mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This small change adds support for that. It will make all MCJIT tests pass in make-check on BigEndian platforms. Patch by Petar Jovanovic. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169178 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			837 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			837 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of ELF support for the MC-JIT runtime dynamic linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "dyld"
 | |
| #include "RuntimeDyldELF.h"
 | |
| #include "JITRegistrar.h"
 | |
| #include "ObjectImageCommon.h"
 | |
| #include "llvm/ADT/IntervalMap.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ExecutionEngine/ObjectBuffer.h"
 | |
| #include "llvm/ExecutionEngine/ObjectImage.h"
 | |
| #include "llvm/Object/ELF.h"
 | |
| #include "llvm/Object/ObjectFile.h"
 | |
| #include "llvm/Support/ELF.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::object;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static inline
 | |
| error_code check(error_code Err) {
 | |
|   if (Err) {
 | |
|     report_fatal_error(Err.message());
 | |
|   }
 | |
|   return Err;
 | |
| }
 | |
| 
 | |
| template<support::endianness target_endianness, bool is64Bits>
 | |
| class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
 | |
|   LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
 | |
| 
 | |
|   typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
 | |
|   typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
 | |
|   typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
 | |
|   typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
 | |
| 
 | |
|   typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
 | |
| 
 | |
|   typedef typename ELFDataTypeTypedefHelper<
 | |
|           target_endianness, is64Bits>::value_type addr_type;
 | |
| 
 | |
| public:
 | |
|   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
 | |
| 
 | |
|   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
 | |
|   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
 | |
| 
 | |
|   // Methods for type inquiry through isa, cast and dyn_cast
 | |
|   static inline bool classof(const Binary *v) {
 | |
|     return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
 | |
|             && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
 | |
|   }
 | |
|   static inline bool classof(
 | |
|       const ELFObjectFile<target_endianness, is64Bits> *v) {
 | |
|     return v->isDyldType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<support::endianness target_endianness, bool is64Bits>
 | |
| class ELFObjectImage : public ObjectImageCommon {
 | |
|   protected:
 | |
|     DyldELFObject<target_endianness, is64Bits> *DyldObj;
 | |
|     bool Registered;
 | |
| 
 | |
|   public:
 | |
|     ELFObjectImage(ObjectBuffer *Input,
 | |
|                    DyldELFObject<target_endianness, is64Bits> *Obj)
 | |
|     : ObjectImageCommon(Input, Obj),
 | |
|       DyldObj(Obj),
 | |
|       Registered(false) {}
 | |
| 
 | |
|     virtual ~ELFObjectImage() {
 | |
|       if (Registered)
 | |
|         deregisterWithDebugger();
 | |
|     }
 | |
| 
 | |
|     // Subclasses can override these methods to update the image with loaded
 | |
|     // addresses for sections and common symbols
 | |
|     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
 | |
|     {
 | |
|       DyldObj->updateSectionAddress(Sec, Addr);
 | |
|     }
 | |
| 
 | |
|     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
 | |
|     {
 | |
|       DyldObj->updateSymbolAddress(Sym, Addr);
 | |
|     }
 | |
| 
 | |
|     virtual void registerWithDebugger()
 | |
|     {
 | |
|       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
 | |
|       Registered = true;
 | |
|     }
 | |
|     virtual void deregisterWithDebugger()
 | |
|     {
 | |
|       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
 | |
|     }
 | |
| };
 | |
| 
 | |
| // The MemoryBuffer passed into this constructor is just a wrapper around the
 | |
| // actual memory.  Ultimately, the Binary parent class will take ownership of
 | |
| // this MemoryBuffer object but not the underlying memory.
 | |
| template<support::endianness target_endianness, bool is64Bits>
 | |
| DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Wrapper,
 | |
|                                                           error_code &ec)
 | |
|   : ELFObjectFile<target_endianness, is64Bits>(Wrapper, ec) {
 | |
|   this->isDyldELFObject = true;
 | |
| }
 | |
| 
 | |
| template<support::endianness target_endianness, bool is64Bits>
 | |
| void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
 | |
|                                                        const SectionRef &Sec,
 | |
|                                                        uint64_t Addr) {
 | |
|   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | |
|   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
 | |
|                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   shdr->sh_addr = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| template<support::endianness target_endianness, bool is64Bits>
 | |
| void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
 | |
|                                                        const SymbolRef &SymRef,
 | |
|                                                        uint64_t Addr) {
 | |
| 
 | |
|   Elf_Sym *sym = const_cast<Elf_Sym*>(
 | |
|                                  ELFObjectFile<target_endianness, is64Bits>::
 | |
|                                    getSymbol(SymRef.getRawDataRefImpl()));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   sym->st_value = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
 | |
|   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
 | |
|     llvm_unreachable("Unexpected ELF object size");
 | |
|   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
 | |
|                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
 | |
|                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
 | |
|   error_code ec;
 | |
| 
 | |
|   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
 | |
|     DyldELFObject<support::little, false> *Obj =
 | |
|            new DyldELFObject<support::little, false>(Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<support::little, false>(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
 | |
|     DyldELFObject<support::big, false> *Obj =
 | |
|            new DyldELFObject<support::big, false>(Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<support::big, false>(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
 | |
|     DyldELFObject<support::big, true> *Obj =
 | |
|            new DyldELFObject<support::big, true>(Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<support::big, true>(Buffer, Obj);
 | |
|   }
 | |
|   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
 | |
|     DyldELFObject<support::little, true> *Obj =
 | |
|            new DyldELFObject<support::little, true>(Buffer->getMemBuffer(), ec);
 | |
|     return new ELFObjectImage<support::little, true>(Buffer, Obj);
 | |
|   }
 | |
|   else
 | |
|     llvm_unreachable("Unexpected ELF format");
 | |
| }
 | |
| 
 | |
| RuntimeDyldELF::~RuntimeDyldELF() {
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
 | |
|                                              uint64_t Offset,
 | |
|                                              uint64_t Value,
 | |
|                                              uint32_t Type,
 | |
|                                              int64_t Addend) {
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|   break;
 | |
|   case ELF::R_X86_64_64: {
 | |
|     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
 | |
|     *Target = Value + Addend;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
 | |
|                  << " at " << format("%p\n",Target));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_32:
 | |
|   case ELF::R_X86_64_32S: {
 | |
|     Value += Addend;
 | |
|     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
 | |
|            (Type == ELF::R_X86_64_32S && 
 | |
|              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
 | |
|     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     *Target = TruncatedAddr;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
 | |
|                  << " at " << format("%p\n",Target));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_PC32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     uint64_t  FinalAddress = Section.LoadAddress + Offset;
 | |
|     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
 | |
|     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
 | |
|     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | |
|     *Target = TruncOffset;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset,
 | |
|                                           uint32_t Value,
 | |
|                                           uint32_t Type,
 | |
|                                           int32_t Addend) {
 | |
|   switch (Type) {
 | |
|   case ELF::R_386_32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     *Target = *Placeholder + Value + Addend;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_386_PC32: {
 | |
|     // Get the placeholder value from the generated object since
 | |
|     // a previous relocation attempt may have overwritten the loaded version
 | |
|     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
 | |
|                                                                    + Offset);
 | |
|     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
 | |
|     uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
 | |
|     *Target = RealOffset;
 | |
|     break;
 | |
|     }
 | |
|     default:
 | |
|       // There are other relocation types, but it appears these are the
 | |
|       // only ones currently used by the LLVM ELF object writer
 | |
|       llvm_unreachable("Relocation type not implemented yet!");
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset,
 | |
|                                           uint32_t Value,
 | |
|                                           uint32_t Type,
 | |
|                                           int32_t Addend) {
 | |
|   // TODO: Add Thumb relocations.
 | |
|   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
 | |
|   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
 | |
|                << Section.Address + Offset
 | |
|                << " FinalAddress: " << format("%p",FinalAddress)
 | |
|                << " Value: " << format("%x",Value)
 | |
|                << " Type: " << format("%x",Type)
 | |
|                << " Addend: " << format("%x",Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
| 
 | |
|   // Write a 32bit value to relocation address, taking into account the 
 | |
|   // implicit addend encoded in the target.
 | |
|   case ELF::R_ARM_TARGET1 :
 | |
|   case ELF::R_ARM_ABS32 :
 | |
|     *TargetPtr += Value;
 | |
|     break;
 | |
| 
 | |
|   // Write first 16 bit of 32 bit value to the mov instruction.
 | |
|   // Last 4 bit should be shifted.
 | |
|   case ELF::R_ARM_MOVW_ABS_NC :
 | |
|     // We are not expecting any other addend in the relocation address.
 | |
|     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 
 | |
|     // non-contiguous fields.
 | |
|     assert((*TargetPtr & 0x000F0FFF) == 0);
 | |
|     Value = Value & 0xFFFF;
 | |
|     *TargetPtr |= Value & 0xFFF;
 | |
|     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | |
|     break;
 | |
| 
 | |
|   // Write last 16 bit of 32 bit value to the mov instruction.
 | |
|   // Last 4 bit should be shifted.
 | |
|   case ELF::R_ARM_MOVT_ABS :
 | |
|     // We are not expecting any other addend in the relocation address.
 | |
|     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
 | |
|     assert((*TargetPtr & 0x000F0FFF) == 0);
 | |
|     Value = (Value >> 16) & 0xFFFF;
 | |
|     *TargetPtr |= Value & 0xFFF;
 | |
|     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | |
|     break;
 | |
| 
 | |
|   // Write 24 bit relative value to the branch instruction.
 | |
|   case ELF::R_ARM_PC24 :    // Fall through.
 | |
|   case ELF::R_ARM_CALL :    // Fall through.
 | |
|   case ELF::R_ARM_JUMP24 :
 | |
|     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
 | |
|     RelValue = (RelValue & 0x03FFFFFC) >> 2;
 | |
|     *TargetPtr &= 0xFF000000;
 | |
|     *TargetPtr |= RelValue;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
 | |
|                                            uint64_t Offset,
 | |
|                                            uint32_t Value,
 | |
|                                            uint32_t Type,
 | |
|                                            int32_t Addend) {
 | |
|   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
 | |
|                << Section.Address + Offset
 | |
|                << " FinalAddress: "
 | |
|                << format("%p",Section.LoadAddress + Offset)
 | |
|                << " Value: " << format("%x",Value)
 | |
|                << " Type: " << format("%x",Type)
 | |
|                << " Addend: " << format("%x",Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch(Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
|     break;
 | |
|   case ELF::R_MIPS_32:
 | |
|     *TargetPtr = Value + (*TargetPtr);
 | |
|     break;
 | |
|   case ELF::R_MIPS_26:
 | |
|     *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
 | |
|     break;
 | |
|   case ELF::R_MIPS_HI16:
 | |
|     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
 | |
|     Value += ((*TargetPtr) & 0x0000ffff) << 16;
 | |
|     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
 | |
|                  (((Value + 0x8000) >> 16) & 0xffff);
 | |
|     break;
 | |
|    case ELF::R_MIPS_LO16:
 | |
|     Value += ((*TargetPtr) & 0x0000ffff);
 | |
|     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
 | |
|     break;
 | |
|    }
 | |
| }
 | |
| 
 | |
| // Return the .TOC. section address to R_PPC64_TOC relocations.
 | |
| uint64_t RuntimeDyldELF::findPPC64TOC() const {
 | |
|   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
 | |
|   // order. The TOC starts where the first of these sections starts.
 | |
|   SectionList::const_iterator it = Sections.begin();
 | |
|   SectionList::const_iterator ite = Sections.end();
 | |
|   for (; it != ite; ++it) {
 | |
|     if (it->Name == ".got" ||
 | |
|         it->Name == ".toc" ||
 | |
|         it->Name == ".tocbss" ||
 | |
|         it->Name == ".plt")
 | |
|       break;
 | |
|   }
 | |
|   if (it == ite) {
 | |
|     // This may happen for
 | |
|     // * references to TOC base base (sym@toc, .odp relocation) without
 | |
|     // a .toc directive.
 | |
|     // In this case just use the first section (which is usually
 | |
|     // the .odp) since the code won't reference the .toc base
 | |
|     // directly.
 | |
|     it = Sections.begin();
 | |
|   }
 | |
|   assert (it != ite);
 | |
|   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
 | |
|   // thus permitting a full 64 Kbytes segment.
 | |
|   return it->LoadAddress + 0x8000;
 | |
| }
 | |
| 
 | |
| // Returns the sections and offset associated with the ODP entry referenced
 | |
| // by Symbol.
 | |
| void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
 | |
|                                          ObjSectionToIDMap &LocalSections,
 | |
|                                          RelocationValueRef &Rel) {
 | |
|   // Get the ELF symbol value (st_value) to compare with Relocation offset in
 | |
|   // .opd entries
 | |
| 
 | |
|   error_code err;
 | |
|   for (section_iterator si = Obj.begin_sections(),
 | |
|      se = Obj.end_sections(); si != se; si.increment(err)) {
 | |
|     StringRef SectionName;
 | |
|     check(si->getName(SectionName));
 | |
|     if (SectionName != ".opd")
 | |
|       continue;
 | |
| 
 | |
|     for (relocation_iterator i = si->begin_relocations(),
 | |
|          e = si->end_relocations(); i != e;) {
 | |
|       check(err);
 | |
| 
 | |
|       // The R_PPC64_ADDR64 relocation indicates the first field
 | |
|       // of a .opd entry
 | |
|       uint64_t TypeFunc;
 | |
|       check(i->getType(TypeFunc));
 | |
|       if (TypeFunc != ELF::R_PPC64_ADDR64) {
 | |
|         i.increment(err);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       SymbolRef TargetSymbol;
 | |
|       uint64_t TargetSymbolOffset;
 | |
|       int64_t TargetAdditionalInfo;
 | |
|       check(i->getSymbol(TargetSymbol));
 | |
|       check(i->getOffset(TargetSymbolOffset));
 | |
|       check(i->getAdditionalInfo(TargetAdditionalInfo));
 | |
| 
 | |
|       i = i.increment(err);
 | |
|       if (i == e)
 | |
|         break;
 | |
|       check(err);
 | |
| 
 | |
|       // Just check if following relocation is a R_PPC64_TOC
 | |
|       uint64_t TypeTOC;
 | |
|       check(i->getType(TypeTOC));
 | |
|       if (TypeTOC != ELF::R_PPC64_TOC)
 | |
|         continue;
 | |
| 
 | |
|       // Finally compares the Symbol value and the target symbol offset
 | |
|       // to check if this .opd entry refers to the symbol the relocation
 | |
|       // points to.
 | |
|       if (Rel.Addend != (intptr_t)TargetSymbolOffset)
 | |
|         continue;
 | |
| 
 | |
|       section_iterator tsi(Obj.end_sections());
 | |
|       check(TargetSymbol.getSection(tsi));
 | |
|       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
 | |
|       Rel.Addend = (intptr_t)TargetAdditionalInfo;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Attempting to get address of ODP entry!");
 | |
| }
 | |
| 
 | |
| // Relocation masks following the #lo(value), #hi(value), #higher(value),
 | |
| // and #highest(value) macros defined in section 4.5.1. Relocation Types
 | |
| // in PPC-elf64abi document.
 | |
| //
 | |
| static inline
 | |
| uint16_t applyPPClo (uint64_t value)
 | |
| {
 | |
|   return value & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChi (uint64_t value)
 | |
| {
 | |
|   return (value >> 16) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChigher (uint64_t value)
 | |
| {
 | |
|   return (value >> 32) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| uint16_t applyPPChighest (uint64_t value)
 | |
| {
 | |
|   return (value >> 48) & 0xffff;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
 | |
|                                             uint64_t Offset,
 | |
|                                             uint64_t Value,
 | |
|                                             uint32_t Type,
 | |
|                                             int64_t Addend) {
 | |
|   uint8_t* LocalAddress = Section.Address + Offset;
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|   break;
 | |
|   case ELF::R_PPC64_ADDR16_LO :
 | |
|     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HI :
 | |
|     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHER :
 | |
|     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHEST :
 | |
|     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR14 : {
 | |
|     assert(((Value + Addend) & 3) == 0);
 | |
|     // Preserve the AA/LK bits in the branch instruction
 | |
|     uint8_t aalk = *(LocalAddress+3);
 | |
|     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL24 : {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | |
|     if (SignExtend32<24>(delta) != delta)
 | |
|       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
 | |
|     // Generates a 'bl <address>' instruction
 | |
|     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_ADDR64 :
 | |
|     writeInt64BE(LocalAddress, Value + Addend);
 | |
|     break;
 | |
|   case ELF::R_PPC64_TOC :
 | |
|     writeInt64BE(LocalAddress, findPPC64TOC());
 | |
|     break;
 | |
|   case ELF::R_PPC64_TOC16 : {
 | |
|     uint64_t TOCStart = findPPC64TOC();
 | |
|     Value = applyPPClo((Value + Addend) - TOCStart);
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_TOC16_DS : {
 | |
|     uint64_t TOCStart = findPPC64TOC();
 | |
|     Value = ((Value + Addend) - TOCStart);
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value));
 | |
|   } break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
 | |
|                                        uint64_t Offset,
 | |
|                                        uint64_t Value,
 | |
|                                        uint32_t Type,
 | |
|                                        int64_t Addend) {
 | |
|   switch (Arch) {
 | |
|   case Triple::x86_64:
 | |
|     resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   case Triple::x86:
 | |
|     resolveX86Relocation(Section, Offset,
 | |
|                          (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::arm:    // Fall through.
 | |
|   case Triple::thumb:
 | |
|     resolveARMRelocation(Section, Offset,
 | |
|                          (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::mips:    // Fall through.
 | |
|   case Triple::mipsel:
 | |
|     resolveMIPSRelocation(Section, Offset,
 | |
|                           (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                           (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::ppc64:
 | |
|     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   default: llvm_unreachable("Unsupported CPU type!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
 | |
|                                           ObjectImage &Obj,
 | |
|                                           ObjSectionToIDMap &ObjSectionToID,
 | |
|                                           const SymbolTableMap &Symbols,
 | |
|                                           StubMap &Stubs) {
 | |
| 
 | |
|   uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
 | |
|   intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
 | |
|   const SymbolRef &Symbol = Rel.Symbol;
 | |
| 
 | |
|   // Obtain the symbol name which is referenced in the relocation
 | |
|   StringRef TargetName;
 | |
|   Symbol.getName(TargetName);
 | |
|   DEBUG(dbgs() << "\t\tRelType: " << RelType
 | |
|                << " Addend: " << Addend
 | |
|                << " TargetName: " << TargetName
 | |
|                << "\n");
 | |
|   RelocationValueRef Value;
 | |
|   // First search for the symbol in the local symbol table
 | |
|   SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
 | |
|   SymbolRef::Type SymType;
 | |
|   Symbol.getType(SymType);
 | |
|   if (lsi != Symbols.end()) {
 | |
|     Value.SectionID = lsi->second.first;
 | |
|     Value.Addend = lsi->second.second;
 | |
|   } else {
 | |
|     // Search for the symbol in the global symbol table
 | |
|     SymbolTableMap::const_iterator gsi =
 | |
|         GlobalSymbolTable.find(TargetName.data());
 | |
|     if (gsi != GlobalSymbolTable.end()) {
 | |
|       Value.SectionID = gsi->second.first;
 | |
|       Value.Addend = gsi->second.second;
 | |
|     } else {
 | |
|       switch (SymType) {
 | |
|         case SymbolRef::ST_Debug: {
 | |
|           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
 | |
|           // and can be changed by another developers. Maybe best way is add
 | |
|           // a new symbol type ST_Section to SymbolRef and use it.
 | |
|           section_iterator si(Obj.end_sections());
 | |
|           Symbol.getSection(si);
 | |
|           if (si == Obj.end_sections())
 | |
|             llvm_unreachable("Symbol section not found, bad object file format!");
 | |
|           DEBUG(dbgs() << "\t\tThis is section symbol\n");
 | |
|           // Default to 'true' in case isText fails (though it never does).
 | |
|           bool isCode = true;
 | |
|           si->isText(isCode);
 | |
|           Value.SectionID = findOrEmitSection(Obj, 
 | |
|                                               (*si), 
 | |
|                                               isCode, 
 | |
|                                               ObjSectionToID);
 | |
|           Value.Addend = Addend;
 | |
|           break;
 | |
|         }
 | |
|         case SymbolRef::ST_Unknown: {
 | |
|           Value.SymbolName = TargetName.data();
 | |
|           Value.Addend = Addend;
 | |
|           break;
 | |
|         }
 | |
|         default:
 | |
|           llvm_unreachable("Unresolved symbol type!");
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
 | |
|                << " Rel.Offset: " << Rel.Offset
 | |
|                << "\n");
 | |
|   if (Arch == Triple::arm &&
 | |
|       (RelType == ELF::R_ARM_PC24 ||
 | |
|        RelType == ELF::R_ARM_CALL ||
 | |
|        RelType == ELF::R_ARM_JUMP24)) {
 | |
|     // This is an ARM branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
 | |
|     SectionEntry &Section = Sections[Rel.SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|         resolveRelocation(Section, Rel.Offset,
 | |
|                           (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                    Section.StubOffset);
 | |
|       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
 | |
|                          ELF::R_ARM_ABS32, Value.Addend);
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
| 
 | |
|       resolveRelocation(Section, Rel.Offset,
 | |
|                         (uint64_t)Section.Address + Section.StubOffset,
 | |
|                         RelType, 0);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
 | |
|              RelType == ELF::R_MIPS_26) {
 | |
|     // This is an Mips branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
 | |
|     SectionEntry &Section = Sections[Rel.SectionID];
 | |
|     uint8_t *Target = Section.Address + Rel.Offset;
 | |
|     uint32_t *TargetAddress = (uint32_t *)Target;
 | |
| 
 | |
|     // Extract the addend from the instruction.
 | |
|     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
 | |
| 
 | |
|     Value.Addend += Addend;
 | |
| 
 | |
|     //  Look up for existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|       resolveRelocation(Section, Rel.Offset,
 | |
|                         (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                    Section.StubOffset);
 | |
| 
 | |
|       // Creating Hi and Lo relocations for the filled stub instructions.
 | |
|       RelocationEntry REHi(Rel.SectionID,
 | |
|                            StubTargetAddr - Section.Address,
 | |
|                            ELF::R_MIPS_HI16, Value.Addend);
 | |
|       RelocationEntry RELo(Rel.SectionID,
 | |
|                            StubTargetAddr - Section.Address + 4,
 | |
|                            ELF::R_MIPS_LO16, Value.Addend);
 | |
| 
 | |
|       if (Value.SymbolName) {
 | |
|         addRelocationForSymbol(REHi, Value.SymbolName);
 | |
|         addRelocationForSymbol(RELo, Value.SymbolName);
 | |
|       } else {
 | |
|         addRelocationForSection(REHi, Value.SectionID);
 | |
|         addRelocationForSection(RELo, Value.SectionID);
 | |
|       }
 | |
| 
 | |
|       resolveRelocation(Section, Rel.Offset,
 | |
|                         (uint64_t)Section.Address + Section.StubOffset,
 | |
|                         RelType, 0);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if (Arch == Triple::ppc64) {
 | |
|     if (RelType == ELF::R_PPC64_REL24) {
 | |
|       // A PPC branch relocation will need a stub function if the target is
 | |
|       // an external symbol (Symbol::ST_Unknown) or if the target address
 | |
|       // is not within the signed 24-bits branch address.
 | |
|       SectionEntry &Section = Sections[Rel.SectionID];
 | |
|       uint8_t *Target = Section.Address + Rel.Offset;
 | |
|       bool RangeOverflow = false;
 | |
|       if (SymType != SymbolRef::ST_Unknown) {
 | |
|         // A function call may points to the .opd entry, so the final symbol value
 | |
|         // in calculated based in the relocation values in .opd section.
 | |
|         findOPDEntrySection(Obj, ObjSectionToID, Value);
 | |
|         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
 | |
|         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
 | |
|         // If it is within 24-bits branch range, just set the branch target
 | |
|         if (SignExtend32<24>(delta) == delta) {
 | |
|           RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
 | |
|           if (Value.SymbolName)
 | |
|             addRelocationForSymbol(RE, Value.SymbolName);
 | |
|           else
 | |
|             addRelocationForSection(RE, Value.SectionID);
 | |
|         } else {
 | |
|           RangeOverflow = true;
 | |
|         }
 | |
|       }
 | |
|       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
 | |
|         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
 | |
|         // larger than 24-bits.
 | |
|         StubMap::const_iterator i = Stubs.find(Value);
 | |
|         if (i != Stubs.end()) {
 | |
|           // Symbol function stub already created, just relocate to it
 | |
|           resolveRelocation(Section, Rel.Offset,
 | |
|                             (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|           DEBUG(dbgs() << " Stub function found\n");
 | |
|         } else {
 | |
|           // Create a new stub function.
 | |
|           DEBUG(dbgs() << " Create a new stub function\n");
 | |
|           Stubs[Value] = Section.StubOffset;
 | |
|           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
 | |
|                                                        Section.StubOffset);
 | |
|           RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
 | |
|                              ELF::R_PPC64_ADDR64, Value.Addend);
 | |
| 
 | |
|           // Generates the 64-bits address loads as exemplified in section
 | |
|           // 4.5.1 in PPC64 ELF ABI.
 | |
|           RelocationEntry REhst(Rel.SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 2,
 | |
|                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
 | |
|           RelocationEntry REhr(Rel.SectionID,
 | |
|                                StubTargetAddr - Section.Address + 6,
 | |
|                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
 | |
|           RelocationEntry REh(Rel.SectionID,
 | |
|                               StubTargetAddr - Section.Address + 14,
 | |
|                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
 | |
|           RelocationEntry REl(Rel.SectionID,
 | |
|                               StubTargetAddr - Section.Address + 18,
 | |
|                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 | |
| 
 | |
|           if (Value.SymbolName) {
 | |
|             addRelocationForSymbol(REhst, Value.SymbolName);
 | |
|             addRelocationForSymbol(REhr,  Value.SymbolName);
 | |
|             addRelocationForSymbol(REh,   Value.SymbolName);
 | |
|             addRelocationForSymbol(REl,   Value.SymbolName);
 | |
|           } else {
 | |
|             addRelocationForSection(REhst, Value.SectionID);
 | |
|             addRelocationForSection(REhr,  Value.SectionID);
 | |
|             addRelocationForSection(REh,   Value.SectionID);
 | |
|             addRelocationForSection(REl,   Value.SectionID);
 | |
|           }
 | |
| 
 | |
|           resolveRelocation(Section, Rel.Offset,
 | |
|                             (uint64_t)Section.Address + Section.StubOffset,
 | |
|                             RelType, 0);
 | |
|           if (SymType == SymbolRef::ST_Unknown)
 | |
|             // Restore the TOC for external calls
 | |
|             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
 | |
|           Section.StubOffset += getMaxStubSize();
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
 | |
|       // Extra check to avoid relocation againt empty symbols (usually
 | |
|       // the R_PPC64_TOC).
 | |
|       if (Value.SymbolName && !TargetName.empty())
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|     }
 | |
|   } else {
 | |
|     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
 | |
|     if (Value.SymbolName)
 | |
|       addRelocationForSymbol(RE, Value.SymbolName);
 | |
|     else
 | |
|       addRelocationForSection(RE, Value.SectionID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
 | |
|   // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
 | |
|   uint64_t Align;
 | |
|   Check(Sym.getValue(Align));
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
 | |
|   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
 | |
|     return false;
 | |
|   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
 | |
| }
 | |
| } // namespace llvm
 |