llvm-6502/lib/Bytecode/Writer/Writer.cpp
Chris Lattner 83bb3d2f4e The new bytecode format supports emitting strings a special case. This is
intended to save size (and does on small programs), but on big programs it
actually increases the size of the program slightly.  The deal is that many
functions end up using the characters that the string contained, and the
characters are no longer in the global constant table, so they have to be
emitted in function specific constant pools.

This pessimization will be fixed in subsequent patches.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10864 91177308-0d34-0410-b5e6-96231b3b80d8
2004-01-14 23:36:54 +00:00

354 lines
13 KiB
C++

//===-- Writer.cpp - Library for writing LLVM bytecode files --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Writer.h
//
// Note that this file uses an unusual technique of outputting all the bytecode
// to a deque of unsigned char, then copies the deque to an ostream. The
// reason for this is that we must do "seeking" in the stream to do back-
// patching, and some very important ostreams that we want to support (like
// pipes) do not support seeking. :( :( :(
//
// The choice of the deque data structure is influenced by the extremely fast
// "append" speed, plus the free "seek"/replace in the middle of the stream. I
// didn't use a vector because the stream could end up very large and copying
// the whole thing to reallocate would be kinda silly.
//
//===----------------------------------------------------------------------===//
#include "WriterInternals.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include "Support/Debug.h"
#include <cstring>
#include <algorithm>
using namespace llvm;
static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
static Statistic<>
BytesWritten("bytecodewriter", "Number of bytecode bytes written");
static Statistic<>
ConstantTotalBytes("bytecodewriter", "Bytes of constants total");
static Statistic<>
FunctionConstantTotalBytes("bytecodewriter", "Bytes of function constants total");
static Statistic<>
ConstantPlaneHeaderBytes("bytecodewriter", "Constant plane header bytes");
static Statistic<>
InstructionBytes("bytecodewriter", "Bytes of bytes of instructions");
static Statistic<>
SymTabBytes("bytecodewriter", "Bytes of symbol table");
static Statistic<>
ModuleInfoBytes("bytecodewriter", "Bytes of module info");
BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
: Out(o), Table(M, true) {
// Emit the signature...
static const unsigned char *Sig = (const unsigned char*)"llvm";
output_data(Sig, Sig+4, Out);
// Emit the top level CLASS block.
BytecodeBlock ModuleBlock(BytecodeFormat::Module, Out);
bool isBigEndian = M->getEndianness() == Module::BigEndian;
bool hasLongPointers = M->getPointerSize() == Module::Pointer64;
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
// Output the version identifier... we are currently on bytecode version #1,
// which corresponds to LLVM v1.2.
unsigned Version = (1 << 4) | isBigEndian | (hasLongPointers << 1) |
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
output_vbr(Version, Out);
align32(Out);
{
BytecodeBlock CPool(BytecodeFormat::GlobalTypePlane, Out);
// Write the type plane for types first because earlier planes (e.g. for a
// primitive type like float) may have constants constructed using types
// coming later (e.g., via getelementptr from a pointer type). The type
// plane is needed before types can be fwd or bkwd referenced.
const std::vector<const Value*> &Plane = Table.getPlane(Type::TypeTyID);
assert(!Plane.empty() && "No types at all?");
unsigned ValNo = Type::FirstDerivedTyID; // Start at the derived types...
outputConstantsInPlane(Plane, ValNo); // Write out the types
}
DEBUG(for (unsigned i = 0; i != Type::TypeTyID; ++i)
if (Table.getPlane(i).size())
std::cerr << " ModuleLevel["
<< *Type::getPrimitiveType((Type::PrimitiveID)i)
<< "] = " << Table.getPlane(i).size() << "\n");
// The ModuleInfoBlock follows directly after the type information
outputModuleInfoBlock(M);
// Output module level constants, used for global variable initializers
outputConstants(false);
// Do the whole module now! Process each function at a time...
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
outputFunction(I);
// If needed, output the symbol table for the module...
outputSymbolTable(M->getSymbolTable());
}
// Helper function for outputConstants().
// Writes out all the constants in the plane Plane starting at entry StartNo.
//
void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*>
&Plane, unsigned StartNo) {
unsigned ValNo = StartNo;
// Scan through and ignore function arguments, global values, and constant
// strings.
for (; ValNo < Plane.size() &&
(isa<Argument>(Plane[ValNo]) || isa<GlobalValue>(Plane[ValNo]) ||
(isa<ConstantArray>(Plane[ValNo]) &&
cast<ConstantArray>(Plane[ValNo])->isString())); ValNo++)
/*empty*/;
unsigned NC = ValNo; // Number of constants
for (; NC < Plane.size() &&
(isa<Constant>(Plane[NC]) || isa<Type>(Plane[NC])); NC++)
/*empty*/;
NC -= ValNo; // Convert from index into count
if (NC == 0) return; // Skip empty type planes...
// FIXME: Most slabs only have 1 or 2 entries! We should encode this much
// more compactly.
ConstantPlaneHeaderBytes -= Out.size();
// Output type header: [num entries][type id number]
//
output_vbr(NC, Out);
// Output the Type ID Number...
int Slot = Table.getSlot(Plane.front()->getType());
assert (Slot != -1 && "Type in constant pool but not in function!!");
output_vbr((unsigned)Slot, Out);
ConstantPlaneHeaderBytes += Out.size();
//cerr << "Emitting " << NC << " constants of type '"
// << Plane.front()->getType()->getName() << "' = Slot #" << Slot << "\n";
for (unsigned i = ValNo; i < ValNo+NC; ++i) {
const Value *V = Plane[i];
if (const Constant *CPV = dyn_cast<Constant>(V)) {
//cerr << "Serializing value: <" << V->getType() << ">: " << V << ":"
// << Out.size() << "\n";
outputConstant(CPV);
} else {
outputType(cast<Type>(V));
}
}
}
void BytecodeWriter::outputConstants(bool isFunction) {
ConstantTotalBytes -= Out.size();
if (isFunction) FunctionConstantTotalBytes -= Out.size();
BytecodeBlock CPool(BytecodeFormat::ConstantPool, Out);
unsigned NumPlanes = Table.getNumPlanes();
// Output the type plane before any constants!
if (isFunction && NumPlanes > Type::TypeTyID) {
const std::vector<const Value*> &Plane = Table.getPlane(Type::TypeTyID);
if (!Plane.empty()) { // Skip empty type planes...
unsigned ValNo = Table.getModuleLevel(Type::TypeTyID);
outputConstantsInPlane(Plane, ValNo);
}
}
// Output module-level string constants before any other constants.x
if (!isFunction)
outputConstantStrings();
for (unsigned pno = 0; pno != NumPlanes; pno++)
if (pno != Type::TypeTyID) { // Type plane handled above.
const std::vector<const Value*> &Plane = Table.getPlane(pno);
if (!Plane.empty()) { // Skip empty type planes...
unsigned ValNo = 0;
if (isFunction) // Don't re-emit module constants
ValNo += Table.getModuleLevel(pno);
if (pno >= Type::FirstDerivedTyID) {
// Skip zero initializer
if (ValNo == 0)
ValNo = 1;
}
// Write out constants in the plane
outputConstantsInPlane(Plane, ValNo);
}
}
ConstantTotalBytes += Out.size();
if (isFunction) FunctionConstantTotalBytes += Out.size();
}
static unsigned getEncodedLinkage(const GlobalValue *GV) {
switch (GV->getLinkage()) {
default: assert(0 && "Invalid linkage!");
case GlobalValue::ExternalLinkage: return 0;
case GlobalValue::WeakLinkage: return 1;
case GlobalValue::AppendingLinkage: return 2;
case GlobalValue::InternalLinkage: return 3;
case GlobalValue::LinkOnceLinkage: return 4;
}
}
void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
ModuleInfoBytes -= Out.size();
BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfo, Out);
// Output the types for the global variables in the module...
for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Module global vars is broken!");
// Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage,
// bit5+ = Slot # for type
unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
(I->hasInitializer() << 1) | I->isConstant();
output_vbr(oSlot, Out);
// If we have an initializer, output it now.
if (I->hasInitializer()) {
Slot = Table.getSlot((Value*)I->getInitializer());
assert(Slot != -1 && "No slot for global var initializer!");
output_vbr((unsigned)Slot, Out);
}
}
output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
// Output the types of the functions in this module...
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Module const pool is broken!");
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
output_vbr((unsigned)Slot, Out);
}
output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
align32(Out);
ModuleInfoBytes += Out.size();
}
void BytecodeWriter::outputFunction(const Function *F) {
BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out);
output_vbr(getEncodedLinkage(F), Out);
// Only output the constant pool and other goodies if needed...
if (!F->isExternal()) {
// Get slot information about the function...
Table.incorporateFunction(F);
// Output information about the constants in the function...
outputConstants(true);
{ // Output all of the instructions in the body of the function
BytecodeBlock ILBlock(BytecodeFormat::InstructionList, Out);
InstructionBytes -= Out.size();
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E;++BB)
for(BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I)
processInstruction(*I);
InstructionBytes += Out.size();
}
// If needed, output the symbol table for the function...
outputSymbolTable(F->getSymbolTable());
Table.purgeFunction();
}
}
void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
// Do not output the Bytecode block for an empty symbol table, it just wastes
// space!
if (MST.begin() == MST.end()) return;
SymTabBytes -= Out.size();
BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTable, Out);
for (SymbolTable::const_iterator TI = MST.begin(); TI != MST.end(); ++TI) {
SymbolTable::type_const_iterator I = MST.type_begin(TI->first);
SymbolTable::type_const_iterator End = MST.type_end(TI->first);
int Slot;
if (I == End) continue; // Don't mess with an absent type...
// Symtab block header: [num entries][type id number]
output_vbr(MST.type_size(TI->first), Out);
Slot = Table.getSlot(TI->first);
assert(Slot != -1 && "Type in symtab, but not in table!");
output_vbr((unsigned)Slot, Out);
for (; I != End; ++I) {
// Symtab entry: [def slot #][name]
Slot = Table.getSlot(I->second);
assert(Slot != -1 && "Value in symtab but has no slot number!!");
output_vbr((unsigned)Slot, Out);
output(I->first, Out, false); // Don't force alignment...
}
}
SymTabBytes += Out.size();
}
void llvm::WriteBytecodeToFile(const Module *C, std::ostream &Out) {
assert(C && "You can't write a null module!!");
std::deque<unsigned char> Buffer;
// This object populates buffer for us...
BytecodeWriter BCW(Buffer, C);
// Keep track of how much we've written...
BytesWritten += Buffer.size();
// Okay, write the deque out to the ostream now... the deque is not
// sequential in memory, however, so write out as much as possible in big
// chunks, until we're done.
//
std::deque<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end();
while (I != E) { // Loop until it's all written
// Scan to see how big this chunk is...
const unsigned char *ChunkPtr = &*I;
const unsigned char *LastPtr = ChunkPtr;
while (I != E) {
const unsigned char *ThisPtr = &*++I;
if (LastPtr+1 != ThisPtr) { // Advanced by more than a byte of memory?
++LastPtr;
break;
}
LastPtr = ThisPtr;
}
// Write out the chunk...
Out.write((char*)ChunkPtr, LastPtr-ChunkPtr);
}
Out.flush();
}