mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
  define available_externally dllimport void @f() {}
  @Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			1334 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the common interface used by the various execution engine
 | |
| // subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/ExecutionEngine/JITMemoryManager.h"
 | |
| #include "llvm/ExecutionEngine/ObjectCache.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/DynamicLibrary.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 | |
| STATISTIC(NumGlobals  , "Number of global vars initialized");
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void ObjectCache::anchor() {}
 | |
| void ObjectBuffer::anchor() {}
 | |
| void ObjectBufferStream::anchor() {}
 | |
| 
 | |
| ExecutionEngine *(*ExecutionEngine::JITCtor)(
 | |
|   Module *M,
 | |
|   std::string *ErrorStr,
 | |
|   JITMemoryManager *JMM,
 | |
|   bool GVsWithCode,
 | |
|   TargetMachine *TM) = 0;
 | |
| ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
 | |
|   Module *M,
 | |
|   std::string *ErrorStr,
 | |
|   RTDyldMemoryManager *MCJMM,
 | |
|   bool GVsWithCode,
 | |
|   TargetMachine *TM) = 0;
 | |
| ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
 | |
|                                                 std::string *ErrorStr) = 0;
 | |
| 
 | |
| ExecutionEngine::ExecutionEngine(Module *M)
 | |
|   : EEState(*this),
 | |
|     LazyFunctionCreator(0) {
 | |
|   CompilingLazily         = false;
 | |
|   GVCompilationDisabled   = false;
 | |
|   SymbolSearchingDisabled = false;
 | |
|   Modules.push_back(M);
 | |
|   assert(M && "Module is null?");
 | |
| }
 | |
| 
 | |
| ExecutionEngine::~ExecutionEngine() {
 | |
|   clearAllGlobalMappings();
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | |
|     delete Modules[i];
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Helper class which uses a value handler to automatically deletes the
 | |
| /// memory block when the GlobalVariable is destroyed.
 | |
| class GVMemoryBlock : public CallbackVH {
 | |
|   GVMemoryBlock(const GlobalVariable *GV)
 | |
|     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
 | |
| 
 | |
| public:
 | |
|   /// \brief Returns the address the GlobalVariable should be written into.  The
 | |
|   /// GVMemoryBlock object prefixes that.
 | |
|   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
 | |
|     Type *ElTy = GV->getType()->getElementType();
 | |
|     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
 | |
|     void *RawMemory = ::operator new(
 | |
|       DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
 | |
|                                    TD.getPreferredAlignment(GV))
 | |
|       + GVSize);
 | |
|     new(RawMemory) GVMemoryBlock(GV);
 | |
|     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
 | |
|   }
 | |
| 
 | |
|   virtual void deleted() {
 | |
|     // We allocated with operator new and with some extra memory hanging off the
 | |
|     // end, so don't just delete this.  I'm not sure if this is actually
 | |
|     // required.
 | |
|     this->~GVMemoryBlock();
 | |
|     ::operator delete(this);
 | |
|   }
 | |
| };
 | |
| }  // anonymous namespace
 | |
| 
 | |
| char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
 | |
|   return GVMemoryBlock::Create(GV, *getDataLayout());
 | |
| }
 | |
| 
 | |
| bool ExecutionEngine::removeModule(Module *M) {
 | |
|   for(SmallVectorImpl<Module *>::iterator I = Modules.begin(),
 | |
|         E = Modules.end(); I != E; ++I) {
 | |
|     Module *Found = *I;
 | |
|     if (Found == M) {
 | |
|       Modules.erase(I);
 | |
|       clearGlobalMappingsFromModule(M);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | |
|     if (Function *F = Modules[i]->getFunction(FnName))
 | |
|       return F;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
 | |
|                                           const GlobalValue *ToUnmap) {
 | |
|   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
 | |
|   void *OldVal;
 | |
| 
 | |
|   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
 | |
|   // GlobalAddressMap.
 | |
|   if (I == GlobalAddressMap.end())
 | |
|     OldVal = 0;
 | |
|   else {
 | |
|     OldVal = I->second;
 | |
|     GlobalAddressMap.erase(I);
 | |
|   }
 | |
| 
 | |
|   GlobalAddressReverseMap.erase(OldVal);
 | |
|   return OldVal;
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
 | |
|         << "\' to [" << Addr << "]\n";);
 | |
|   void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
 | |
|   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
 | |
|   CurVal = Addr;
 | |
| 
 | |
|   // If we are using the reverse mapping, add it too.
 | |
|   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     AssertingVH<const GlobalValue> &V =
 | |
|       EEState.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::clearAllGlobalMappings() {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   EEState.getGlobalAddressMap(locked).clear();
 | |
|   EEState.getGlobalAddressReverseMap(locked).clear();
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
 | |
|     EEState.RemoveMapping(locked, FI);
 | |
|   for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
 | |
|        GI != GE; ++GI)
 | |
|     EEState.RemoveMapping(locked, GI);
 | |
| }
 | |
| 
 | |
| void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   ExecutionEngineState::GlobalAddressMapTy &Map =
 | |
|     EEState.getGlobalAddressMap(locked);
 | |
| 
 | |
|   // Deleting from the mapping?
 | |
|   if (Addr == 0)
 | |
|     return EEState.RemoveMapping(locked, GV);
 | |
| 
 | |
|   void *&CurVal = Map[GV];
 | |
|   void *OldVal = CurVal;
 | |
| 
 | |
|   if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
 | |
|     EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
 | |
|   CurVal = Addr;
 | |
| 
 | |
|   // If we are using the reverse mapping, add it too.
 | |
|   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     AssertingVH<const GlobalValue> &V =
 | |
|       EEState.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
|   return OldVal;
 | |
| }
 | |
| 
 | |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   ExecutionEngineState::GlobalAddressMapTy::iterator I =
 | |
|     EEState.getGlobalAddressMap(locked).find(GV);
 | |
|   return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   // If we haven't computed the reverse mapping yet, do so first.
 | |
|   if (EEState.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     for (ExecutionEngineState::GlobalAddressMapTy::iterator
 | |
|          I = EEState.getGlobalAddressMap(locked).begin(),
 | |
|          E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
 | |
|       EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
 | |
|                                                           I->second, I->first));
 | |
|   }
 | |
| 
 | |
|   std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
 | |
|     EEState.getGlobalAddressReverseMap(locked).find(Addr);
 | |
|   return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class ArgvArray {
 | |
|   char *Array;
 | |
|   std::vector<char*> Values;
 | |
| public:
 | |
|   ArgvArray() : Array(NULL) {}
 | |
|   ~ArgvArray() { clear(); }
 | |
|   void clear() {
 | |
|     delete[] Array;
 | |
|     Array = NULL;
 | |
|     for (size_t I = 0, E = Values.size(); I != E; ++I) {
 | |
|       delete[] Values[I];
 | |
|     }
 | |
|     Values.clear();
 | |
|   }
 | |
|   /// Turn a vector of strings into a nice argv style array of pointers to null
 | |
|   /// terminated strings.
 | |
|   void *reset(LLVMContext &C, ExecutionEngine *EE,
 | |
|               const std::vector<std::string> &InputArgv);
 | |
| };
 | |
| }  // anonymous namespace
 | |
| void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
 | |
|                        const std::vector<std::string> &InputArgv) {
 | |
|   clear();  // Free the old contents.
 | |
|   unsigned PtrSize = EE->getDataLayout()->getPointerSize();
 | |
|   Array = new char[(InputArgv.size()+1)*PtrSize];
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
 | |
|   Type *SBytePtr = Type::getInt8PtrTy(C);
 | |
| 
 | |
|   for (unsigned i = 0; i != InputArgv.size(); ++i) {
 | |
|     unsigned Size = InputArgv[i].size()+1;
 | |
|     char *Dest = new char[Size];
 | |
|     Values.push_back(Dest);
 | |
|     DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
 | |
| 
 | |
|     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
 | |
|     Dest[Size-1] = 0;
 | |
| 
 | |
|     // Endian safe: Array[i] = (PointerTy)Dest;
 | |
|     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
 | |
|                            SBytePtr);
 | |
|   }
 | |
| 
 | |
|   // Null terminate it
 | |
|   EE->StoreValueToMemory(PTOGV(0),
 | |
|                          (GenericValue*)(Array+InputArgv.size()*PtrSize),
 | |
|                          SBytePtr);
 | |
|   return Array;
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
 | |
|                                                        bool isDtors) {
 | |
|   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
 | |
|   GlobalVariable *GV = module->getNamedGlobal(Name);
 | |
| 
 | |
|   // If this global has internal linkage, or if it has a use, then it must be
 | |
|   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 | |
|   // this is the case, don't execute any of the global ctors, __main will do
 | |
|   // it.
 | |
|   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
 | |
| 
 | |
|   // Should be an array of '{ i32, void ()* }' structs.  The first value is
 | |
|   // the init priority, which we ignore.
 | |
|   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (InitList == 0)
 | |
|     return;
 | |
|   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
 | |
|     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
 | |
|     if (CS == 0) continue;
 | |
| 
 | |
|     Constant *FP = CS->getOperand(1);
 | |
|     if (FP->isNullValue())
 | |
|       continue;  // Found a sentinal value, ignore.
 | |
| 
 | |
|     // Strip off constant expression casts.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | |
|       if (CE->isCast())
 | |
|         FP = CE->getOperand(0);
 | |
| 
 | |
|     // Execute the ctor/dtor function!
 | |
|     if (Function *F = dyn_cast<Function>(FP))
 | |
|       runFunction(F, std::vector<GenericValue>());
 | |
| 
 | |
|     // FIXME: It is marginally lame that we just do nothing here if we see an
 | |
|     // entry we don't recognize. It might not be unreasonable for the verifier
 | |
|     // to not even allow this and just assert here.
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 | |
|   // Execute global ctors/dtors for each module in the program.
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | |
|     runStaticConstructorsDestructors(Modules[i], isDtors);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
 | |
| static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
 | |
|   unsigned PtrSize = EE->getDataLayout()->getPointerSize();
 | |
|   for (unsigned i = 0; i < PtrSize; ++i)
 | |
|     if (*(i + (uint8_t*)Loc))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int ExecutionEngine::runFunctionAsMain(Function *Fn,
 | |
|                                        const std::vector<std::string> &argv,
 | |
|                                        const char * const * envp) {
 | |
|   std::vector<GenericValue> GVArgs;
 | |
|   GenericValue GVArgc;
 | |
|   GVArgc.IntVal = APInt(32, argv.size());
 | |
| 
 | |
|   // Check main() type
 | |
|   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
 | |
|   FunctionType *FTy = Fn->getFunctionType();
 | |
|   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
 | |
| 
 | |
|   // Check the argument types.
 | |
|   if (NumArgs > 3)
 | |
|     report_fatal_error("Invalid number of arguments of main() supplied");
 | |
|   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
 | |
|     report_fatal_error("Invalid type for third argument of main() supplied");
 | |
|   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
 | |
|     report_fatal_error("Invalid type for second argument of main() supplied");
 | |
|   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
 | |
|     report_fatal_error("Invalid type for first argument of main() supplied");
 | |
|   if (!FTy->getReturnType()->isIntegerTy() &&
 | |
|       !FTy->getReturnType()->isVoidTy())
 | |
|     report_fatal_error("Invalid return type of main() supplied");
 | |
| 
 | |
|   ArgvArray CArgv;
 | |
|   ArgvArray CEnv;
 | |
|   if (NumArgs) {
 | |
|     GVArgs.push_back(GVArgc); // Arg #0 = argc.
 | |
|     if (NumArgs > 1) {
 | |
|       // Arg #1 = argv.
 | |
|       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
 | |
|       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
 | |
|              "argv[0] was null after CreateArgv");
 | |
|       if (NumArgs > 2) {
 | |
|         std::vector<std::string> EnvVars;
 | |
|         for (unsigned i = 0; envp[i]; ++i)
 | |
|           EnvVars.push_back(envp[i]);
 | |
|         // Arg #2 = envp.
 | |
|         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
 | |
| }
 | |
| 
 | |
| ExecutionEngine *ExecutionEngine::create(Module *M,
 | |
|                                          bool ForceInterpreter,
 | |
|                                          std::string *ErrorStr,
 | |
|                                          CodeGenOpt::Level OptLevel,
 | |
|                                          bool GVsWithCode) {
 | |
|   EngineBuilder EB =  EngineBuilder(M)
 | |
|       .setEngineKind(ForceInterpreter
 | |
|                      ? EngineKind::Interpreter
 | |
|                      : EngineKind::JIT)
 | |
|       .setErrorStr(ErrorStr)
 | |
|       .setOptLevel(OptLevel)
 | |
|       .setAllocateGVsWithCode(GVsWithCode);
 | |
| 
 | |
|   return EB.create();
 | |
| }
 | |
| 
 | |
| /// createJIT - This is the factory method for creating a JIT for the current
 | |
| /// machine, it does not fall back to the interpreter.  This takes ownership
 | |
| /// of the module.
 | |
| ExecutionEngine *ExecutionEngine::createJIT(Module *M,
 | |
|                                             std::string *ErrorStr,
 | |
|                                             JITMemoryManager *JMM,
 | |
|                                             CodeGenOpt::Level OL,
 | |
|                                             bool GVsWithCode,
 | |
|                                             Reloc::Model RM,
 | |
|                                             CodeModel::Model CMM) {
 | |
|   if (ExecutionEngine::JITCtor == 0) {
 | |
|     if (ErrorStr)
 | |
|       *ErrorStr = "JIT has not been linked in.";
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Use the defaults for extra parameters.  Users can use EngineBuilder to
 | |
|   // set them.
 | |
|   EngineBuilder EB(M);
 | |
|   EB.setEngineKind(EngineKind::JIT);
 | |
|   EB.setErrorStr(ErrorStr);
 | |
|   EB.setRelocationModel(RM);
 | |
|   EB.setCodeModel(CMM);
 | |
|   EB.setAllocateGVsWithCode(GVsWithCode);
 | |
|   EB.setOptLevel(OL);
 | |
|   EB.setJITMemoryManager(JMM);
 | |
| 
 | |
|   // TODO: permit custom TargetOptions here
 | |
|   TargetMachine *TM = EB.selectTarget();
 | |
|   if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
 | |
| 
 | |
|   return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
 | |
| }
 | |
| 
 | |
| ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
 | |
|   OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
 | |
| 
 | |
|   // Make sure we can resolve symbols in the program as well. The zero arg
 | |
|   // to the function tells DynamicLibrary to load the program, not a library.
 | |
|   if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
 | |
|     return 0;
 | |
| 
 | |
|   assert(!(JMM && MCJMM));
 | |
|   
 | |
|   // If the user specified a memory manager but didn't specify which engine to
 | |
|   // create, we assume they only want the JIT, and we fail if they only want
 | |
|   // the interpreter.
 | |
|   if (JMM || MCJMM) {
 | |
|     if (WhichEngine & EngineKind::JIT)
 | |
|       WhichEngine = EngineKind::JIT;
 | |
|     else {
 | |
|       if (ErrorStr)
 | |
|         *ErrorStr = "Cannot create an interpreter with a memory manager.";
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (MCJMM && ! UseMCJIT) {
 | |
|     if (ErrorStr)
 | |
|       *ErrorStr =
 | |
|         "Cannot create a legacy JIT with a runtime dyld memory "
 | |
|         "manager.";
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Unless the interpreter was explicitly selected or the JIT is not linked,
 | |
|   // try making a JIT.
 | |
|   if ((WhichEngine & EngineKind::JIT) && TheTM) {
 | |
|     Triple TT(M->getTargetTriple());
 | |
|     if (!TM->getTarget().hasJIT()) {
 | |
|       errs() << "WARNING: This target JIT is not designed for the host"
 | |
|              << " you are running.  If bad things happen, please choose"
 | |
|              << " a different -march switch.\n";
 | |
|     }
 | |
| 
 | |
|     if (UseMCJIT && ExecutionEngine::MCJITCtor) {
 | |
|       ExecutionEngine *EE =
 | |
|         ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
 | |
|                                    AllocateGVsWithCode, TheTM.take());
 | |
|       if (EE) return EE;
 | |
|     } else if (ExecutionEngine::JITCtor) {
 | |
|       ExecutionEngine *EE =
 | |
|         ExecutionEngine::JITCtor(M, ErrorStr, JMM,
 | |
|                                  AllocateGVsWithCode, TheTM.take());
 | |
|       if (EE) return EE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we can't make a JIT and we didn't request one specifically, try making
 | |
|   // an interpreter instead.
 | |
|   if (WhichEngine & EngineKind::Interpreter) {
 | |
|     if (ExecutionEngine::InterpCtor)
 | |
|       return ExecutionEngine::InterpCtor(M, ErrorStr);
 | |
|     if (ErrorStr)
 | |
|       *ErrorStr = "Interpreter has not been linked in.";
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
 | |
|       ExecutionEngine::MCJITCtor == 0) {
 | |
|     if (ErrorStr)
 | |
|       *ErrorStr = "JIT has not been linked in.";
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
 | |
|   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
 | |
|     return getPointerToFunction(F);
 | |
| 
 | |
|   MutexGuard locked(lock);
 | |
|   if (void *P = EEState.getGlobalAddressMap(locked)[GV])
 | |
|     return P;
 | |
| 
 | |
|   // Global variable might have been added since interpreter started.
 | |
|   if (GlobalVariable *GVar =
 | |
|           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
 | |
|     EmitGlobalVariable(GVar);
 | |
|   else
 | |
|     llvm_unreachable("Global hasn't had an address allocated yet!");
 | |
| 
 | |
|   return EEState.getGlobalAddressMap(locked)[GV];
 | |
| }
 | |
| 
 | |
| /// \brief Converts a Constant* into a GenericValue, including handling of
 | |
| /// ConstantExpr values.
 | |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
 | |
|   // If its undefined, return the garbage.
 | |
|   if (isa<UndefValue>(C)) {
 | |
|     GenericValue Result;
 | |
|     switch (C->getType()->getTypeID()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Type::IntegerTyID:
 | |
|     case Type::X86_FP80TyID:
 | |
|     case Type::FP128TyID:
 | |
|     case Type::PPC_FP128TyID:
 | |
|       // Although the value is undefined, we still have to construct an APInt
 | |
|       // with the correct bit width.
 | |
|       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
 | |
|       break;
 | |
|     case Type::StructTyID: {
 | |
|       // if the whole struct is 'undef' just reserve memory for the value.
 | |
|       if(StructType *STy = dyn_cast<StructType>(C->getType())) {
 | |
|         unsigned int elemNum = STy->getNumElements();
 | |
|         Result.AggregateVal.resize(elemNum);
 | |
|         for (unsigned int i = 0; i < elemNum; ++i) {
 | |
|           Type *ElemTy = STy->getElementType(i);
 | |
|           if (ElemTy->isIntegerTy())
 | |
|             Result.AggregateVal[i].IntVal = 
 | |
|               APInt(ElemTy->getPrimitiveSizeInBits(), 0);
 | |
|           else if (ElemTy->isAggregateType()) {
 | |
|               const Constant *ElemUndef = UndefValue::get(ElemTy);
 | |
|               Result.AggregateVal[i] = getConstantValue(ElemUndef);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case Type::VectorTyID:
 | |
|       // if the whole vector is 'undef' just reserve memory for the value.
 | |
|       const VectorType* VTy = dyn_cast<VectorType>(C->getType());
 | |
|       const Type *ElemTy = VTy->getElementType();
 | |
|       unsigned int elemNum = VTy->getNumElements();
 | |
|       Result.AggregateVal.resize(elemNum);
 | |
|       if (ElemTy->isIntegerTy())
 | |
|         for (unsigned int i = 0; i < elemNum; ++i)
 | |
|           Result.AggregateVal[i].IntVal =
 | |
|             APInt(ElemTy->getPrimitiveSizeInBits(), 0);
 | |
|       break;
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the value is a ConstantExpr...
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     Constant *Op0 = CE->getOperand(0);
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // Compute the index
 | |
|       GenericValue Result = getConstantValue(Op0);
 | |
|       APInt Offset(TD->getPointerSizeInBits(), 0);
 | |
|       cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
 | |
| 
 | |
|       char* tmp = (char*) Result.PointerVal;
 | |
|       Result = PTOGV(tmp + Offset.getSExtValue());
 | |
|       return Result;
 | |
|     }
 | |
|     case Instruction::Trunc: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.trunc(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::ZExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.zext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.sext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPTrunc: {
 | |
|       // FIXME long double
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.FloatVal = float(GV.DoubleVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPExt:{
 | |
|       // FIXME long double
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.DoubleVal = double(GV.FloatVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::UIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType()->isFloatTy())
 | |
|         GV.FloatVal = float(GV.IntVal.roundToDouble());
 | |
|       else if (CE->getType()->isDoubleTy())
 | |
|         GV.DoubleVal = GV.IntVal.roundToDouble();
 | |
|       else if (CE->getType()->isX86_FP80Ty()) {
 | |
|         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
 | |
|         (void)apf.convertFromAPInt(GV.IntVal,
 | |
|                                    false,
 | |
|                                    APFloat::rmNearestTiesToEven);
 | |
|         GV.IntVal = apf.bitcastToAPInt();
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType()->isFloatTy())
 | |
|         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
 | |
|       else if (CE->getType()->isDoubleTy())
 | |
|         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
 | |
|       else if (CE->getType()->isX86_FP80Ty()) {
 | |
|         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
 | |
|         (void)apf.convertFromAPInt(GV.IntVal,
 | |
|                                    true,
 | |
|                                    APFloat::rmNearestTiesToEven);
 | |
|         GV.IntVal = apf.bitcastToAPInt();
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPToUI: // double->APInt conversion handles sign
 | |
|     case Instruction::FPToSI: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       if (Op0->getType()->isFloatTy())
 | |
|         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
 | |
|       else if (Op0->getType()->isDoubleTy())
 | |
|         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
 | |
|       else if (Op0->getType()->isX86_FP80Ty()) {
 | |
|         APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
 | |
|         uint64_t v;
 | |
|         bool ignored;
 | |
|         (void)apf.convertToInteger(&v, BitWidth,
 | |
|                                    CE->getOpcode()==Instruction::FPToSI,
 | |
|                                    APFloat::rmTowardZero, &ignored);
 | |
|         GV.IntVal = v; // endian?
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::PtrToInt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
 | |
|       assert(PtrWidth <= 64 && "Bad pointer width");
 | |
|       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
 | |
|       uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
 | |
|       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::IntToPtr: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
 | |
|       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
 | |
|       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
 | |
|       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::BitCast: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       Type* DestTy = CE->getType();
 | |
|       switch (Op0->getType()->getTypeID()) {
 | |
|         default: llvm_unreachable("Invalid bitcast operand");
 | |
|         case Type::IntegerTyID:
 | |
|           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
 | |
|           if (DestTy->isFloatTy())
 | |
|             GV.FloatVal = GV.IntVal.bitsToFloat();
 | |
|           else if (DestTy->isDoubleTy())
 | |
|             GV.DoubleVal = GV.IntVal.bitsToDouble();
 | |
|           break;
 | |
|         case Type::FloatTyID:
 | |
|           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
 | |
|           GV.IntVal = APInt::floatToBits(GV.FloatVal);
 | |
|           break;
 | |
|         case Type::DoubleTyID:
 | |
|           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
 | |
|           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
 | |
|           break;
 | |
|         case Type::PointerTyID:
 | |
|           assert(DestTy->isPointerTy() && "Invalid bitcast");
 | |
|           break; // getConstantValue(Op0)  above already converted it
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       GenericValue LHS = getConstantValue(Op0);
 | |
|       GenericValue RHS = getConstantValue(CE->getOperand(1));
 | |
|       GenericValue GV;
 | |
|       switch (CE->getOperand(0)->getType()->getTypeID()) {
 | |
|       default: llvm_unreachable("Bad add type!");
 | |
|       case Type::IntegerTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid integer opcode");
 | |
|           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
 | |
|           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
 | |
|           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
 | |
|           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
 | |
|           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
 | |
|           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
 | |
|           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
 | |
|           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
 | |
|           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
 | |
|           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::FloatTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid float opcode");
 | |
|           case Instruction::FAdd:
 | |
|             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
 | |
|           case Instruction::FSub:
 | |
|             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
 | |
|           case Instruction::FMul:
 | |
|             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
 | |
|           case Instruction::FDiv:
 | |
|             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
 | |
|           case Instruction::FRem:
 | |
|             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::DoubleTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid double opcode");
 | |
|           case Instruction::FAdd:
 | |
|             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
 | |
|           case Instruction::FSub:
 | |
|             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
 | |
|           case Instruction::FMul:
 | |
|             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
 | |
|           case Instruction::FDiv:
 | |
|             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
 | |
|           case Instruction::FRem:
 | |
|             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::X86_FP80TyID:
 | |
|       case Type::PPC_FP128TyID:
 | |
|       case Type::FP128TyID: {
 | |
|         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
 | |
|         APFloat apfLHS = APFloat(Sem, LHS.IntVal);
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid long double opcode");
 | |
|           case Instruction::FAdd:
 | |
|             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FSub:
 | |
|             apfLHS.subtract(APFloat(Sem, RHS.IntVal),
 | |
|                             APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FMul:
 | |
|             apfLHS.multiply(APFloat(Sem, RHS.IntVal),
 | |
|                             APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FDiv:
 | |
|             apfLHS.divide(APFloat(Sem, RHS.IntVal),
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FRem:
 | |
|             apfLHS.mod(APFloat(Sem, RHS.IntVal),
 | |
|                        APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SmallString<256> Msg;
 | |
|     raw_svector_ostream OS(Msg);
 | |
|     OS << "ConstantExpr not handled: " << *CE;
 | |
|     report_fatal_error(OS.str());
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have a simple constant.
 | |
|   GenericValue Result;
 | |
|   switch (C->getType()->getTypeID()) {
 | |
|   case Type::FloatTyID:
 | |
|     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
 | |
|     break;
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
 | |
|     break;
 | |
|   case Type::IntegerTyID:
 | |
|     Result.IntVal = cast<ConstantInt>(C)->getValue();
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     if (isa<ConstantPointerNull>(C))
 | |
|       Result.PointerVal = 0;
 | |
|     else if (const Function *F = dyn_cast<Function>(C))
 | |
|       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
 | |
|     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | |
|       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
 | |
|     else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | |
|       Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
 | |
|                                                         BA->getBasicBlock())));
 | |
|     else
 | |
|       llvm_unreachable("Unknown constant pointer type!");
 | |
|     break;
 | |
|   case Type::VectorTyID: {
 | |
|     unsigned elemNum;
 | |
|     Type* ElemTy;
 | |
|     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
 | |
|     const ConstantVector *CV = dyn_cast<ConstantVector>(C);
 | |
|     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
 | |
| 
 | |
|     if (CDV) {
 | |
|         elemNum = CDV->getNumElements();
 | |
|         ElemTy = CDV->getElementType();
 | |
|     } else if (CV || CAZ) {
 | |
|         VectorType* VTy = dyn_cast<VectorType>(C->getType());
 | |
|         elemNum = VTy->getNumElements();
 | |
|         ElemTy = VTy->getElementType();
 | |
|     } else {
 | |
|         llvm_unreachable("Unknown constant vector type!");
 | |
|     }
 | |
| 
 | |
|     Result.AggregateVal.resize(elemNum);
 | |
|     // Check if vector holds floats.
 | |
|     if(ElemTy->isFloatTy()) {
 | |
|       if (CAZ) {
 | |
|         GenericValue floatZero;
 | |
|         floatZero.FloatVal = 0.f;
 | |
|         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
 | |
|                   floatZero);
 | |
|         break;
 | |
|       }
 | |
|       if(CV) {
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           if (!isa<UndefValue>(CV->getOperand(i)))
 | |
|             Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
 | |
|               CV->getOperand(i))->getValueAPF().convertToFloat();
 | |
|         break;
 | |
|       }
 | |
|       if(CDV)
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     // Check if vector holds doubles.
 | |
|     if (ElemTy->isDoubleTy()) {
 | |
|       if (CAZ) {
 | |
|         GenericValue doubleZero;
 | |
|         doubleZero.DoubleVal = 0.0;
 | |
|         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
 | |
|                   doubleZero);
 | |
|         break;
 | |
|       }
 | |
|       if(CV) {
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           if (!isa<UndefValue>(CV->getOperand(i)))
 | |
|             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
 | |
|               CV->getOperand(i))->getValueAPF().convertToDouble();
 | |
|         break;
 | |
|       }
 | |
|       if(CDV)
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     // Check if vector holds integers.
 | |
|     if (ElemTy->isIntegerTy()) {
 | |
|       if (CAZ) {
 | |
|         GenericValue intZero;     
 | |
|         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
 | |
|         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
 | |
|                   intZero);
 | |
|         break;
 | |
|       }
 | |
|       if(CV) {
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           if (!isa<UndefValue>(CV->getOperand(i)))
 | |
|             Result.AggregateVal[i].IntVal = cast<ConstantInt>(
 | |
|                                             CV->getOperand(i))->getValue();
 | |
|           else {
 | |
|             Result.AggregateVal[i].IntVal =
 | |
|               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
 | |
|           }
 | |
|         break;
 | |
|       }
 | |
|       if(CDV)
 | |
|         for (unsigned i = 0; i < elemNum; ++i)
 | |
|           Result.AggregateVal[i].IntVal = APInt(
 | |
|             CDV->getElementType()->getPrimitiveSizeInBits(),
 | |
|             CDV->getElementAsInteger(i));
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     llvm_unreachable("Unknown constant pointer type!");
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   default:
 | |
|     SmallString<256> Msg;
 | |
|     raw_svector_ostream OS(Msg);
 | |
|     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
 | |
|     report_fatal_error(OS.str());
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
 | |
| /// with the integer held in IntVal.
 | |
| static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
 | |
|                              unsigned StoreBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
 | |
|   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
 | |
| 
 | |
|   if (sys::IsLittleEndianHost) {
 | |
|     // Little-endian host - the source is ordered from LSB to MSB.  Order the
 | |
|     // destination from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, StoreBytes);
 | |
|   } else {
 | |
|     // Big-endian host - the source is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
 | |
|     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
 | |
|     while (StoreBytes > sizeof(uint64_t)) {
 | |
|       StoreBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
 | |
|       Src += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
 | |
|                                          GenericValue *Ptr, Type *Ty) {
 | |
|   const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     dbgs() << "Cannot store value of type " << *Ty << "!\n";
 | |
|     break;
 | |
|   case Type::IntegerTyID:
 | |
|     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     *((float*)Ptr) = Val.FloatVal;
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     *((double*)Ptr) = Val.DoubleVal;
 | |
|     break;
 | |
|   case Type::X86_FP80TyID:
 | |
|     memcpy(Ptr, Val.IntVal.getRawData(), 10);
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
 | |
|     if (StoreBytes != sizeof(PointerTy))
 | |
|       memset(&(Ptr->PointerVal), 0, StoreBytes);
 | |
| 
 | |
|     *((PointerTy*)Ptr) = Val.PointerVal;
 | |
|     break;
 | |
|   case Type::VectorTyID:
 | |
|     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
 | |
|       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
 | |
|         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
 | |
|       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
 | |
|         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
 | |
|       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
 | |
|         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
 | |
|         StoreIntToMemory(Val.AggregateVal[i].IntVal, 
 | |
|           (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
 | |
|     // Host and target are different endian - reverse the stored bytes.
 | |
|     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
 | |
| }
 | |
| 
 | |
| /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
 | |
| /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 | |
| static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
 | |
|   uint8_t *Dst = reinterpret_cast<uint8_t *>(
 | |
|                    const_cast<uint64_t *>(IntVal.getRawData()));
 | |
| 
 | |
|   if (sys::IsLittleEndianHost)
 | |
|     // Little-endian host - the destination must be ordered from LSB to MSB.
 | |
|     // The source is ordered from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, LoadBytes);
 | |
|   else {
 | |
|     // Big-endian - the destination is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
 | |
|     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
 | |
|     // a word.
 | |
|     while (LoadBytes > sizeof(uint64_t)) {
 | |
|       LoadBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
 | |
|       Dst += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FIXME: document
 | |
| ///
 | |
| void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
 | |
|                                           GenericValue *Ptr,
 | |
|                                           Type *Ty) {
 | |
|   const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     // An APInt with all words initially zero.
 | |
|     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
 | |
|     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     Result.FloatVal = *((float*)Ptr);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = *((double*)Ptr);
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     Result.PointerVal = *((PointerTy*)Ptr);
 | |
|     break;
 | |
|   case Type::X86_FP80TyID: {
 | |
|     // This is endian dependent, but it will only work on x86 anyway.
 | |
|     // FIXME: Will not trap if loading a signaling NaN.
 | |
|     uint64_t y[2];
 | |
|     memcpy(y, Ptr, 10);
 | |
|     Result.IntVal = APInt(80, y);
 | |
|     break;
 | |
|   }
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *VT = cast<VectorType>(Ty);
 | |
|     const Type *ElemT = VT->getElementType();
 | |
|     const unsigned numElems = VT->getNumElements();
 | |
|     if (ElemT->isFloatTy()) {
 | |
|       Result.AggregateVal.resize(numElems);
 | |
|       for (unsigned i = 0; i < numElems; ++i)
 | |
|         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
 | |
|     }
 | |
|     if (ElemT->isDoubleTy()) {
 | |
|       Result.AggregateVal.resize(numElems);
 | |
|       for (unsigned i = 0; i < numElems; ++i)
 | |
|         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
 | |
|     }
 | |
|     if (ElemT->isIntegerTy()) {
 | |
|       GenericValue intZero;
 | |
|       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
 | |
|       intZero.IntVal = APInt(elemBitWidth, 0);
 | |
|       Result.AggregateVal.resize(numElems, intZero);
 | |
|       for (unsigned i = 0; i < numElems; ++i)
 | |
|         LoadIntFromMemory(Result.AggregateVal[i].IntVal,
 | |
|           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
 | |
|     }
 | |
|   break;
 | |
|   }
 | |
|   default:
 | |
|     SmallString<256> Msg;
 | |
|     raw_svector_ostream OS(Msg);
 | |
|     OS << "Cannot load value of type " << *Ty << "!";
 | |
|     report_fatal_error(OS.str());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
 | |
|   DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
 | |
|   DEBUG(Init->dump());
 | |
|   if (isa<UndefValue>(Init))
 | |
|     return;
 | |
|   
 | |
|   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
 | |
|     unsigned ElementSize =
 | |
|       getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<ConstantAggregateZero>(Init)) {
 | |
|     memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
 | |
|     unsigned ElementSize =
 | |
|       getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
 | |
|     const StructLayout *SL =
 | |
|       getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
 | |
|     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantDataSequential *CDS =
 | |
|                dyn_cast<ConstantDataSequential>(Init)) {
 | |
|     // CDS is already laid out in host memory order.
 | |
|     StringRef Data = CDS->getRawDataValues();
 | |
|     memcpy(Addr, Data.data(), Data.size());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Init->getType()->isFirstClassType()) {
 | |
|     GenericValue Val = getConstantValue(Init);
 | |
|     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
 | |
|   llvm_unreachable("Unknown constant type to initialize memory with!");
 | |
| }
 | |
| 
 | |
| /// EmitGlobals - Emit all of the global variables to memory, storing their
 | |
| /// addresses into GlobalAddress.  This must make sure to copy the contents of
 | |
| /// their initializers into the memory.
 | |
| void ExecutionEngine::emitGlobals() {
 | |
|   // Loop over all of the global variables in the program, allocating the memory
 | |
|   // to hold them.  If there is more than one module, do a prepass over globals
 | |
|   // to figure out how the different modules should link together.
 | |
|   std::map<std::pair<std::string, Type*>,
 | |
|            const GlobalValue*> LinkedGlobalsMap;
 | |
| 
 | |
|   if (Modules.size() != 1) {
 | |
|     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|       Module &M = *Modules[m];
 | |
|       for (Module::const_global_iterator I = M.global_begin(),
 | |
|            E = M.global_end(); I != E; ++I) {
 | |
|         const GlobalValue *GV = I;
 | |
|         if (GV->hasLocalLinkage() || GV->isDeclaration() ||
 | |
|             GV->hasAppendingLinkage() || !GV->hasName())
 | |
|           continue;// Ignore external globals and globals with internal linkage.
 | |
| 
 | |
|         const GlobalValue *&GVEntry =
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
| 
 | |
|         // If this is the first time we've seen this global, it is the canonical
 | |
|         // version.
 | |
|         if (!GVEntry) {
 | |
|           GVEntry = GV;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If the existing global is strong, never replace it.
 | |
|         if (GVEntry->hasExternalLinkage())
 | |
|           continue;
 | |
| 
 | |
|         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
 | |
|         // symbol.  FIXME is this right for common?
 | |
|         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
 | |
|           GVEntry = GV;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::vector<const GlobalValue*> NonCanonicalGlobals;
 | |
|   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|     Module &M = *Modules[m];
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       // In the multi-module case, see what this global maps to.
 | |
|       if (!LinkedGlobalsMap.empty()) {
 | |
|         if (const GlobalValue *GVEntry =
 | |
|               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
 | |
|           // If something else is the canonical global, ignore this one.
 | |
|           if (GVEntry != &*I) {
 | |
|             NonCanonicalGlobals.push_back(I);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!I->isDeclaration()) {
 | |
|         addGlobalMapping(I, getMemoryForGV(I));
 | |
|       } else {
 | |
|         // External variable reference. Try to use the dynamic loader to
 | |
|         // get a pointer to it.
 | |
|         if (void *SymAddr =
 | |
|             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
 | |
|           addGlobalMapping(I, SymAddr);
 | |
|         else {
 | |
|           report_fatal_error("Could not resolve external global address: "
 | |
|                             +I->getName());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If there are multiple modules, map the non-canonical globals to their
 | |
|     // canonical location.
 | |
|     if (!NonCanonicalGlobals.empty()) {
 | |
|       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
 | |
|         const GlobalValue *GV = NonCanonicalGlobals[i];
 | |
|         const GlobalValue *CGV =
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
|         void *Ptr = getPointerToGlobalIfAvailable(CGV);
 | |
|         assert(Ptr && "Canonical global wasn't codegen'd!");
 | |
|         addGlobalMapping(GV, Ptr);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that all of the globals are set up in memory, loop through them all
 | |
|     // and initialize their contents.
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->isDeclaration()) {
 | |
|         if (!LinkedGlobalsMap.empty()) {
 | |
|           if (const GlobalValue *GVEntry =
 | |
|                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
 | |
|             if (GVEntry != &*I)  // Not the canonical variable.
 | |
|               continue;
 | |
|         }
 | |
|         EmitGlobalVariable(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitGlobalVariable - This method emits the specified global variable to the
 | |
| // address specified in GlobalAddresses, or allocates new memory if it's not
 | |
| // already in the map.
 | |
| void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   void *GA = getPointerToGlobalIfAvailable(GV);
 | |
| 
 | |
|   if (GA == 0) {
 | |
|     // If it's not already specified, allocate memory for the global.
 | |
|     GA = getMemoryForGV(GV);
 | |
| 
 | |
|     // If we failed to allocate memory for this global, return.
 | |
|     if (GA == 0) return;
 | |
| 
 | |
|     addGlobalMapping(GV, GA);
 | |
|   }
 | |
| 
 | |
|   // Don't initialize if it's thread local, let the client do it.
 | |
|   if (!GV->isThreadLocal())
 | |
|     InitializeMemory(GV->getInitializer(), GA);
 | |
| 
 | |
|   Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
 | |
|   NumInitBytes += (unsigned)GVSize;
 | |
|   ++NumGlobals;
 | |
| }
 | |
| 
 | |
| ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
 | |
|   : EE(EE), GlobalAddressMap(this) {
 | |
| }
 | |
| 
 | |
| sys::Mutex *
 | |
| ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
 | |
|   return &EES->EE.lock;
 | |
| }
 | |
| 
 | |
| void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
 | |
|                                                       const GlobalValue *Old) {
 | |
|   void *OldVal = EES->GlobalAddressMap.lookup(Old);
 | |
|   EES->GlobalAddressReverseMap.erase(OldVal);
 | |
| }
 | |
| 
 | |
| void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
 | |
|                                                     const GlobalValue *,
 | |
|                                                     const GlobalValue *) {
 | |
|   llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
 | |
|                    " RAUW on a value it has a global mapping for.");
 | |
| }
 |