mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
342e3161d9
register dependency (rather than glue them together). This is general goodness as it gives scheduler more freedom. However it is motivated by a nasty bug in isel. When a i64 sub is expanded to subc + sube. libcall #1 \ \ subc \ / \ \ / \ \ / libcall #2 sube If the libcalls are not serialized (i.e. both have chains which are dag entry), legalizer can serialize them in arbitrary orders. If it's unlucky, it can force libcall #2 before libcall #1 in the above case. subc | libcall #2 | libcall #1 | sube However since subc and sube are "glued" together, this ends up being a cycle when the scheduler combine subc and sube as a single scheduling unit. The right solution is to fix LegalizeType too chains the libcalls together. However, LegalizeType is not processing nodes in order so that's harder than it should be. For now, the move to physical register dependency will do. rdar://10019576 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138791 91177308-0d34-0410-b5e6-96231b3b80d8
353 lines
14 KiB
TableGen
353 lines
14 KiB
TableGen
//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Declarations that describe the ARM register file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Registers are identified with 4-bit ID numbers.
|
|
class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
|
|
field bits<4> Num;
|
|
let Namespace = "ARM";
|
|
let SubRegs = subregs;
|
|
}
|
|
|
|
class ARMFReg<bits<6> num, string n> : Register<n> {
|
|
field bits<6> Num;
|
|
let Namespace = "ARM";
|
|
}
|
|
|
|
// Subregister indices.
|
|
let Namespace = "ARM" in {
|
|
// Note: Code depends on these having consecutive numbers.
|
|
def ssub_0 : SubRegIndex;
|
|
def ssub_1 : SubRegIndex;
|
|
def ssub_2 : SubRegIndex; // In a Q reg.
|
|
def ssub_3 : SubRegIndex;
|
|
|
|
def dsub_0 : SubRegIndex;
|
|
def dsub_1 : SubRegIndex;
|
|
def dsub_2 : SubRegIndex;
|
|
def dsub_3 : SubRegIndex;
|
|
def dsub_4 : SubRegIndex;
|
|
def dsub_5 : SubRegIndex;
|
|
def dsub_6 : SubRegIndex;
|
|
def dsub_7 : SubRegIndex;
|
|
|
|
def qsub_0 : SubRegIndex;
|
|
def qsub_1 : SubRegIndex;
|
|
def qsub_2 : SubRegIndex;
|
|
def qsub_3 : SubRegIndex;
|
|
|
|
def qqsub_0 : SubRegIndex;
|
|
def qqsub_1 : SubRegIndex;
|
|
}
|
|
|
|
// Integer registers
|
|
def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>;
|
|
def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>;
|
|
def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>;
|
|
def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>;
|
|
def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>;
|
|
def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>;
|
|
def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>;
|
|
def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>;
|
|
// These require 32-bit instructions.
|
|
let CostPerUse = 1 in {
|
|
def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>;
|
|
def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>;
|
|
def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
|
|
def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
|
|
def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
|
|
def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>;
|
|
def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>;
|
|
def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>;
|
|
}
|
|
|
|
// Float registers
|
|
def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">;
|
|
def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">;
|
|
def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">;
|
|
def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">;
|
|
def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">;
|
|
def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
|
|
def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
|
|
def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
|
|
def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
|
|
def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
|
|
def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
|
|
def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
|
|
def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
|
|
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
|
|
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
|
|
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
|
|
|
|
// Aliases of the F* registers used to hold 64-bit fp values (doubles)
|
|
let SubRegIndices = [ssub_0, ssub_1] in {
|
|
def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>;
|
|
def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>;
|
|
def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>;
|
|
def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>;
|
|
def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>;
|
|
def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>;
|
|
def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>;
|
|
def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>;
|
|
def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>;
|
|
def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>;
|
|
def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
|
|
def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
|
|
def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
|
|
def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
|
|
def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
|
|
def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
|
|
}
|
|
|
|
// VFP3 defines 16 additional double registers
|
|
def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
|
|
def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
|
|
def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
|
|
def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
|
|
def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
|
|
def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
|
|
def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
|
|
def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
|
|
def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
|
|
def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
|
|
def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
|
|
def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
|
|
def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
|
|
def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
|
|
def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
|
|
def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
|
|
|
|
// Advanced SIMD (NEON) defines 16 quad-word aliases
|
|
let SubRegIndices = [dsub_0, dsub_1],
|
|
CompositeIndices = [(ssub_2 dsub_1, ssub_0),
|
|
(ssub_3 dsub_1, ssub_1)] in {
|
|
def Q0 : ARMReg< 0, "q0", [D0, D1]>;
|
|
def Q1 : ARMReg< 1, "q1", [D2, D3]>;
|
|
def Q2 : ARMReg< 2, "q2", [D4, D5]>;
|
|
def Q3 : ARMReg< 3, "q3", [D6, D7]>;
|
|
def Q4 : ARMReg< 4, "q4", [D8, D9]>;
|
|
def Q5 : ARMReg< 5, "q5", [D10, D11]>;
|
|
def Q6 : ARMReg< 6, "q6", [D12, D13]>;
|
|
def Q7 : ARMReg< 7, "q7", [D14, D15]>;
|
|
}
|
|
let SubRegIndices = [dsub_0, dsub_1] in {
|
|
def Q8 : ARMReg< 8, "q8", [D16, D17]>;
|
|
def Q9 : ARMReg< 9, "q9", [D18, D19]>;
|
|
def Q10 : ARMReg<10, "q10", [D20, D21]>;
|
|
def Q11 : ARMReg<11, "q11", [D22, D23]>;
|
|
def Q12 : ARMReg<12, "q12", [D24, D25]>;
|
|
def Q13 : ARMReg<13, "q13", [D26, D27]>;
|
|
def Q14 : ARMReg<14, "q14", [D28, D29]>;
|
|
def Q15 : ARMReg<15, "q15", [D30, D31]>;
|
|
}
|
|
|
|
// Pseudo 256-bit registers to represent pairs of Q registers. These should
|
|
// never be present in the emitted code.
|
|
// These are used for NEON load / store instructions, e.g., vld4, vst3.
|
|
// NOTE: It's possible to define more QQ registers since technically the
|
|
// starting D register number doesn't have to be multiple of 4, e.g.,
|
|
// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
|
|
// stuff very messy.
|
|
let SubRegIndices = [qsub_0, qsub_1],
|
|
CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
|
|
def QQ0 : ARMReg<0, "qq0", [Q0, Q1]>;
|
|
def QQ1 : ARMReg<1, "qq1", [Q2, Q3]>;
|
|
def QQ2 : ARMReg<2, "qq2", [Q4, Q5]>;
|
|
def QQ3 : ARMReg<3, "qq3", [Q6, Q7]>;
|
|
def QQ4 : ARMReg<4, "qq4", [Q8, Q9]>;
|
|
def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
|
|
def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
|
|
def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
|
|
}
|
|
|
|
// Pseudo 512-bit registers to represent four consecutive Q registers.
|
|
let SubRegIndices = [qqsub_0, qqsub_1],
|
|
CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
|
|
(dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
|
|
(dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in {
|
|
def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
|
|
def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
|
|
def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
|
|
def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
|
|
}
|
|
|
|
// Current Program Status Register.
|
|
def CPSR : ARMReg<0, "cpsr">;
|
|
def APSR : ARMReg<1, "apsr">;
|
|
def SPSR : ARMReg<2, "spsr">;
|
|
def FPSCR : ARMReg<3, "fpscr">;
|
|
def ITSTATE : ARMReg<4, "itstate">;
|
|
|
|
// Special Registers - only available in privileged mode.
|
|
def FPSID : ARMReg<0, "fpsid">;
|
|
def FPEXC : ARMReg<8, "fpexc">;
|
|
|
|
// Register classes.
|
|
//
|
|
// pc == Program Counter
|
|
// lr == Link Register
|
|
// sp == Stack Pointer
|
|
// r12 == ip (scratch)
|
|
// r7 == Frame Pointer (thumb-style backtraces)
|
|
// r9 == May be reserved as Thread Register
|
|
// r11 == Frame Pointer (arm-style backtraces)
|
|
// r10 == Stack Limit
|
|
//
|
|
def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
|
|
SP, LR, PC)> {
|
|
// Allocate LR as the first CSR since it is always saved anyway.
|
|
// For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
|
|
// know how to spill them. If we make our prologue/epilogue code smarter at
|
|
// some point, we can go back to using the above allocation orders for the
|
|
// Thumb1 instructions that know how to use hi regs.
|
|
let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
|
|
let AltOrderSelect = [{
|
|
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}];
|
|
}
|
|
|
|
// GPRs without the PC. Some ARM instructions do not allow the PC in
|
|
// certain operand slots, particularly as the destination. Primarily
|
|
// useful for disassembly.
|
|
def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
|
|
let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
|
|
let AltOrderSelect = [{
|
|
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}];
|
|
}
|
|
|
|
// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
|
|
// implied SP argument list.
|
|
// FIXME: It would be better to not use this at all and refactor the
|
|
// instructions to not have SP an an explicit argument. That makes
|
|
// frame index resolution a bit trickier, though.
|
|
def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>;
|
|
|
|
// restricted GPR register class. Many Thumb2 instructions allow the full
|
|
// register range for operands, but have undefined behaviours when PC
|
|
// or SP (R13 or R15) are used. The ARM ISA refers to these operands
|
|
// via the BadReg() pseudo-code description.
|
|
def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
|
|
let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
|
|
let AltOrderSelect = [{
|
|
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}];
|
|
}
|
|
|
|
// Thumb registers are R0-R7 normally. Some instructions can still use
|
|
// the general GPR register class above (MOV, e.g.)
|
|
def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>;
|
|
|
|
// The high registers in thumb mode, R8-R15.
|
|
def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>;
|
|
|
|
// For tail calls, we can't use callee-saved registers, as they are restored
|
|
// to the saved value before the tail call, which would clobber a call address.
|
|
// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
|
|
// this class and the preceding one(!) This is what we want.
|
|
def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R9, R12)> {
|
|
let AltOrders = [(and tcGPR, tGPR)];
|
|
let AltOrderSelect = [{
|
|
return MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}];
|
|
}
|
|
|
|
// Scalar single precision floating point register class..
|
|
def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)>;
|
|
|
|
// Subset of SPR which can be used as a source of NEON scalars for 16-bit
|
|
// operations
|
|
def SPR_8 : RegisterClass<"ARM", [f32], 32, (trunc SPR, 16)>;
|
|
|
|
// Scalar double precision floating point / generic 64-bit vector register
|
|
// class.
|
|
// ARM requires only word alignment for double. It's more performant if it
|
|
// is double-word alignment though.
|
|
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
|
|
(sequence "D%u", 0, 31)> {
|
|
// Allocate non-VFP2 registers D16-D31 first.
|
|
let AltOrders = [(rotl DPR, 16)];
|
|
let AltOrderSelect = [{ return 1; }];
|
|
}
|
|
|
|
// Subset of DPR that are accessible with VFP2 (and so that also have
|
|
// 32-bit SPR subregs).
|
|
def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
|
|
(trunc DPR, 16)> {
|
|
let SubRegClasses = [(SPR ssub_0, ssub_1)];
|
|
}
|
|
|
|
// Subset of DPR which can be used as a source of NEON scalars for 16-bit
|
|
// operations
|
|
def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
|
|
(trunc DPR, 8)> {
|
|
let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
|
|
}
|
|
|
|
// Generic 128-bit vector register class.
|
|
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
|
|
(sequence "Q%u", 0, 15)> {
|
|
let SubRegClasses = [(DPR dsub_0, dsub_1)];
|
|
// Allocate non-VFP2 aliases Q8-Q15 first.
|
|
let AltOrders = [(rotl QPR, 8)];
|
|
let AltOrderSelect = [{ return 1; }];
|
|
}
|
|
|
|
// Subset of QPR that have 32-bit SPR subregs.
|
|
def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
128, (trunc QPR, 8)> {
|
|
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3),
|
|
(DPR_VFP2 dsub_0, dsub_1)];
|
|
}
|
|
|
|
// Subset of QPR that have DPR_8 and SPR_8 subregs.
|
|
def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
128, (trunc QPR, 4)> {
|
|
let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
|
|
(DPR_8 dsub_0, dsub_1)];
|
|
}
|
|
|
|
// Pseudo 256-bit vector register class to model pairs of Q registers
|
|
// (4 consecutive D registers).
|
|
def QQPR : RegisterClass<"ARM", [v4i64], 256, (sequence "QQ%u", 0, 7)> {
|
|
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
|
|
(QPR qsub_0, qsub_1)];
|
|
// Allocate non-VFP2 aliases first.
|
|
let AltOrders = [(rotl QQPR, 4)];
|
|
let AltOrderSelect = [{ return 1; }];
|
|
}
|
|
|
|
// Subset of QQPR that have 32-bit SPR subregs.
|
|
def QQPR_VFP2 : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 4)> {
|
|
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3),
|
|
(DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
|
|
(QPR_VFP2 qsub_0, qsub_1)];
|
|
|
|
}
|
|
|
|
// Pseudo 512-bit vector register class to model 4 consecutive Q registers
|
|
// (8 consecutive D registers).
|
|
def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (sequence "QQQQ%u", 0, 3)> {
|
|
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
|
|
dsub_4, dsub_5, dsub_6, dsub_7),
|
|
(QPR qsub_0, qsub_1, qsub_2, qsub_3)];
|
|
// Allocate non-VFP2 aliases first.
|
|
let AltOrders = [(rotl QQQQPR, 2)];
|
|
let AltOrderSelect = [{ return 1; }];
|
|
}
|
|
|
|
// Condition code registers.
|
|
def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
|
|
let CopyCost = -1; // Don't allow copying of status registers.
|
|
let isAllocatable = 0;
|
|
}
|