having a unified framework for this stuff
|
|
is very nice. Making your pass fit well into the framework makes it more
|
|
maintainable and useful.<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="common">Helpful Hints for Common Operations
|
|
</b></font></td></tr></table><ul> <!--
|
|
*********************************************************************** -->
|
|
|
|
This section describes how to perform some very simple transformations of LLVM
|
|
code. This is meant to give examples of common idioms used, showing the
|
|
practical side of LLVM transformations.<p>
|
|
|
|
Because this is a "how-to" section, you should also read about the main classes
|
|
that you will be working with. The <a href="#coreclasses">Core LLVM Class
|
|
Hierarchy Reference</a> contains details and descriptions of the main classes
|
|
that you should know about.<p>
|
|
|
|
<!-- NOTE: this section should be heavy on example code -->
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="inspection">Basic Inspection and Traversal Routines</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The LLVM compiler infrastructure have many different data structures that may be
|
|
traversed. Following the example of the C++ standard template library, the
|
|
techniques used to traverse these various data structures are all basically the
|
|
same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
|
|
method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
|
|
function returns an iterator pointing to one past the last valid element of the
|
|
sequence, and there is some <tt>XXXiterator</tt> data type that is common
|
|
between the two operations.<p>
|
|
|
|
Because the pattern for iteration is common across many different aspects of the
|
|
program representation, the standard template library algorithms may be used on
|
|
them, and it is easier to remember how to iterate. First we show a few common
|
|
examples of the data structures that need to be traversed. Other data
|
|
structures are traversed in very similar ways.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
|
|
href="#Function"><tt>Function</tt></a> </h4><ul>
|
|
|
|
It's quite common to have a <tt>Function</tt> instance that you'd like
|
|
to transform in some way; in particular, you'd like to manipulate its
|
|
<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
|
|
all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
|
|
The following is an example that prints the name of a
|
|
<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
|
|
contains:
|
|
|
|
<pre>
|
|
// func is a pointer to a Function instance
|
|
for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
|
|
|
|
// print out the name of the basic block if it has one, and then the
|
|
// number of instructions that it contains
|
|
|
|
cerr << "Basic block (name=" << i->getName() << ") has "
|
|
<< i->size() << " instructions.\n";
|
|
}
|
|
</pre>
|
|
|
|
Note that i can be used as if it were a pointer for the purposes of
|
|
invoking member functions of the <tt>Instruction</tt> class. This is
|
|
because the indirection operator is overloaded for the iterator
|
|
classes. In the above code, the expression <tt>i->size()</tt> is
|
|
exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
|
|
href="#Instruction"><tt>Instruction</tt></a>s in a <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
|
|
|
|
Just like when dealing with <tt>BasicBlock</tt>s in
|
|
<tt>Function</tt>s, it's easy to iterate over the individual
|
|
instructions that make up <tt>BasicBlock</tt>s. Here's a code snippet
|
|
that prints out each instruction in a <tt>BasicBlock</tt>:
|
|
|
|
<pre>
|
|
// blk is a pointer to a BasicBlock instance
|
|
for(BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i)
|
|
// the next statement works since operator<<(ostream&,...)
|
|
// is overloaded for Instruction&
|
|
cerr << *i << "\n";
|
|
</pre>
|
|
|
|
However, this isn't really the best way to print out the contents of a
|
|
<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
|
|
virtually anything you'll care about, you could have just invoked the
|
|
print routine on the basic block itself: <tt>cerr << *blk <<
|
|
"\n";</tt>.<p>
|
|
|
|
Note that currently operator<< is implemented for <tt>Value*</tt>, so it
|
|
will print out the contents of the pointer, instead of
|
|
the pointer value you might expect. This is a deprecated interface that will
|
|
be removed in the future, so it's best not to depend on it. To print out the
|
|
pointer value for now, you must cast to <tt>void*</tt>.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
|
|
href="#Instruction"><tt>Instruction</tt></a>s in a <a
|
|
href="#Function"><tt>Function</tt></a></h4><ul>
|
|
|
|
If you're finding that you commonly iterate over a <tt>Function</tt>'s
|
|
<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
|
|
<tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
|
|
You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
|
|
instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
|
|
small example that shows how to dump all instructions in a function to
|
|
stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
|
|
<tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&</tt>!):
|
|
|
|
<pre>
|
|
#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
|
|
...
|
|
// Suppose F is a ptr to a function
|
|
for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
|
|
cerr << **i << "\n";
|
|
</pre>
|
|
|
|
Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
|
|
worklist with its initial contents. For example, if you wanted to
|
|
initialize a worklist to contain all instructions in a
|
|
<tt>Function</tt> F, all you would need to do is something like:
|
|
|
|
<pre>
|
|
std::set<Instruction*> worklist;
|
|
worklist.insert(inst_begin(F), inst_end(F));
|
|
</pre>
|
|
|
|
The STL set <tt>worklist</tt> would now contain all instructions in
|
|
the <tt>Function</tt> pointed to by F.
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
|
|
pointer (and vice-versa) </h4><ul>
|
|
|
|
Sometimes, it'll be useful to grab a reference (or pointer) to a class
|
|
instance when all you've got at hand is an iterator. Well, extracting
|
|
a reference or a pointer from an iterator is very straightforward.
|
|
Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
|
|
<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
|
|
|
|
<pre>
|
|
Instruction& inst = *i; // grab reference to instruction reference
|
|
Instruction* pinst = &*i; // grab pointer to instruction reference
|
|
const Instruction& inst = *j;
|
|
</pre>
|
|
However, the iterators you'll be working with in the LLVM framework
|
|
are special: they will automatically convert to a ptr-to-instance type
|
|
whenever they need to. Instead of dereferencing the iterator and then
|
|
taking the address of the result, you can simply assign the iterator
|
|
to the proper pointer type and you get the dereference and address-of
|
|
operation as a result of the assignment (behind the scenes, this is a
|
|
result of overloading casting mechanisms). Thus the last line of the
|
|
last example,
|
|
|
|
<pre>Instruction* pinst = &*i;</pre>
|
|
|
|
is semantically equivalent to
|
|
|
|
<pre>Instruction* pinst = i;</pre>
|
|
|
|
<b>Caveat emptor</b>: The above syntax works <i>only</i> when you're <i>not</i>
|
|
working with <tt>dyn_cast</tt>. The template definition of <tt><a
|
|
href="#isa">dyn_cast</a></tt> isn't implemented to handle this yet, so you'll
|
|
still need the following in order for things to work properly:
|
|
|
|
<pre>
|
|
BasicBlock::iterator bbi = ...;
|
|
<a href="#BranchInst">BranchInst</a>* b = <a href="#isa">dyn_cast</a><<a href="#BranchInst">BranchInst</a>>(&*bbi);
|
|
</pre>
|
|
|
|
It's also possible to turn a class pointer into the corresponding
|
|
iterator. Usually, this conversion is quite inexpensive. The
|
|
following code snippet illustrates use of the conversion constructors
|
|
provided by LLVM iterators. By using these, you can explicitly grab
|
|
the iterator of something without actually obtaining it via iteration
|
|
over some structure:
|
|
|
|
<pre>
|
|
void printNextInstruction(Instruction* inst) {
|
|
BasicBlock::iterator it(inst);
|
|
++it; // after this line, it refers to the instruction after *inst.
|
|
if(it != inst->getParent()->end()) cerr << *it << "\n";
|
|
}
|
|
</pre>
|
|
Of course, this example is strictly pedagogical, because it'd be much
|
|
better to explicitly grab the next instruction directly from inst.
|
|
|
|
|
|
<!--_______________________________________________________________________-->
|
|
</ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
|
|
more complex example </h4><ul>
|
|
|
|
Say that you're writing a FunctionPass and would like to count all the
|
|
locations in the entire module (that is, across every
|
|
<tt>Function</tt>) where a certain function (i.e. some
|
|
<tt>Function</tt>*) already in scope. As you'll learn later, you may
|
|
want to use an <tt>InstVisitor</tt> to accomplish this in a much more
|
|
straightforward manner, but this example will allow us to explore how
|
|
you'd do it if you didn't have <tt>InstVisitor</tt> around. In
|
|
pseudocode, this is what we want to do:
|
|
|
|
<pre>
|
|
initialize callCounter to zero
|
|
for each Function f in the Module
|
|
for each BasicBlock b in f
|
|
for each Instruction i in b
|
|
if(i is a CallInst and calls the given function)
|
|
increment callCounter
|
|
</pre>
|
|
|
|
And the actual code is (remember, since we're writing a
|
|
<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
|
|
has to override the <tt>runOnFunction</tt> method...):
|
|
|
|
<pre>
|
|
Function* targetFunc = ...;
|
|
|
|
class OurFunctionPass : public FunctionPass {
|
|
public:
|
|
OurFunctionPass(): callCounter(0) { }
|
|
|
|
virtual runOnFunction(Function& F) {
|
|
for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
|
|
for(BasicBlock::iterator i = b->begin(); ie = b->end(); i != ie; ++i) {
|
|
if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a><<a href="#CallInst">CallInst</a>>(&*i)) {
|
|
// we know we've encountered a call instruction, so we
|
|
// need to determine if it's a call to the
|
|
// function pointed to by m_func or not.
|
|
|
|
if(callInst->getCalledFunction() == targetFunc)
|
|
++callCounter;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
unsigned callCounter;
|
|
};
|
|
</pre>
|
|
|
|
<!--_______________________________________________________________________-->
|
|
</ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &
|
|
use-def chains</h4><ul>
|
|
|
|
Frequently, we might have an instance of the <a
|
|
href="/doxygen/classValue.html">Value Class</a> and we want to
|
|
determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
|
|
all <tt>User</tt>s of a particular <tt>Value</tt> is called a
|
|
<i>def-use</i> chain. For example, let's say we have a
|
|
<tt>Function*</tt> named <tt>F</tt> to a particular function
|
|
<tt>foo</tt>. Finding all of the instructions that <i>use</i>
|
|
<tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
|
|
<tt>F</tt>:
|
|
|
|
<pre>
|
|
Function* F = ...;
|
|
|
|
for(Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i) {
|
|
if(Instruction* Inst = dyn_cast<Instruction>(*i)) {
|
|
cerr << "F is used in instruction:\n";
|
|
cerr << *Inst << "\n";
|
|
}
|
|
}
|
|
</pre>
|
|
|
|
Alternately, it's common to have an instance of the <a
|
|
href="/doxygen/classUser.html">User Class</a> and need to know what
|
|
<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used
|
|
by a <tt>User</tt> is known as a <i>use-def</i> chain. Instances of
|
|
class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
|
|
to iterate over all of the values that a particular instruction uses
|
|
(that is, the operands of the particular <tt>Instruction</tt>):
|
|
|
|
<pre>
|
|
Instruction* pi = ...;
|
|
|
|
for(User::op_iterator i = pi->op_begin(), e = pi->op_end(); i != e; ++i) {
|
|
Value* v = *i;
|
|
...
|
|
}
|
|
</pre>
|
|
|
|
|
|
<!--
|
|
def-use chains ("finding all users of"): Value::use_begin/use_end
|
|
use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
|
|
-->
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="simplechanges">Making simple changes</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
There are some primitive transformation operations present in the LLVM
|
|
infrastructure that are worth knowing about. When performing
|
|
transformations, it's fairly common to manipulate the contents of
|
|
basic blocks. This section describes some of the common methods for
|
|
doing so and gives example code.
|
|
|
|
<!--_______________________________________________________________________-->
|
|
</ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
|
|
new <tt>Instruction</tt>s</h4><ul>
|
|
|
|
<i>Instantiating Instructions</i>
|
|
|
|
<p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
|
|
constructor for the kind of instruction to instantiate and provide the
|
|
necessary parameters. For example, an <tt>AllocaInst</tt> only
|
|
<i>requires</i> a (const-ptr-to) <tt>Type</tt>. Thus:
|
|
|
|
<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
|
|
|
|
will create an <tt>AllocaInst</tt> instance that represents the
|
|
allocation of one integer in the current stack frame, at runtime.
|
|
Each <tt>Instruction</tt> subclass is likely to have varying default
|
|
parameters which change the semantics of the instruction, so refer to
|
|
the <a href="/doxygen/classInstruction.html">doxygen documentation for
|
|
the subclass of Instruction</a> that you're interested in
|
|
instantiating.</p>
|
|
|
|
<p><i>Naming values</i></p>
|
|
|
|
<p>
|
|
It is very useful to name the values of instructions when you're able
|
|
to, as this facilitates the debugging of your transformations. If you
|
|
end up looking at generated LLVM machine code, you definitely want to
|
|
have logical names associated with the results of instructions! By
|
|
supplying a value for the <tt>Name</tt> (default) parameter of the
|
|
<tt>Instruction</tt> constructor, you associate a logical name with
|
|
the result of the instruction's execution at runtime. For example,
|
|
say that I'm writing a transformation that dynamically allocates space
|
|
for an integer on the stack, and that integer is going to be used as
|
|
some kind of index by some other code. To accomplish this, I place an
|
|
<tt>AllocaInst</tt> at the first point in the first
|
|
<tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
|
|
use it within the same <tt>Function</tt>. I might do:
|
|
|
|
<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
|
|
|
|
where <tt>indexLoc</tt> is now the logical name of the instruction's
|
|
execution value, which is a pointer to an integer on the runtime
|
|
stack.
|
|
</p>
|
|
|
|
<p><i>Inserting instructions</i></p>
|
|
|
|
<p>
|
|
There are essentially two ways to insert an <tt>Instruction</tt> into
|
|
an existing sequence of instructions that form a <tt>BasicBlock</tt>:
|
|
<ul>
|
|
<li>Insertion into an explicit instruction list
|
|
|
|
<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
|
|
that <tt>BasicBlock</tt>, and a newly-created instruction
|
|
we wish to insert before <tt>*pi</tt>, we do the following:
|
|
|
|
<pre>
|
|
BasicBlock* pb = ...;
|
|
Instruction* pi = ...;
|
|
Instruction* newInst = new Instruction(...);
|
|
pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb
|
|
</pre>
|
|
</p>
|
|
|
|
<li>Insertion into an implicit instruction list
|
|
<p><tt>Instruction</tt> instances that are already in
|
|
<tt>BasicBlock</tt>s are implicitly associated with an existing
|
|
instruction list: the instruction list of the enclosing basic block.
|
|
Thus, we could have accomplished the same thing as the above code
|
|
without being given a <tt>BasicBlock</tt> by doing:
|
|
<pre>
|
|
Instruction* pi = ...;
|
|
Instruction* newInst = new Instruction(...);
|
|
pi->getParent()->getInstList().insert(pi, newInst);
|
|
</pre>
|
|
In fact, this sequence of steps occurs so frequently that the
|
|
<tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
|
|
provide constructors which take (as a default parameter) a pointer to
|
|
an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
|
|
should precede. That is, <tt>Instruction</tt> constructors are
|
|
capable of inserting the newly-created instance into the
|
|
<tt>BasicBlock</tt> of a provided instruction, immediately before that
|
|
instruction. Using an <tt>Instruction</tt> constructor with a
|
|
<tt>insertBefore</tt> (default) parameter, the above code becomes:
|
|
<pre>
|
|
Instruction* pi = ...;
|
|
Instruction* newInst = new Instruction(..., pi);
|
|
</pre>
|
|
which is much cleaner, especially if you're creating a lot of
|
|
instructions and adding them to <tt>BasicBlock</tt>s.
|
|
</p>
|
|
</p>
|
|
</ul>
|
|
|
|
<!--_______________________________________________________________________-->
|
|
</ul><h4><a name="schanges_deleting"><hr size=0>Deleting
|
|
<tt>Instruction</tt>s</h4><ul>
|
|
|
|
Deleting an instruction from an existing sequence of instructions that form a <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you
|
|
must have a pointer to the instruction that you wish to delete. Second, you
|
|
need to obtain the pointer to that instruction's basic block. You use the
|
|
pointer to the basic block to get its list of instructions and then use the
|
|
erase function to remove your instruction.<p>
|
|
|
|
For example:<p>
|
|
|
|
<pre>
|
|
<a href="#Instruction">Instruction</a> *I = .. ;
|
|
<a href="#BasicBlock">BasicBlock</a> *BB = I->getParent();
|
|
BB->getInstList().erase(I);
|
|
</pre><p>
|
|
|
|
<!--_______________________________________________________________________-->
|
|
</ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
|
|
<tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
|
|
|
|
<p><i>Replacing individual instructions</i></p>
|
|
<p>
|
|
Including "<a
|
|
href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h
|
|
</a>" permits use of two very useful replace functions:
|
|
<tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.
|
|
|
|
<ul>
|
|
|
|
<li><tt>ReplaceInstWithValue</tt>
|
|
|
|
<p>This function replaces all uses (within a basic block) of a given
|
|
instruction with a value, and then removes the original instruction.
|
|
The following example illustrates the replacement of the result of a
|
|
particular <tt>AllocaInst</tt> that allocates memory for a single
|
|
integer with an null pointer to an integer.</p>
|
|
|
|
<pre>
|
|
AllocaInst* instToReplace = ...;
|
|
BasicBlock::iterator ii(instToReplace);
|
|
ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii,
|
|
Constant::getNullValue(PointerType::get(Type::IntTy)));
|
|
</pre>
|
|
|
|
<li><tt>ReplaceInstWithInst</tt>
|
|
|
|
<p>This function replaces a particular instruction with another
|
|
instruction. The following example illustrates the replacement of one
|
|
<tt>AllocaInst</tt> with another.<p>
|
|
|
|
<pre>
|
|
AllocaInst* instToReplace = ...;
|
|
BasicBlock::iterator ii(instToReplace);
|
|
ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii,
|
|
new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt");
|
|
</pre>
|
|
|
|
</ul>
|
|
<p><i>Replacing multiple uses of <tt>User</tt>s and
|
|
<tt>Value</tt>s</i></p>
|
|
|
|
You can use <tt>Value::replaceAllUsesWith</tt> and
|
|
<tt>User::replaceUsesOfWith</tt> to change more than one use at a
|
|
time. See the doxygen documentation for the <a
|
|
href="/doxygen/classValue.html">Value Class</a> and <a
|
|
href="/doxygen/classUser.html">User Class</a>, respectively, for more
|
|
information.
|
|
|
|
<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
|
|
include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
|
|
ReplaceInstWithValue, ReplaceInstWithInst
|
|
-->
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="coreclasses">The Core LLVM Class Hierarchy Reference
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
The Core LLVM classes are the primary means of representing the program being
|
|
inspected or transformed. The core LLVM classes are defined in header files in
|
|
the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
|
|
directory.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Value">The <tt>Value</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
|
|
|
|
|
|
The <tt>Value</tt> class is the most important class in LLVM Source base. It
|
|
represents a typed value that may be used (among other things) as an operand to
|
|
an instruction. There are many different types of <tt>Value</tt>s, such as <a
|
|
href="#Constant"><tt>Constant</tt></a>s, <a
|
|
href="#Argument"><tt>Argument</tt></a>s, and even <a
|
|
href="#Instruction"><tt>Instruction</tt></a>s and <a
|
|
href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
|
|
|
|
A particular <tt>Value</tt> may be used many times in the LLVM representation
|
|
for a program. For example, an incoming argument to a function (represented
|
|
with an instance of the <a href="#Argument">Argument</a> class) is "used" by
|
|
every instruction in the function that references the argument. To keep track
|
|
of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
|
|
href="#User"><tt>User</tt></a>s that is using it (the <a
|
|
href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
|
|
graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
|
|
def-use information in the program, and is accessible through the <tt>use_</tt>*
|
|
methods, shown below.<p>
|
|
|
|
Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
|
|
this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
|
|
method. <a name="#nameWarning">In addition, all LLVM values can be named. The
|
|
"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
|
|
|
|
<pre>
|
|
%<b>foo</b> = add int 1, 2
|
|
</pre>
|
|
|
|
The name of this instruction is "foo". <b>NOTE</b> that the name of any value
|
|
may be missing (an empty string), so names should <b>ONLY</b> be used for
|
|
debugging (making the source code easier to read, debugging printouts), they
|
|
should not be used to keep track of values or map between them. For this
|
|
purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
|
|
instead.<p>
|
|
|
|
One important aspect of LLVM is that there is no distinction between an SSA
|
|
variable and the operation that produces it. Because of this, any reference to
|
|
the value produced by an instruction (or the value available as an incoming
|
|
argument, for example) is represented as a direct pointer to the class that
|
|
represents this value. Although this may take some getting used to, it
|
|
simplifies the representation and makes it easier to manipulate.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
|
|
the <tt>Value</tt> class</h4><ul>
|
|
|
|
<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
|
|
<tt>Value::use_const_iterator</tt>
|
|
- Typedef for const_iterator over the use-list<br>
|
|
<tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
|
|
<tt>bool use_empty()</tt> - Returns true if there are no users.<br>
|
|
<tt>use_iterator use_begin()</tt>
|
|
- Get an iterator to the start of the use-list.<br>
|
|
<tt>use_iterator use_end()</tt>
|
|
- Get an iterator to the end of the use-list.<br>
|
|
<tt><a href="#User">User</a> *use_back()</tt>
|
|
- Returns the last element in the list.<p>
|
|
|
|
These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
|
|
|
|
<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
|
|
This method returns the Type of the Value.
|
|
|
|
<li><tt>bool hasName() const</tt><br>
|
|
<tt>std::string getName() const</tt><br>
|
|
<tt>void setName(const std::string &Name)</tt><p>
|
|
|
|
This family of methods is used to access and assign a name to a <tt>Value</tt>,
|
|
be aware of the <a href="#nameWarning">precaution above</a>.<p>
|
|
|
|
|
|
<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
|
|
|
|
This method traverses the use list of a <tt>Value</tt> changing all <a
|
|
href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
|
|
instead. For example, if you detect that an instruction always produces a
|
|
constant value (for example through constant folding), you can replace all uses
|
|
of the instruction with the constant like this:<p>
|
|
|
|
<pre>
|
|
Inst->replaceAllUsesWith(ConstVal);
|
|
</pre><p>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="User">The <tt>User</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
|
|
Superclass: <a href="#Value"><tt>Value</tt></a><p>
|
|
|
|
|
|
The <tt>User</tt> class is the common base class of all LLVM nodes that may
|
|
refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
|
|
that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
|
|
referring to. The <tt>User</tt> class itself is a subclass of
|
|
<tt>Value</tt>.<p>
|
|
|
|
The operands of a <tt>User</tt> point directly to the LLVM <a
|
|
href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
|
|
Single Assignment (SSA) form, there can only be one definition referred to,
|
|
allowing this direct connection. This connection provides the use-def
|
|
information in LLVM.<p>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_User"><hr size=0>Important Public Members of
|
|
the <tt>User</tt> class</h4><ul>
|
|
|
|
The <tt>User</tt> class exposes the operand list in two ways: through an index
|
|
access interface and through an iterator based interface.<p>
|
|
|
|
<li><tt>Value *getOperand(unsigned i)</tt><br>
|
|
<tt>unsigned getNumOperands()</tt><p>
|
|
|
|
These two methods expose the operands of the <tt>User</tt> in a convenient form
|
|
for direct access.<p>
|
|
|
|
<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
|
|
<tt>User::op_const_iterator</tt>
|
|
<tt>use_iterator op_begin()</tt>
|
|
- Get an iterator to the start of the operand list.<br>
|
|
<tt>use_iterator op_end()</tt>
|
|
- Get an iterator to the end of the operand list.<p>
|
|
|
|
Together, these methods make up the iterator based interface to the operands of
|
|
a <tt>User</tt>.<p>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Instruction">The <tt>Instruction</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
|
|
Superclasses: <a href="#User"><tt>User</tt></a>, <a
|
|
href="#Value"><tt>Value</tt></a><p>
|
|
|
|
The <tt>Instruction</tt> class is the common base class for all LLVM
|
|
instructions. It provides only a few methods, but is a very commonly used
|
|
class. The primary data tracked by the <tt>Instruction</tt> class itself is the
|
|
opcode (instruction type) and the parent <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
|
|
into. To represent a specific type of instruction, one of many subclasses of
|
|
<tt>Instruction</tt> are used.<p>
|
|
|
|
Because the <tt>Instruction</tt> class subclasses the <a
|
|
href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
|
|
way as for other <a href="#User"><tt>User</tt></a>s (with the
|
|
<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
|
|
<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
|
|
|
|
An important file for the <tt>Instruction</tt> class is the
|
|
<tt>llvm/Instruction.def</tt> file. This file contains some meta-data about the
|
|
various different types of instructions in LLVM. It describes the enum values
|
|
that are used as opcodes (for example <tt>Instruction::Add</tt> and
|
|
<tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of
|
|
<tt>Instruction</tt> that implement the instruction (for example <tt><a
|
|
href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
|
|
href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
|
|
this file confused doxygen, so these enum values don't show up correctly in the
|
|
<a href="/doxygen/classInstruction.html">doxygen output</a>.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
|
|
the <tt>Instruction</tt> class</h4><ul>
|
|
|
|
<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
|
|
|
|
Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
|
|
<tt>Instruction</tt> is embedded into.<p>
|
|
|
|
<li><tt>bool hasSideEffects()</tt><p>
|
|
|
|
Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>,
|
|
<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
|
|
|
|
<li><tt>unsigned getOpcode()</tt><p>
|
|
|
|
Returns the opcode for the <tt>Instruction</tt>.<p>
|
|
|
|
<li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p>
|
|
|
|
Returns another instance of the specified instruction, identical in all ways to
|
|
the original except that the instruction has no parent (ie it's not embedded
|
|
into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p>
|
|
|
|
|
|
|
|
<!--
|
|
|
|
\subsection{Subclasses of Instruction :}
|
|
\begin{itemize}
|
|
<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
|
|
\begin{itemize}
|
|
<li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
|
|
\end{itemize}
|
|
<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
|
|
\begin{itemize}
|
|
<li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
|
|
<li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
|
|
<li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
|
|
\end{itemize}
|
|
|
|
<li>PHINode : This represents the PHI instructions in the SSA form.
|
|
\begin{itemize}
|
|
<li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
|
|
<li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
|
|
<li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
|
|
<li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
|
|
<li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
|
|
Add an incoming value to the end of the PHI list
|
|
<li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
|
|
Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
|
|
\end{itemize}
|
|
<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
|
|
<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
|
|
\begin{itemize}
|
|
<li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
|
|
\end{itemize}
|
|
<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
|
|
\begin{itemize}
|
|
<li><tt>Value * getPointerOperand ()</tt>: Returns the Pointer Operand which is typically the 0th operand.
|
|
\end{itemize}
|
|
<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
|
|
\begin{itemize}
|
|
<li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
|
|
<li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
|
|
<li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
|
|
-->
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
|
|
Superclass: <a href="#Value"><tt>Value</tt></a><p>
|
|
|
|
|
|
This class represents a single entry multiple exit section of the code, commonly
|
|
known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
|
|
maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
|
|
the body of the block. Matching the language definition, the last element of
|
|
this list of instructions is always a terminator instruction (a subclass of the
|
|
<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
|
|
|
|
In addition to tracking the list of instructions that make up the block, the
|
|
<tt>BasicBlock</tt> class also keeps track of the <a
|
|
href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
|
|
|
|
Note that <tt>BasicBlock</tt>s themselves are <a
|
|
href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
|
|
like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
|
|
<tt>label</tt>.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
|
|
the <tt>BasicBlock</tt> class</h4><ul>
|
|
|
|
<li><tt>BasicBlock(const std::string &Name = "", <a
|
|
href="#Function">Function</a> *Parent = 0)</tt><p>
|
|
|
|
The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
|
|
insertion into a function. The constructor simply takes a name for the new
|
|
block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
|
|
into. If the <tt>Parent</tt> parameter is specified, the new
|
|
<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
|
|
href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
|
|
manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
|
|
|
|
<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
|
|
<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
|
|
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
|
|
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
|
|
|
|
These methods and typedefs are forwarding functions that have the same semantics
|
|
as the standard library methods of the same names. These methods expose the
|
|
underlying instruction list of a basic block in a way that is easy to
|
|
manipulate. To get the full complement of container operations (including
|
|
operations to update the list), you must use the <tt>getInstList()</tt>
|
|
method.<p>
|
|
|
|
<li><tt>BasicBlock::InstListType &getInstList()</tt><p>
|
|
|
|
This method is used to get access to the underlying container that actually
|
|
holds the Instructions. This method must be used when there isn't a forwarding
|
|
function in the <tt>BasicBlock</tt> class for the operation that you would like
|
|
to perform. Because there are no forwarding functions for "updating"
|
|
operations, you need to use this if you want to update the contents of a
|
|
<tt>BasicBlock</tt>.<p>
|
|
|
|
<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
|
|
|
|
Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
|
|
embedded into, or a null pointer if it is homeless.<p>
|
|
|
|
<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
|
|
|
|
Returns a pointer to the terminator instruction that appears at the end of the
|
|
<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
|
|
instruction in the block is not a terminator, then a null pointer is
|
|
returned.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
|
|
Superclasses: <a href="#User"><tt>User</tt></a>, <a
|
|
href="#Value"><tt>Value</tt></a><p>
|
|
|
|
Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
|
|
href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
|
|
visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
|
|
Because they are visible at global scope, they are also subject to linking with
|
|
other globals defined in different translation units. To control the linking
|
|
process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
|
|
<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
|
|
|
|
If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
|
|
<tt>static</tt> in C), it is not visible to code outside the current translation
|
|
unit, and does not participate in linking. If it has external linkage, it is
|
|
visible to external code, and does participate in linking. In addition to
|
|
linkage information, <tt>GlobalValue</tt>s keep track of which <a
|
|
href="#Module"><tt>Module</tt></a> they are currently part of.<p>
|
|
|
|
Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
|
|
their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
|
|
always a pointer to its contents. This is explained in the LLVM Language
|
|
Reference Manual.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
|
|
the <tt>GlobalValue</tt> class</h4><ul>
|
|
|
|
<li><tt>bool hasInternalLinkage() const</tt><br>
|
|
<tt>bool hasExternalLinkage() const</tt><br>
|
|
<tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
|
|
|
|
These methods manipulate the linkage characteristics of the
|
|
<tt>GlobalValue</tt>.<p>
|
|
|
|
<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
|
|
|
|
This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
|
|
currently embedded into.<p>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Function">The <tt>Function</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
|
|
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
|
|
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
|
|
|
|
The <tt>Function</tt> class represents a single procedure in LLVM. It is
|
|
actually one of the more complex classes in the LLVM heirarchy because it must
|
|
keep track of a large amount of data. The <tt>Function</tt> class keeps track
|
|
of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
|
|
href="#Argument"><tt>Argument</tt></a>s, and a <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
|
|
|
|
The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
|
|
used part of <tt>Function</tt> objects. The list imposes an implicit ordering
|
|
of the blocks in the function, which indicate how the code will be layed out by
|
|
the backend. Additionally, the first <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
|
|
<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
|
|
block. There are no implicit exit nodes, and in fact there may be multiple exit
|
|
nodes from a single <tt>Function</tt>. If the <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
|
|
the <tt>Function</tt> is actually a function declaration: the actual body of the
|
|
function hasn't been linked in yet.<p>
|
|
|
|
In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
|
|
<tt>Function</tt> class also keeps track of the list of formal <a
|
|
href="#Argument"><tt>Argument</tt></a>s that the function receives. This
|
|
container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
|
|
nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
|
|
the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
|
|
|
|
The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
|
|
feature that is only used when you have to look up a value by name. Aside from
|
|
that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
|
|
make sure that there are not conflicts between the names of <a
|
|
href="#Instruction"><tt>Instruction</tt></a>s, <a
|
|
href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
|
|
href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
|
|
the <tt>Function</tt> class</h4><ul>
|
|
|
|
<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &N = "")</tt><p>
|
|
|
|
Constructor used when you need to create new <tt>Function</tt>s to add the the
|
|
program. The constructor must specify the type of the function to create and
|
|
whether or not it should start out with internal or external linkage.<p>
|
|
|
|
<li><tt>bool isExternal()</tt><p>
|
|
|
|
Return whether or not the <tt>Function</tt> has a body defined. If the function
|
|
is "external", it does not have a body, and thus must be resolved by linking
|
|
with a function defined in a different translation unit.<p>
|
|
|
|
|
|
<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
|
|
<tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
|
|
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
|
|
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
|
|
|
|
These are forwarding methods that make it easy to access the contents of a
|
|
<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
|
|
list.<p>
|
|
|
|
<li><tt>Function::BasicBlockListType &getBasicBlockList()</tt><p>
|
|
|
|
Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
|
|
neccesary to use when you need to update the list or perform a complex action
|
|
that doesn't have a forwarding method.<p>
|
|
|
|
|
|
<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
|
|
<tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
|
|
<tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
|
|
<tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
|
|
|
|
These are forwarding methods that make it easy to access the contents of a
|
|
<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
|
|
|
|
<li><tt>Function::ArgumentListType &getArgumentList()</tt><p>
|
|
|
|
Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
|
|
neccesary to use when you need to update the list or perform a complex action
|
|
that doesn't have a forwarding method.<p>
|
|
|
|
|
|
|
|
<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
|
|
|
|
Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
|
|
function. Because the entry block for the function is always the first block,
|
|
this returns the first block of the <tt>Function</tt>.<p>
|
|
|
|
<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
|
|
<tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
|
|
|
|
This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
|
|
and returns the return type of the function, or the <a
|
|
href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
|
|
|
|
|
|
<li><tt>bool hasSymbolTable() const</tt><p>
|
|
|
|
Return true if the <tt>Function</tt> has a symbol table allocated to it and if
|
|
there is at least one entry in it.<p>
|
|
|
|
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
|
|
|
|
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
|
|
<tt>Function</tt> or a null pointer if one has not been allocated (because there
|
|
are no named values in the function).<p>
|
|
|
|
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
|
|
|
|
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
|
|
<tt>Function</tt> or allocate a new <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
|
|
should only be used when adding elements to the <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
|
|
not left laying around.<p>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
|
|
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
|
|
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
|
|
|
|
Global variables are represented with the (suprise suprise)
|
|
<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
|
|
also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
|
|
are always referenced by their address (global values must live in memory, so
|
|
their "name" refers to their address). Global variables may have an initial
|
|
value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
|
|
have an initializer, they may be marked as "constant" themselves (indicating
|
|
that their contents never change at runtime).<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
|
|
<tt>GlobalVariable</tt> class</h4><ul>
|
|
|
|
<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
|
|
isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
|
|
&Name = "")</tt><p>
|
|
|
|
Create a new global variable of the specified type. If <tt>isConstant</tt> is
|
|
true then the global variable will be marked as unchanging for the program, and
|
|
if <tt>isInternal</tt> is true the resultant global variable will have internal
|
|
linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
|
|
|
|
|
|
<li><tt>bool isConstant() const</tt><p>
|
|
|
|
Returns true if this is a global variable is known not to be modified at
|
|
runtime.<p>
|
|
|
|
|
|
<li><tt>bool hasInitializer()</tt><p>
|
|
|
|
Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
|
|
|
|
|
|
<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
|
|
|
|
Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
|
|
this method if there is no initializer.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Module">The <tt>Module</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
<tt>#include "<a
|
|
href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
|
|
doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
|
|
|
|
The <tt>Module</tt> class represents the top level structure present in LLVM
|
|
programs. An LLVM module is effectively either a translation unit of the
|
|
original program or a combination of several translation units merged by the
|
|
linker. The <tt>Module</tt> class keeps track of a list of <a
|
|
href="#Function"><tt>Function</tt></a>s, a list of <a
|
|
href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
|
|
helpful member functions that try to make common operations easy.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
|
|
<tt>Module</tt> class</h4><ul>
|
|
|
|
<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
|
|
<tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
|
|
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
|
|
<tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
|
|
|
|
These are forwarding methods that make it easy to access the contents of a
|
|
<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
|
|
list.<p>
|
|
|
|
<li><tt>Module::FunctionListType &getFunctionList()</tt><p>
|
|
|
|
Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
|
|
neccesary to use when you need to update the list or perform a complex action
|
|
that doesn't have a forwarding method.<p>
|
|
|
|
<!-- Global Variable -->
|
|
<hr size=0>
|
|
|
|
<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
|
|
<tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
|
|
<tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
|
|
<tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
|
|
|
|
These are forwarding methods that make it easy to access the contents of a
|
|
<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
|
|
list.<p>
|
|
|
|
<li><tt>Module::GlobalListType &getGlobalList()</tt><p>
|
|
|
|
Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
|
|
This is neccesary to use when you need to update the list or perform a complex
|
|
action that doesn't have a forwarding method.<p>
|
|
|
|
|
|
<!-- Symbol table stuff -->
|
|
<hr size=0>
|
|
|
|
<li><tt>bool hasSymbolTable() const</tt><p>
|
|
|
|
Return true if the <tt>Module</tt> has a symbol table allocated to it and if
|
|
there is at least one entry in it.<p>
|
|
|
|
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
|
|
|
|
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
|
|
<tt>Module</tt> or a null pointer if one has not been allocated (because there
|
|
are no named values in the function).<p>
|
|
|
|
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
|
|
|
|
Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
|
|
<tt>Module</tt> or allocate a new <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
|
|
should only be used when adding elements to the <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
|
|
not left laying around.<p>
|
|
|
|
|
|
<!-- Convenience methods -->
|
|
<hr size=0>
|
|
|
|
<li><tt><a href="#Function">Function</a> *getFunction(const std::string &Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
|
|
|
|
Look up the specified function in the <tt>Module</tt> <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
|
|
<tt>null</tt>.<p>
|
|
|
|
|
|
<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
|
|
&Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
|
|
|
|
Look up the specified function in the <tt>Module</tt> <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
|
|
external declaration for the function and return it.<p>
|
|
|
|
|
|
<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
|
|
|
|
If there is at least one entry in the <a
|
|
href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
|
|
href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
|
|
string.<p>
|
|
|
|
|
|
<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
|
|
*Ty)</tt><p>
|
|
|
|
Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
|
|
<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
|
|
is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
|
|
modified.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Constant represents a base class for different types of constants. It is
|
|
subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
|
|
ConstantArray etc for representing the various types of Constants.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
|
|
|
|
<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
|
|
|
|
|
|
|
|
|
|
\subsection{Important Subclasses of Constant}
|
|
\begin{itemize}
|
|
<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
|
|
\begin{itemize}
|
|
<li><tt>int64_t getValue () const</tt>: Returns the underlying value of this constant.
|
|
\end{itemize}
|
|
<li>ConstantUInt : This class represents an unsigned integer.
|
|
\begin{itemize}
|
|
<li><tt>uint64_t getValue () const</tt>: Returns the underlying value of this constant.
|
|
\end{itemize}
|
|
<li>ConstantFP : This class represents a floating point constant.
|
|
\begin{itemize}
|
|
<li><tt>double getValue () const</tt>: Returns the underlying value of this constant.
|
|
\end{itemize}
|
|
<li>ConstantBool : This represents a boolean constant.
|
|
\begin{itemize}
|
|
<li><tt>bool getValue () const</tt>: Returns the underlying value of this constant.
|
|
\end{itemize}
|
|
<li>ConstantArray : This represents a constant array.
|
|
\begin{itemize}
|
|
<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
|
|
\end{itemize}
|
|
<li>ConstantStruct : This represents a constant struct.
|
|
\begin{itemize}
|
|
<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
|
|
\end{itemize}
|
|
<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
|
|
\begin{itemize}
|
|
<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
|
|
\end{itemize}
|
|
\end{itemize}
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Type">The <tt>Type</tt> class and Derived Types</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Type as noted earlier is also a subclass of a Value class. Any primitive
|
|
type (like int, short etc) in LLVM is an instance of Type Class. All
|
|
other types are instances of subclasses of type like FunctionType,
|
|
ArrayType etc. DerivedType is the interface for all such dervied types
|
|
including FunctionType, ArrayType, PointerType, StructType. Types can have
|
|
names. They can be recursive (StructType). There exists exactly one instance
|
|
of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
|
|
|
|
<li><tt>PrimitiveID getPrimitiveID () const</tt>: Returns the base type of the type.
|
|
<li><tt> bool isSigned () const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
|
|
<li><tt>bool isUnsigned () const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
|
|
<li><tt> bool isInteger () const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
|
|
<li><tt>bool isIntegral () const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
|
|
|
|
<li><tt>bool isFloatingPoint ()</tt>: Return true if this is one of the two floating point types.
|
|
<li><tt>bool isRecursive () const</tt>: Returns rue if the type graph contains a cycle.
|
|
<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
|
|
<li><tt>bool isPrimitiveType () const</tt>: Returns true if it is a primitive type.
|
|
<li><tt>bool isDerivedType () const</tt>: Returns true if it is a derived type.
|
|
<li><tt>const Type * getContainedType (unsigned i) const</tt>:
|
|
This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
|
|
<li><tt>unsigned getNumContainedTypes () const</tt>: Return the number of types in the derived type.
|
|
|
|
|
|
|
|
\subsection{Derived Types}
|
|
\begin{itemize}
|
|
<li>SequentialType : This is subclassed by ArrayType and PointerType
|
|
\begin{itemize}
|
|
<li><tt>const Type * getElementType () const</tt>: Returns the type of each of the elements in the sequential type.
|
|
\end{itemize}
|
|
<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
|
|
\begin{itemize}
|
|
<li><tt>unsigned getNumElements () const</tt>: Returns the number of elements in the array.
|
|
\end{itemize}
|
|
<li>PointerType : Subclass of SequentialType for pointer types.
|
|
<li>StructType : subclass of DerivedTypes for struct types
|
|
<li>FunctionType : subclass of DerivedTypes for function types.
|
|
\begin{itemize}
|
|
|
|
<li><tt>bool isVarArg () const</tt>: Returns true if its a vararg function
|
|
<li><tt> const Type * getReturnType () const</tt>: Returns the return type of the function.
|
|
<li><tt> const ParamTypes &getParamTypes () const</tt>: Returns a vector of parameter types.
|
|
<li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
|
|
<li><tt> const unsigned getNumParams () const</tt>: Returns the number of formal parameters.
|
|
\end{itemize}
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%">
|
|
<font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="Argument">The <tt>Argument</tt> class</a>
|
|
</b></font></td></tr></table><ul>
|
|
|
|
This subclass of Value defines the interface for incoming formal arguments to a
|
|
function. A Function maitanis a list of its formal arguments. An argument has a
|
|
pointer to the parent Function.
|
|
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
<hr><font size-1>
|
|
<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
|
|
<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
|
|
<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
|
|
<!-- hhmts start -->
|
|
Last modified: Tue Oct 1 15:35:42 CDT 2002
|
|
<!-- hhmts end -->
|
|
</font></body></html>
|