mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209076 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1452 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1452 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass looks for equivalent functions that are mergable and folds them.
 | 
						|
//
 | 
						|
// A hash is computed from the function, based on its type and number of
 | 
						|
// basic blocks.
 | 
						|
//
 | 
						|
// Once all hashes are computed, we perform an expensive equality comparison
 | 
						|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
 | 
						|
// important that the hash function be high quality. The equality comparison
 | 
						|
// iterates through each instruction in each basic block.
 | 
						|
//
 | 
						|
// When a match is found the functions are folded. If both functions are
 | 
						|
// overridable, we move the functionality into a new internal function and
 | 
						|
// leave two overridable thunks to it.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Future work:
 | 
						|
//
 | 
						|
// * virtual functions.
 | 
						|
//
 | 
						|
// Many functions have their address taken by the virtual function table for
 | 
						|
// the object they belong to. However, as long as it's only used for a lookup
 | 
						|
// and call, this is irrelevant, and we'd like to fold such functions.
 | 
						|
//
 | 
						|
// * switch from n^2 pair-wise comparisons to an n-way comparison for each
 | 
						|
// bucket.
 | 
						|
//
 | 
						|
// * be smarter about bitcasts.
 | 
						|
//
 | 
						|
// In order to fold functions, we will sometimes add either bitcast instructions
 | 
						|
// or bitcast constant expressions. Unfortunately, this can confound further
 | 
						|
// analysis since the two functions differ where one has a bitcast and the
 | 
						|
// other doesn't. We should learn to look through bitcasts.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "mergefunc"
 | 
						|
 | 
						|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
 | 
						|
STATISTIC(NumThunksWritten, "Number of thunks generated");
 | 
						|
STATISTIC(NumAliasesWritten, "Number of aliases generated");
 | 
						|
STATISTIC(NumDoubleWeak, "Number of new functions created");
 | 
						|
 | 
						|
/// Returns the type id for a type to be hashed. We turn pointer types into
 | 
						|
/// integers here because the actual compare logic below considers pointers and
 | 
						|
/// integers of the same size as equal.
 | 
						|
static Type::TypeID getTypeIDForHash(Type *Ty) {
 | 
						|
  if (Ty->isPointerTy())
 | 
						|
    return Type::IntegerTyID;
 | 
						|
  return Ty->getTypeID();
 | 
						|
}
 | 
						|
 | 
						|
/// Creates a hash-code for the function which is the same for any two
 | 
						|
/// functions that will compare equal, without looking at the instructions
 | 
						|
/// inside the function.
 | 
						|
static unsigned profileFunction(const Function *F) {
 | 
						|
  FunctionType *FTy = F->getFunctionType();
 | 
						|
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(F->size());
 | 
						|
  ID.AddInteger(F->getCallingConv());
 | 
						|
  ID.AddBoolean(F->hasGC());
 | 
						|
  ID.AddBoolean(FTy->isVarArg());
 | 
						|
  ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
 | 
						|
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
    ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
 | 
						|
  return ID.ComputeHash();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// ComparableFunction - A struct that pairs together functions with a
 | 
						|
/// DataLayout so that we can keep them together as elements in the DenseSet.
 | 
						|
class ComparableFunction {
 | 
						|
public:
 | 
						|
  static const ComparableFunction EmptyKey;
 | 
						|
  static const ComparableFunction TombstoneKey;
 | 
						|
  static DataLayout * const LookupOnly;
 | 
						|
 | 
						|
  ComparableFunction(Function *Func, const DataLayout *DL)
 | 
						|
    : Func(Func), Hash(profileFunction(Func)), DL(DL) {}
 | 
						|
 | 
						|
  Function *getFunc() const { return Func; }
 | 
						|
  unsigned getHash() const { return Hash; }
 | 
						|
  const DataLayout *getDataLayout() const { return DL; }
 | 
						|
 | 
						|
  // Drops AssertingVH reference to the function. Outside of debug mode, this
 | 
						|
  // does nothing.
 | 
						|
  void release() {
 | 
						|
    assert(Func &&
 | 
						|
           "Attempted to release function twice, or release empty/tombstone!");
 | 
						|
    Func = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  explicit ComparableFunction(unsigned Hash)
 | 
						|
    : Func(nullptr), Hash(Hash), DL(nullptr) {}
 | 
						|
 | 
						|
  AssertingVH<Function> Func;
 | 
						|
  unsigned Hash;
 | 
						|
  const DataLayout *DL;
 | 
						|
};
 | 
						|
 | 
						|
const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
 | 
						|
const ComparableFunction ComparableFunction::TombstoneKey =
 | 
						|
    ComparableFunction(1);
 | 
						|
DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template <>
 | 
						|
  struct DenseMapInfo<ComparableFunction> {
 | 
						|
    static ComparableFunction getEmptyKey() {
 | 
						|
      return ComparableFunction::EmptyKey;
 | 
						|
    }
 | 
						|
    static ComparableFunction getTombstoneKey() {
 | 
						|
      return ComparableFunction::TombstoneKey;
 | 
						|
    }
 | 
						|
    static unsigned getHashValue(const ComparableFunction &CF) {
 | 
						|
      return CF.getHash();
 | 
						|
    }
 | 
						|
    static bool isEqual(const ComparableFunction &LHS,
 | 
						|
                        const ComparableFunction &RHS);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// FunctionComparator - Compares two functions to determine whether or not
 | 
						|
/// they will generate machine code with the same behaviour. DataLayout is
 | 
						|
/// used if available. The comparator always fails conservatively (erring on the
 | 
						|
/// side of claiming that two functions are different).
 | 
						|
class FunctionComparator {
 | 
						|
public:
 | 
						|
  FunctionComparator(const DataLayout *DL, const Function *F1,
 | 
						|
                     const Function *F2)
 | 
						|
    : F1(F1), F2(F2), DL(DL) {}
 | 
						|
 | 
						|
  /// Test whether the two functions have equivalent behaviour.
 | 
						|
  bool compare();
 | 
						|
 | 
						|
private:
 | 
						|
  /// Test whether two basic blocks have equivalent behaviour.
 | 
						|
  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
 | 
						|
 | 
						|
  /// Constants comparison.
 | 
						|
  /// Its analog to lexicographical comparison between hypothetical numbers
 | 
						|
  /// of next format:
 | 
						|
  /// <bitcastability-trait><raw-bit-contents>
 | 
						|
  ///
 | 
						|
  /// 1. Bitcastability.
 | 
						|
  /// Check whether L's type could be losslessly bitcasted to R's type.
 | 
						|
  /// On this stage method, in case when lossless bitcast is not possible
 | 
						|
  /// method returns -1 or 1, thus also defining which type is greater in
 | 
						|
  /// context of bitcastability.
 | 
						|
  /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
 | 
						|
  ///          to the contents comparison.
 | 
						|
  ///          If types differ, remember types comparison result and check
 | 
						|
  ///          whether we still can bitcast types.
 | 
						|
  /// Stage 1: Types that satisfies isFirstClassType conditions are always
 | 
						|
  ///          greater then others.
 | 
						|
  /// Stage 2: Vector is greater then non-vector.
 | 
						|
  ///          If both types are vectors, then vector with greater bitwidth is
 | 
						|
  ///          greater.
 | 
						|
  ///          If both types are vectors with the same bitwidth, then types
 | 
						|
  ///          are bitcastable, and we can skip other stages, and go to contents
 | 
						|
  ///          comparison.
 | 
						|
  /// Stage 3: Pointer types are greater than non-pointers. If both types are
 | 
						|
  ///          pointers of the same address space - go to contents comparison.
 | 
						|
  ///          Different address spaces: pointer with greater address space is
 | 
						|
  ///          greater.
 | 
						|
  /// Stage 4: Types are neither vectors, nor pointers. And they differ.
 | 
						|
  ///          We don't know how to bitcast them. So, we better don't do it,
 | 
						|
  ///          and return types comparison result (so it determines the
 | 
						|
  ///          relationship among constants we don't know how to bitcast).
 | 
						|
  ///
 | 
						|
  /// Just for clearance, let's see how the set of constants could look
 | 
						|
  /// on single dimension axis:
 | 
						|
  ///
 | 
						|
  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
 | 
						|
  /// Where: NFCT - Not a FirstClassType
 | 
						|
  ///        FCT - FirstClassTyp:
 | 
						|
  ///
 | 
						|
  /// 2. Compare raw contents.
 | 
						|
  /// It ignores types on this stage and only compares bits from L and R.
 | 
						|
  /// Returns 0, if L and R has equivalent contents.
 | 
						|
  /// -1 or 1 if values are different.
 | 
						|
  /// Pretty trivial:
 | 
						|
  /// 2.1. If contents are numbers, compare numbers.
 | 
						|
  ///    Ints with greater bitwidth are greater. Ints with same bitwidths
 | 
						|
  ///    compared by their contents.
 | 
						|
  /// 2.2. "And so on". Just to avoid discrepancies with comments
 | 
						|
  /// perhaps it would be better to read the implementation itself.
 | 
						|
  /// 3. And again about overall picture. Let's look back at how the ordered set
 | 
						|
  /// of constants will look like:
 | 
						|
  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
 | 
						|
  ///
 | 
						|
  /// Now look, what could be inside [FCT, "others"], for example:
 | 
						|
  /// [FCT, "others"] =
 | 
						|
  /// [
 | 
						|
  ///   [double 0.1], [double 1.23],
 | 
						|
  ///   [i32 1], [i32 2],
 | 
						|
  ///   { double 1.0 },       ; StructTyID, NumElements = 1
 | 
						|
  ///   { i32 1 },            ; StructTyID, NumElements = 1
 | 
						|
  ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
 | 
						|
  ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
 | 
						|
  /// ]
 | 
						|
  ///
 | 
						|
  /// Let's explain the order. Float numbers will be less than integers, just
 | 
						|
  /// because of cmpType terms: FloatTyID < IntegerTyID.
 | 
						|
  /// Floats (with same fltSemantics) are sorted according to their value.
 | 
						|
  /// Then you can see integers, and they are, like a floats,
 | 
						|
  /// could be easy sorted among each others.
 | 
						|
  /// The structures. Structures are grouped at the tail, again because of their
 | 
						|
  /// TypeID: StructTyID > IntegerTyID > FloatTyID.
 | 
						|
  /// Structures with greater number of elements are greater. Structures with
 | 
						|
  /// greater elements going first are greater.
 | 
						|
  /// The same logic with vectors, arrays and other possible complex types.
 | 
						|
  ///
 | 
						|
  /// Bitcastable constants.
 | 
						|
  /// Let's assume, that some constant, belongs to some group of
 | 
						|
  /// "so-called-equal" values with different types, and at the same time
 | 
						|
  /// belongs to another group of constants with equal types
 | 
						|
  /// and "really" equal values.
 | 
						|
  ///
 | 
						|
  /// Now, prove that this is impossible:
 | 
						|
  ///
 | 
						|
  /// If constant A with type TyA is bitcastable to B with type TyB, then:
 | 
						|
  /// 1. All constants with equal types to TyA, are bitcastable to B. Since
 | 
						|
  ///    those should be vectors (if TyA is vector), pointers
 | 
						|
  ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
 | 
						|
  ///    be equal to TyB.
 | 
						|
  /// 2. All constants with non-equal, but bitcastable types to TyA, are
 | 
						|
  ///    bitcastable to B.
 | 
						|
  ///    Once again, just because we allow it to vectors and pointers only.
 | 
						|
  ///    This statement could be expanded as below:
 | 
						|
  /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
 | 
						|
  ///      vector B, and thus bitcastable to B as well.
 | 
						|
  /// 2.2. All pointers of the same address space, no matter what they point to,
 | 
						|
  ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
 | 
						|
  /// So any constant equal or bitcastable to A is equal or bitcastable to B.
 | 
						|
  /// QED.
 | 
						|
  ///
 | 
						|
  /// In another words, for pointers and vectors, we ignore top-level type and
 | 
						|
  /// look at their particular properties (bit-width for vectors, and
 | 
						|
  /// address space for pointers).
 | 
						|
  /// If these properties are equal - compare their contents.
 | 
						|
  int cmpConstants(const Constant *L, const Constant *R);
 | 
						|
 | 
						|
  /// Assign or look up previously assigned numbers for the two values, and
 | 
						|
  /// return whether the numbers are equal. Numbers are assigned in the order
 | 
						|
  /// visited.
 | 
						|
  /// Comparison order:
 | 
						|
  /// Stage 0: Value that is function itself is always greater then others.
 | 
						|
  ///          If left and right values are references to their functions, then
 | 
						|
  ///          they are equal.
 | 
						|
  /// Stage 1: Constants are greater than non-constants.
 | 
						|
  ///          If both left and right are constants, then the result of
 | 
						|
  ///          cmpConstants is used as cmpValues result.
 | 
						|
  /// Stage 2: InlineAsm instances are greater than others. If both left and
 | 
						|
  ///          right are InlineAsm instances, InlineAsm* pointers casted to
 | 
						|
  ///          integers and compared as numbers.
 | 
						|
  /// Stage 3: For all other cases we compare order we meet these values in
 | 
						|
  ///          their functions. If right value was met first during scanning,
 | 
						|
  ///          then left value is greater.
 | 
						|
  ///          In another words, we compare serial numbers, for more details
 | 
						|
  ///          see comments for sn_mapL and sn_mapR.
 | 
						|
  int cmpValues(const Value *L, const Value *R);
 | 
						|
 | 
						|
  bool enumerate(const Value *V1, const Value *V2) {
 | 
						|
    return cmpValues(V1, V2) == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Compare two Instructions for equivalence, similar to
 | 
						|
  /// Instruction::isSameOperationAs but with modifications to the type
 | 
						|
  /// comparison.
 | 
						|
  /// Stages are listed in "most significant stage first" order:
 | 
						|
  /// On each stage below, we do comparison between some left and right
 | 
						|
  /// operation parts. If parts are non-equal, we assign parts comparison
 | 
						|
  /// result to the operation comparison result and exit from method.
 | 
						|
  /// Otherwise we proceed to the next stage.
 | 
						|
  /// Stages:
 | 
						|
  /// 1. Operations opcodes. Compared as numbers.
 | 
						|
  /// 2. Number of operands.
 | 
						|
  /// 3. Operation types. Compared with cmpType method.
 | 
						|
  /// 4. Compare operation subclass optional data as stream of bytes:
 | 
						|
  /// just convert it to integers and call cmpNumbers.
 | 
						|
  /// 5. Compare in operation operand types with cmpType in
 | 
						|
  /// most significant operand first order.
 | 
						|
  /// 6. Last stage. Check operations for some specific attributes.
 | 
						|
  /// For example, for Load it would be:
 | 
						|
  /// 6.1.Load: volatile (as boolean flag)
 | 
						|
  /// 6.2.Load: alignment (as integer numbers)
 | 
						|
  /// 6.3.Load: synch-scope (as integer numbers)
 | 
						|
  /// On this stage its better to see the code, since its not more than 10-15
 | 
						|
  /// strings for particular instruction, and could change sometimes.
 | 
						|
  int cmpOperation(const Instruction *L, const Instruction *R) const;
 | 
						|
 | 
						|
  bool isEquivalentOperation(const Instruction *I1,
 | 
						|
                             const Instruction *I2) const {
 | 
						|
    return cmpOperation(I1, I2) == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Compare two GEPs for equivalent pointer arithmetic.
 | 
						|
  /// Parts to be compared for each comparison stage,
 | 
						|
  /// most significant stage first:
 | 
						|
  /// 1. Address space. As numbers.
 | 
						|
  /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
 | 
						|
  /// using GEPOperator::accumulateConstantOffset method).
 | 
						|
  /// 3. Pointer operand type (using cmpType method).
 | 
						|
  /// 4. Number of operands.
 | 
						|
  /// 5. Compare operands, using cmpValues method.
 | 
						|
  int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
 | 
						|
  int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
 | 
						|
    return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
 | 
						|
  }
 | 
						|
 | 
						|
  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2) {
 | 
						|
    return cmpGEP(GEP1, GEP2) == 0;
 | 
						|
  }
 | 
						|
  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
 | 
						|
                       const GetElementPtrInst *GEP2) {
 | 
						|
    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
 | 
						|
  }
 | 
						|
 | 
						|
  /// cmpType - compares two types,
 | 
						|
  /// defines total ordering among the types set.
 | 
						|
  ///
 | 
						|
  /// Return values:
 | 
						|
  /// 0 if types are equal,
 | 
						|
  /// -1 if Left is less than Right,
 | 
						|
  /// +1 if Left is greater than Right.
 | 
						|
  ///
 | 
						|
  /// Description:
 | 
						|
  /// Comparison is broken onto stages. Like in lexicographical comparison
 | 
						|
  /// stage coming first has higher priority.
 | 
						|
  /// On each explanation stage keep in mind total ordering properties.
 | 
						|
  ///
 | 
						|
  /// 0. Before comparison we coerce pointer types of 0 address space to
 | 
						|
  /// integer.
 | 
						|
  /// We also don't bother with same type at left and right, so
 | 
						|
  /// just return 0 in this case.
 | 
						|
  ///
 | 
						|
  /// 1. If types are of different kind (different type IDs).
 | 
						|
  ///    Return result of type IDs comparison, treating them as numbers.
 | 
						|
  /// 2. If types are vectors or integers, compare Type* values as numbers.
 | 
						|
  /// 3. Types has same ID, so check whether they belongs to the next group:
 | 
						|
  /// * Void
 | 
						|
  /// * Float
 | 
						|
  /// * Double
 | 
						|
  /// * X86_FP80
 | 
						|
  /// * FP128
 | 
						|
  /// * PPC_FP128
 | 
						|
  /// * Label
 | 
						|
  /// * Metadata
 | 
						|
  /// If so - return 0, yes - we can treat these types as equal only because
 | 
						|
  /// their IDs are same.
 | 
						|
  /// 4. If Left and Right are pointers, return result of address space
 | 
						|
  /// comparison (numbers comparison). We can treat pointer types of same
 | 
						|
  /// address space as equal.
 | 
						|
  /// 5. If types are complex.
 | 
						|
  /// Then both Left and Right are to be expanded and their element types will
 | 
						|
  /// be checked with the same way. If we get Res != 0 on some stage, return it.
 | 
						|
  /// Otherwise return 0.
 | 
						|
  /// 6. For all other cases put llvm_unreachable.
 | 
						|
  int cmpType(Type *TyL, Type *TyR) const;
 | 
						|
 | 
						|
  bool isEquivalentType(Type *Ty1, Type *Ty2) const {
 | 
						|
    return cmpType(Ty1, Ty2) == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  int cmpNumbers(uint64_t L, uint64_t R) const;
 | 
						|
 | 
						|
  int cmpAPInt(const APInt &L, const APInt &R) const;
 | 
						|
  int cmpAPFloat(const APFloat &L, const APFloat &R) const;
 | 
						|
  int cmpStrings(StringRef L, StringRef R) const;
 | 
						|
  int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
 | 
						|
 | 
						|
  // The two functions undergoing comparison.
 | 
						|
  const Function *F1, *F2;
 | 
						|
 | 
						|
  const DataLayout *DL;
 | 
						|
 | 
						|
  /// Assign serial numbers to values from left function, and values from
 | 
						|
  /// right function.
 | 
						|
  /// Explanation:
 | 
						|
  /// Being comparing functions we need to compare values we meet at left and
 | 
						|
  /// right sides.
 | 
						|
  /// Its easy to sort things out for external values. It just should be
 | 
						|
  /// the same value at left and right.
 | 
						|
  /// But for local values (those were introduced inside function body)
 | 
						|
  /// we have to ensure they were introduced at exactly the same place,
 | 
						|
  /// and plays the same role.
 | 
						|
  /// Let's assign serial number to each value when we meet it first time.
 | 
						|
  /// Values that were met at same place will be with same serial numbers.
 | 
						|
  /// In this case it would be good to explain few points about values assigned
 | 
						|
  /// to BBs and other ways of implementation (see below).
 | 
						|
  ///
 | 
						|
  /// 1. Safety of BB reordering.
 | 
						|
  /// It's safe to change the order of BasicBlocks in function.
 | 
						|
  /// Relationship with other functions and serial numbering will not be
 | 
						|
  /// changed in this case.
 | 
						|
  /// As follows from FunctionComparator::compare(), we do CFG walk: we start
 | 
						|
  /// from the entry, and then take each terminator. So it doesn't matter how in
 | 
						|
  /// fact BBs are ordered in function. And since cmpValues are called during
 | 
						|
  /// this walk, the numbering depends only on how BBs located inside the CFG.
 | 
						|
  /// So the answer is - yes. We will get the same numbering.
 | 
						|
  ///
 | 
						|
  /// 2. Impossibility to use dominance properties of values.
 | 
						|
  /// If we compare two instruction operands: first is usage of local
 | 
						|
  /// variable AL from function FL, and second is usage of local variable AR
 | 
						|
  /// from FR, we could compare their origins and check whether they are
 | 
						|
  /// defined at the same place.
 | 
						|
  /// But, we are still not able to compare operands of PHI nodes, since those
 | 
						|
  /// could be operands from further BBs we didn't scan yet.
 | 
						|
  /// So it's impossible to use dominance properties in general.
 | 
						|
  DenseMap<const Value*, int> sn_mapL, sn_mapR;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
 | 
						|
  if (L < R) return -1;
 | 
						|
  if (L > R) return 1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
 | 
						|
  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
 | 
						|
    return Res;
 | 
						|
  if (L.ugt(R)) return 1;
 | 
						|
  if (R.ugt(L)) return -1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
 | 
						|
  if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
 | 
						|
                           (uint64_t)&R.getSemantics()))
 | 
						|
    return Res;
 | 
						|
  return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
 | 
						|
}
 | 
						|
 | 
						|
int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
 | 
						|
  // Prevent heavy comparison, compare sizes first.
 | 
						|
  if (int Res = cmpNumbers(L.size(), R.size()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Compare strings lexicographically only when it is necessary: only when
 | 
						|
  // strings are equal in size.
 | 
						|
  return L.compare(R);
 | 
						|
}
 | 
						|
 | 
						|
int FunctionComparator::cmpAttrs(const AttributeSet L,
 | 
						|
                                 const AttributeSet R) const {
 | 
						|
  if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
 | 
						|
    AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
 | 
						|
                           RE = R.end(i);
 | 
						|
    for (; LI != LE && RI != RE; ++LI, ++RI) {
 | 
						|
      Attribute LA = *LI;
 | 
						|
      Attribute RA = *RI;
 | 
						|
      if (LA < RA)
 | 
						|
        return -1;
 | 
						|
      if (RA < LA)
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    if (LI != LE)
 | 
						|
      return 1;
 | 
						|
    if (RI != RE)
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Constants comparison:
 | 
						|
/// 1. Check whether type of L constant could be losslessly bitcasted to R
 | 
						|
/// type.
 | 
						|
/// 2. Compare constant contents.
 | 
						|
/// For more details see declaration comments.
 | 
						|
int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
 | 
						|
 | 
						|
  Type *TyL = L->getType();
 | 
						|
  Type *TyR = R->getType();
 | 
						|
 | 
						|
  // Check whether types are bitcastable. This part is just re-factored
 | 
						|
  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
 | 
						|
  // we also pack into result which type is "less" for us.
 | 
						|
  int TypesRes = cmpType(TyL, TyR);
 | 
						|
  if (TypesRes != 0) {
 | 
						|
    // Types are different, but check whether we can bitcast them.
 | 
						|
    if (!TyL->isFirstClassType()) {
 | 
						|
      if (TyR->isFirstClassType())
 | 
						|
        return -1;
 | 
						|
      // Neither TyL nor TyR are values of first class type. Return the result
 | 
						|
      // of comparing the types
 | 
						|
      return TypesRes;
 | 
						|
    }
 | 
						|
    if (!TyR->isFirstClassType()) {
 | 
						|
      if (TyL->isFirstClassType())
 | 
						|
        return 1;
 | 
						|
      return TypesRes;
 | 
						|
    }
 | 
						|
 | 
						|
    // Vector -> Vector conversions are always lossless if the two vector types
 | 
						|
    // have the same size, otherwise not.
 | 
						|
    unsigned TyLWidth = 0;
 | 
						|
    unsigned TyRWidth = 0;
 | 
						|
 | 
						|
    if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
 | 
						|
      TyLWidth = VecTyL->getBitWidth();
 | 
						|
    if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
 | 
						|
      TyRWidth = VecTyR->getBitWidth();
 | 
						|
 | 
						|
    if (TyLWidth != TyRWidth)
 | 
						|
      return cmpNumbers(TyLWidth, TyRWidth);
 | 
						|
 | 
						|
    // Zero bit-width means neither TyL nor TyR are vectors.
 | 
						|
    if (!TyLWidth) {
 | 
						|
      PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | 
						|
      PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | 
						|
      if (PTyL && PTyR) {
 | 
						|
        unsigned AddrSpaceL = PTyL->getAddressSpace();
 | 
						|
        unsigned AddrSpaceR = PTyR->getAddressSpace();
 | 
						|
        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
 | 
						|
          return Res;
 | 
						|
      }
 | 
						|
      if (PTyL)
 | 
						|
        return 1;
 | 
						|
      if (PTyR)
 | 
						|
        return -1;
 | 
						|
 | 
						|
      // TyL and TyR aren't vectors, nor pointers. We don't know how to
 | 
						|
      // bitcast them.
 | 
						|
      return TypesRes;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OK, types are bitcastable, now check constant contents.
 | 
						|
 | 
						|
  if (L->isNullValue() && R->isNullValue())
 | 
						|
    return TypesRes;
 | 
						|
  if (L->isNullValue() && !R->isNullValue())
 | 
						|
    return 1;
 | 
						|
  if (!L->isNullValue() && R->isNullValue())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  switch (L->getValueID()) {
 | 
						|
  case Value::UndefValueVal: return TypesRes;
 | 
						|
  case Value::ConstantIntVal: {
 | 
						|
    const APInt &LInt = cast<ConstantInt>(L)->getValue();
 | 
						|
    const APInt &RInt = cast<ConstantInt>(R)->getValue();
 | 
						|
    return cmpAPInt(LInt, RInt);
 | 
						|
  }
 | 
						|
  case Value::ConstantFPVal: {
 | 
						|
    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
 | 
						|
    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
 | 
						|
    return cmpAPFloat(LAPF, RAPF);
 | 
						|
  }
 | 
						|
  case Value::ConstantArrayVal: {
 | 
						|
    const ConstantArray *LA = cast<ConstantArray>(L);
 | 
						|
    const ConstantArray *RA = cast<ConstantArray>(R);
 | 
						|
    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
 | 
						|
    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
 | 
						|
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | 
						|
      return Res;
 | 
						|
    for (uint64_t i = 0; i < NumElementsL; ++i) {
 | 
						|
      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
 | 
						|
                                 cast<Constant>(RA->getOperand(i))))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Value::ConstantStructVal: {
 | 
						|
    const ConstantStruct *LS = cast<ConstantStruct>(L);
 | 
						|
    const ConstantStruct *RS = cast<ConstantStruct>(R);
 | 
						|
    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
 | 
						|
    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
 | 
						|
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | 
						|
      return Res;
 | 
						|
    for (unsigned i = 0; i != NumElementsL; ++i) {
 | 
						|
      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
 | 
						|
                                 cast<Constant>(RS->getOperand(i))))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Value::ConstantVectorVal: {
 | 
						|
    const ConstantVector *LV = cast<ConstantVector>(L);
 | 
						|
    const ConstantVector *RV = cast<ConstantVector>(R);
 | 
						|
    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
 | 
						|
    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
 | 
						|
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | 
						|
      return Res;
 | 
						|
    for (uint64_t i = 0; i < NumElementsL; ++i) {
 | 
						|
      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
 | 
						|
                                 cast<Constant>(RV->getOperand(i))))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Value::ConstantExprVal: {
 | 
						|
    const ConstantExpr *LE = cast<ConstantExpr>(L);
 | 
						|
    const ConstantExpr *RE = cast<ConstantExpr>(R);
 | 
						|
    unsigned NumOperandsL = LE->getNumOperands();
 | 
						|
    unsigned NumOperandsR = RE->getNumOperands();
 | 
						|
    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
 | 
						|
      return Res;
 | 
						|
    for (unsigned i = 0; i < NumOperandsL; ++i) {
 | 
						|
      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
 | 
						|
                                 cast<Constant>(RE->getOperand(i))))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Value::FunctionVal:
 | 
						|
  case Value::GlobalVariableVal:
 | 
						|
  case Value::GlobalAliasVal:
 | 
						|
  default: // Unknown constant, cast L and R pointers to numbers and compare.
 | 
						|
    return cmpNumbers((uint64_t)L, (uint64_t)R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// cmpType - compares two types,
 | 
						|
/// defines total ordering among the types set.
 | 
						|
/// See method declaration comments for more details.
 | 
						|
int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
 | 
						|
 | 
						|
  PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | 
						|
  PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | 
						|
 | 
						|
  if (DL) {
 | 
						|
    if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
 | 
						|
    if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TyL == TyR)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  switch (TyL->getTypeID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown type!");
 | 
						|
    // Fall through in Release mode.
 | 
						|
  case Type::IntegerTyID:
 | 
						|
  case Type::VectorTyID:
 | 
						|
    // TyL == TyR would have returned true earlier.
 | 
						|
    return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
 | 
						|
 | 
						|
  case Type::VoidTyID:
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
  case Type::FP128TyID:
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
  case Type::LabelTyID:
 | 
						|
  case Type::MetadataTyID:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    assert(PTyL && PTyR && "Both types must be pointers here.");
 | 
						|
    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    StructType *STyL = cast<StructType>(TyL);
 | 
						|
    StructType *STyR = cast<StructType>(TyR);
 | 
						|
    if (STyL->getNumElements() != STyR->getNumElements())
 | 
						|
      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
 | 
						|
 | 
						|
    if (STyL->isPacked() != STyR->isPacked())
 | 
						|
      return cmpNumbers(STyL->isPacked(), STyR->isPacked());
 | 
						|
 | 
						|
    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
 | 
						|
      if (int Res = cmpType(STyL->getElementType(i),
 | 
						|
                            STyR->getElementType(i)))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    FunctionType *FTyL = cast<FunctionType>(TyL);
 | 
						|
    FunctionType *FTyR = cast<FunctionType>(TyR);
 | 
						|
    if (FTyL->getNumParams() != FTyR->getNumParams())
 | 
						|
      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
 | 
						|
 | 
						|
    if (FTyL->isVarArg() != FTyR->isVarArg())
 | 
						|
      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
 | 
						|
 | 
						|
    if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
 | 
						|
      return Res;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
 | 
						|
      if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    ArrayType *ATyL = cast<ArrayType>(TyL);
 | 
						|
    ArrayType *ATyR = cast<ArrayType>(TyR);
 | 
						|
    if (ATyL->getNumElements() != ATyR->getNumElements())
 | 
						|
      return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
 | 
						|
    return cmpType(ATyL->getElementType(), ATyR->getElementType());
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether the two operations are the same except that pointer-to-A
 | 
						|
// and pointer-to-B are equivalent. This should be kept in sync with
 | 
						|
// Instruction::isSameOperationAs.
 | 
						|
// Read method declaration comments for more details.
 | 
						|
int FunctionComparator::cmpOperation(const Instruction *L,
 | 
						|
                                     const Instruction *R) const {
 | 
						|
  // Differences from Instruction::isSameOperationAs:
 | 
						|
  //  * replace type comparison with calls to isEquivalentType.
 | 
						|
  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
 | 
						|
  //  * because of the above, we don't test for the tail bit on calls later on
 | 
						|
  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (int Res = cmpType(L->getType(), R->getType()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
 | 
						|
                           R->getRawSubclassOptionalData()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // We have two instructions of identical opcode and #operands.  Check to see
 | 
						|
  // if all operands are the same type
 | 
						|
  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
 | 
						|
    if (int Res =
 | 
						|
            cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
 | 
						|
      return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check special state that is a part of some instructions.
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
 | 
						|
    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
 | 
						|
      return Res;
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
 | 
						|
      return Res;
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
 | 
						|
      return Res;
 | 
						|
    return cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope());
 | 
						|
  }
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
 | 
						|
      return Res;
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
 | 
						|
      return Res;
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
 | 
						|
      return Res;
 | 
						|
    return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
 | 
						|
  }
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
 | 
						|
    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(L)) {
 | 
						|
    if (int Res = cmpNumbers(CI->getCallingConv(),
 | 
						|
                             cast<CallInst>(R)->getCallingConv()))
 | 
						|
      return Res;
 | 
						|
    return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
 | 
						|
  }
 | 
						|
  if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
 | 
						|
    if (int Res = cmpNumbers(CI->getCallingConv(),
 | 
						|
                             cast<InvokeInst>(R)->getCallingConv()))
 | 
						|
      return Res;
 | 
						|
    return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
 | 
						|
  }
 | 
						|
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
 | 
						|
    ArrayRef<unsigned> LIndices = IVI->getIndices();
 | 
						|
    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
 | 
						|
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | 
						|
      return Res;
 | 
						|
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | 
						|
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
 | 
						|
    ArrayRef<unsigned> LIndices = EVI->getIndices();
 | 
						|
    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
 | 
						|
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | 
						|
      return Res;
 | 
						|
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | 
						|
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
 | 
						|
    if (int Res =
 | 
						|
            cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
 | 
						|
      return Res;
 | 
						|
    return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
 | 
						|
    if (int Res = cmpNumbers(CXI->isVolatile(),
 | 
						|
                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
 | 
						|
      return Res;
 | 
						|
    if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
 | 
						|
                             cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
 | 
						|
      return Res;
 | 
						|
    if (int Res = cmpNumbers(CXI->getFailureOrdering(),
 | 
						|
                             cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
 | 
						|
      return Res;
 | 
						|
    return cmpNumbers(CXI->getSynchScope(),
 | 
						|
                      cast<AtomicCmpXchgInst>(R)->getSynchScope());
 | 
						|
  }
 | 
						|
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
 | 
						|
    if (int Res = cmpNumbers(RMWI->getOperation(),
 | 
						|
                             cast<AtomicRMWInst>(R)->getOperation()))
 | 
						|
      return Res;
 | 
						|
    if (int Res = cmpNumbers(RMWI->isVolatile(),
 | 
						|
                             cast<AtomicRMWInst>(R)->isVolatile()))
 | 
						|
      return Res;
 | 
						|
    if (int Res = cmpNumbers(RMWI->getOrdering(),
 | 
						|
                             cast<AtomicRMWInst>(R)->getOrdering()))
 | 
						|
      return Res;
 | 
						|
    return cmpNumbers(RMWI->getSynchScope(),
 | 
						|
                      cast<AtomicRMWInst>(R)->getSynchScope());
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether two GEP operations perform the same underlying arithmetic.
 | 
						|
// Read method declaration comments for more details.
 | 
						|
int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
 | 
						|
                               const GEPOperator *GEPR) {
 | 
						|
 | 
						|
  unsigned int ASL = GEPL->getPointerAddressSpace();
 | 
						|
  unsigned int ASR = GEPR->getPointerAddressSpace();
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(ASL, ASR))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // When we have target data, we can reduce the GEP down to the value in bytes
 | 
						|
  // added to the address.
 | 
						|
  if (DL) {
 | 
						|
    unsigned BitWidth = DL->getPointerSizeInBits(ASL);
 | 
						|
    APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
 | 
						|
    if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
 | 
						|
        GEPR->accumulateConstantOffset(*DL, OffsetR))
 | 
						|
      return cmpAPInt(OffsetL, OffsetR);
 | 
						|
  }
 | 
						|
 | 
						|
  if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
 | 
						|
                           (uint64_t)GEPR->getPointerOperand()->getType()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
 | 
						|
    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
 | 
						|
      return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Compare two values used by the two functions under pair-wise comparison. If
 | 
						|
/// this is the first time the values are seen, they're added to the mapping so
 | 
						|
/// that we will detect mismatches on next use.
 | 
						|
/// See comments in declaration for more details.
 | 
						|
int FunctionComparator::cmpValues(const Value *L, const Value *R) {
 | 
						|
  // Catch self-reference case.
 | 
						|
  if (L == F1) {
 | 
						|
    if (R == F2)
 | 
						|
      return 0;
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  if (R == F2) {
 | 
						|
    if (L == F1)
 | 
						|
      return 0;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  const Constant *ConstL = dyn_cast<Constant>(L);
 | 
						|
  const Constant *ConstR = dyn_cast<Constant>(R);
 | 
						|
  if (ConstL && ConstR) {
 | 
						|
    if (L == R)
 | 
						|
      return 0;
 | 
						|
    return cmpConstants(ConstL, ConstR);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstL)
 | 
						|
    return 1;
 | 
						|
  if (ConstR)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
 | 
						|
  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
 | 
						|
 | 
						|
  if (InlineAsmL && InlineAsmR)
 | 
						|
    return cmpNumbers((uint64_t)L, (uint64_t)R);
 | 
						|
  if (InlineAsmL)
 | 
						|
    return 1;
 | 
						|
  if (InlineAsmR)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
 | 
						|
       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
 | 
						|
 | 
						|
  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
 | 
						|
}
 | 
						|
// Test whether two basic blocks have equivalent behaviour.
 | 
						|
bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
 | 
						|
  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
 | 
						|
  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
 | 
						|
 | 
						|
  do {
 | 
						|
    if (!enumerate(F1I, F2I))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
 | 
						|
      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
 | 
						|
      if (!GEP2)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isEquivalentGEP(GEP1, GEP2))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      if (!isEquivalentOperation(F1I, F2I))
 | 
						|
        return false;
 | 
						|
 | 
						|
      assert(F1I->getNumOperands() == F2I->getNumOperands());
 | 
						|
      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *OpF1 = F1I->getOperand(i);
 | 
						|
        Value *OpF2 = F2I->getOperand(i);
 | 
						|
 | 
						|
        if (!enumerate(OpF1, OpF2))
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (OpF1->getValueID() != OpF2->getValueID() ||
 | 
						|
            !isEquivalentType(OpF1->getType(), OpF2->getType()))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ++F1I, ++F2I;
 | 
						|
  } while (F1I != F1E && F2I != F2E);
 | 
						|
 | 
						|
  return F1I == F1E && F2I == F2E;
 | 
						|
}
 | 
						|
 | 
						|
// Test whether the two functions have equivalent behaviour.
 | 
						|
bool FunctionComparator::compare() {
 | 
						|
  // We need to recheck everything, but check the things that weren't included
 | 
						|
  // in the hash first.
 | 
						|
 | 
						|
  sn_mapL.clear();
 | 
						|
  sn_mapR.clear();
 | 
						|
 | 
						|
  if (F1->getAttributes() != F2->getAttributes())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F1->hasGC() != F2->hasGC())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F1->hasGC() && F1->getGC() != F2->getGC())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F1->hasSection() != F2->hasSection())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F1->hasSection() && F1->getSection() != F2->getSection())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F1->isVarArg() != F2->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: if it's internal and only used in direct calls, we could handle this
 | 
						|
  // case too.
 | 
						|
  if (F1->getCallingConv() != F2->getCallingConv())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(F1->arg_size() == F2->arg_size() &&
 | 
						|
         "Identically typed functions have different numbers of args!");
 | 
						|
 | 
						|
  // Visit the arguments so that they get enumerated in the order they're
 | 
						|
  // passed in.
 | 
						|
  for (Function::const_arg_iterator f1i = F1->arg_begin(),
 | 
						|
         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
 | 
						|
    if (!enumerate(f1i, f2i))
 | 
						|
      llvm_unreachable("Arguments repeat!");
 | 
						|
  }
 | 
						|
 | 
						|
  // We do a CFG-ordered walk since the actual ordering of the blocks in the
 | 
						|
  // linked list is immaterial. Our walk starts at the entry block for both
 | 
						|
  // functions, then takes each block from each terminator in order. As an
 | 
						|
  // artifact, this also means that unreachable blocks are ignored.
 | 
						|
  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
 | 
						|
  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
 | 
						|
 | 
						|
  F1BBs.push_back(&F1->getEntryBlock());
 | 
						|
  F2BBs.push_back(&F2->getEntryBlock());
 | 
						|
 | 
						|
  VisitedBBs.insert(F1BBs[0]);
 | 
						|
  while (!F1BBs.empty()) {
 | 
						|
    const BasicBlock *F1BB = F1BBs.pop_back_val();
 | 
						|
    const BasicBlock *F2BB = F2BBs.pop_back_val();
 | 
						|
 | 
						|
    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const TerminatorInst *F1TI = F1BB->getTerminator();
 | 
						|
    const TerminatorInst *F2TI = F2BB->getTerminator();
 | 
						|
 | 
						|
    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
 | 
						|
    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      F1BBs.push_back(F1TI->getSuccessor(i));
 | 
						|
      F2BBs.push_back(F2TI->getSuccessor(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// MergeFunctions finds functions which will generate identical machine code,
 | 
						|
/// by considering all pointer types to be equivalent. Once identified,
 | 
						|
/// MergeFunctions will fold them by replacing a call to one to a call to a
 | 
						|
/// bitcast of the other.
 | 
						|
///
 | 
						|
class MergeFunctions : public ModulePass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  MergeFunctions()
 | 
						|
    : ModulePass(ID), HasGlobalAliases(false) {
 | 
						|
    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
 | 
						|
private:
 | 
						|
  typedef DenseSet<ComparableFunction> FnSetType;
 | 
						|
 | 
						|
  /// A work queue of functions that may have been modified and should be
 | 
						|
  /// analyzed again.
 | 
						|
  std::vector<WeakVH> Deferred;
 | 
						|
 | 
						|
  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
 | 
						|
  /// equal to one that's already present.
 | 
						|
  bool insert(ComparableFunction &NewF);
 | 
						|
 | 
						|
  /// Remove a Function from the FnSet and queue it up for a second sweep of
 | 
						|
  /// analysis.
 | 
						|
  void remove(Function *F);
 | 
						|
 | 
						|
  /// Find the functions that use this Value and remove them from FnSet and
 | 
						|
  /// queue the functions.
 | 
						|
  void removeUsers(Value *V);
 | 
						|
 | 
						|
  /// Replace all direct calls of Old with calls of New. Will bitcast New if
 | 
						|
  /// necessary to make types match.
 | 
						|
  void replaceDirectCallers(Function *Old, Function *New);
 | 
						|
 | 
						|
  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
 | 
						|
  /// be converted into a thunk. In either case, it should never be visited
 | 
						|
  /// again.
 | 
						|
  void mergeTwoFunctions(Function *F, Function *G);
 | 
						|
 | 
						|
  /// Replace G with a thunk or an alias to F. Deletes G.
 | 
						|
  void writeThunkOrAlias(Function *F, Function *G);
 | 
						|
 | 
						|
  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | 
						|
  /// of G with bitcast(F). Deletes G.
 | 
						|
  void writeThunk(Function *F, Function *G);
 | 
						|
 | 
						|
  /// Replace G with an alias to F. Deletes G.
 | 
						|
  void writeAlias(Function *F, Function *G);
 | 
						|
 | 
						|
  /// The set of all distinct functions. Use the insert() and remove() methods
 | 
						|
  /// to modify it.
 | 
						|
  FnSetType FnSet;
 | 
						|
 | 
						|
  /// DataLayout for more accurate GEP comparisons. May be NULL.
 | 
						|
  const DataLayout *DL;
 | 
						|
 | 
						|
  /// Whether or not the target supports global aliases.
 | 
						|
  bool HasGlobalAliases;
 | 
						|
};
 | 
						|
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
char MergeFunctions::ID = 0;
 | 
						|
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
 | 
						|
 | 
						|
ModulePass *llvm::createMergeFunctionsPass() {
 | 
						|
  return new MergeFunctions();
 | 
						|
}
 | 
						|
 | 
						|
bool MergeFunctions::runOnModule(Module &M) {
 | 
						|
  bool Changed = false;
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
 | 
						|
      Deferred.push_back(WeakVH(I));
 | 
						|
  }
 | 
						|
  FnSet.resize(Deferred.size());
 | 
						|
 | 
						|
  do {
 | 
						|
    std::vector<WeakVH> Worklist;
 | 
						|
    Deferred.swap(Worklist);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
 | 
						|
    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
 | 
						|
 | 
						|
    // Insert only strong functions and merge them. Strong function merging
 | 
						|
    // always deletes one of them.
 | 
						|
    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | 
						|
           E = Worklist.end(); I != E; ++I) {
 | 
						|
      if (!*I) continue;
 | 
						|
      Function *F = cast<Function>(*I);
 | 
						|
      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | 
						|
          !F->mayBeOverridden()) {
 | 
						|
        ComparableFunction CF = ComparableFunction(F, DL);
 | 
						|
        Changed |= insert(CF);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert only weak functions and merge them. By doing these second we
 | 
						|
    // create thunks to the strong function when possible. When two weak
 | 
						|
    // functions are identical, we create a new strong function with two weak
 | 
						|
    // weak thunks to it which are identical but not mergable.
 | 
						|
    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | 
						|
           E = Worklist.end(); I != E; ++I) {
 | 
						|
      if (!*I) continue;
 | 
						|
      Function *F = cast<Function>(*I);
 | 
						|
      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | 
						|
          F->mayBeOverridden()) {
 | 
						|
        ComparableFunction CF = ComparableFunction(F, DL);
 | 
						|
        Changed |= insert(CF);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
 | 
						|
  } while (!Deferred.empty());
 | 
						|
 | 
						|
  FnSet.clear();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
 | 
						|
                                               const ComparableFunction &RHS) {
 | 
						|
  if (LHS.getFunc() == RHS.getFunc() &&
 | 
						|
      LHS.getHash() == RHS.getHash())
 | 
						|
    return true;
 | 
						|
  if (!LHS.getFunc() || !RHS.getFunc())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // One of these is a special "underlying pointer comparison only" object.
 | 
						|
  if (LHS.getDataLayout() == ComparableFunction::LookupOnly ||
 | 
						|
      RHS.getDataLayout() == ComparableFunction::LookupOnly)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(LHS.getDataLayout() == RHS.getDataLayout() &&
 | 
						|
         "Comparing functions for different targets");
 | 
						|
 | 
						|
  return FunctionComparator(LHS.getDataLayout(), LHS.getFunc(),
 | 
						|
                            RHS.getFunc()).compare();
 | 
						|
}
 | 
						|
 | 
						|
// Replace direct callers of Old with New.
 | 
						|
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
 | 
						|
  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
 | 
						|
  for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
 | 
						|
    Use *U = &*UI;
 | 
						|
    ++UI;
 | 
						|
    CallSite CS(U->getUser());
 | 
						|
    if (CS && CS.isCallee(U)) {
 | 
						|
      remove(CS.getInstruction()->getParent()->getParent());
 | 
						|
      U->set(BitcastNew);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
 | 
						|
void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
 | 
						|
  if (HasGlobalAliases && G->hasUnnamedAddr()) {
 | 
						|
    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
 | 
						|
        G->hasWeakLinkage()) {
 | 
						|
      writeAlias(F, G);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  writeThunk(F, G);
 | 
						|
}
 | 
						|
 | 
						|
// Helper for writeThunk,
 | 
						|
// Selects proper bitcast operation,
 | 
						|
// but a bit simpler then CastInst::getCastOpcode.
 | 
						|
static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
 | 
						|
  Type *SrcTy = V->getType();
 | 
						|
  if (SrcTy->isStructTy()) {
 | 
						|
    assert(DestTy->isStructTy());
 | 
						|
    assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
 | 
						|
    Value *Result = UndefValue::get(DestTy);
 | 
						|
    for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
 | 
						|
      Value *Element = createCast(
 | 
						|
          Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
 | 
						|
          DestTy->getStructElementType(I));
 | 
						|
 | 
						|
      Result =
 | 
						|
          Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  assert(!DestTy->isStructTy());
 | 
						|
  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
 | 
						|
    return Builder.CreateIntToPtr(V, DestTy);
 | 
						|
  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
 | 
						|
    return Builder.CreatePtrToInt(V, DestTy);
 | 
						|
  else
 | 
						|
    return Builder.CreateBitCast(V, DestTy);
 | 
						|
}
 | 
						|
 | 
						|
// Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | 
						|
// of G with bitcast(F). Deletes G.
 | 
						|
void MergeFunctions::writeThunk(Function *F, Function *G) {
 | 
						|
  if (!G->mayBeOverridden()) {
 | 
						|
    // Redirect direct callers of G to F.
 | 
						|
    replaceDirectCallers(G, F);
 | 
						|
  }
 | 
						|
 | 
						|
  // If G was internal then we may have replaced all uses of G with F. If so,
 | 
						|
  // stop here and delete G. There's no need for a thunk.
 | 
						|
  if (G->hasLocalLinkage() && G->use_empty()) {
 | 
						|
    G->eraseFromParent();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
 | 
						|
                                    G->getParent());
 | 
						|
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
 | 
						|
  IRBuilder<false> Builder(BB);
 | 
						|
 | 
						|
  SmallVector<Value *, 16> Args;
 | 
						|
  unsigned i = 0;
 | 
						|
  FunctionType *FFTy = F->getFunctionType();
 | 
						|
  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  CallInst *CI = Builder.CreateCall(F, Args);
 | 
						|
  CI->setTailCall();
 | 
						|
  CI->setCallingConv(F->getCallingConv());
 | 
						|
  if (NewG->getReturnType()->isVoidTy()) {
 | 
						|
    Builder.CreateRetVoid();
 | 
						|
  } else {
 | 
						|
    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
 | 
						|
  }
 | 
						|
 | 
						|
  NewG->copyAttributesFrom(G);
 | 
						|
  NewG->takeName(G);
 | 
						|
  removeUsers(G);
 | 
						|
  G->replaceAllUsesWith(NewG);
 | 
						|
  G->eraseFromParent();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
 | 
						|
  ++NumThunksWritten;
 | 
						|
}
 | 
						|
 | 
						|
// Replace G with an alias to F and delete G.
 | 
						|
void MergeFunctions::writeAlias(Function *F, Function *G) {
 | 
						|
  PointerType *PTy = G->getType();
 | 
						|
  auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
 | 
						|
                                 G->getLinkage(), "", F);
 | 
						|
  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
 | 
						|
  GA->takeName(G);
 | 
						|
  GA->setVisibility(G->getVisibility());
 | 
						|
  removeUsers(G);
 | 
						|
  G->replaceAllUsesWith(GA);
 | 
						|
  G->eraseFromParent();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
 | 
						|
  ++NumAliasesWritten;
 | 
						|
}
 | 
						|
 | 
						|
// Merge two equivalent functions. Upon completion, Function G is deleted.
 | 
						|
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
 | 
						|
  if (F->mayBeOverridden()) {
 | 
						|
    assert(G->mayBeOverridden());
 | 
						|
 | 
						|
    if (HasGlobalAliases) {
 | 
						|
      // Make them both thunks to the same internal function.
 | 
						|
      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
 | 
						|
                                     F->getParent());
 | 
						|
      H->copyAttributesFrom(F);
 | 
						|
      H->takeName(F);
 | 
						|
      removeUsers(F);
 | 
						|
      F->replaceAllUsesWith(H);
 | 
						|
 | 
						|
      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
 | 
						|
 | 
						|
      writeAlias(F, G);
 | 
						|
      writeAlias(F, H);
 | 
						|
 | 
						|
      F->setAlignment(MaxAlignment);
 | 
						|
      F->setLinkage(GlobalValue::PrivateLinkage);
 | 
						|
    } else {
 | 
						|
      // We can't merge them. Instead, pick one and update all direct callers
 | 
						|
      // to call it and hope that we improve the instruction cache hit rate.
 | 
						|
      replaceDirectCallers(G, F);
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumDoubleWeak;
 | 
						|
  } else {
 | 
						|
    writeThunkOrAlias(F, G);
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumFunctionsMerged;
 | 
						|
}
 | 
						|
 | 
						|
// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
 | 
						|
// that was already inserted.
 | 
						|
bool MergeFunctions::insert(ComparableFunction &NewF) {
 | 
						|
  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
 | 
						|
  if (Result.second) {
 | 
						|
    DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const ComparableFunction &OldF = *Result.first;
 | 
						|
 | 
						|
  // Don't merge tiny functions, since it can just end up making the function
 | 
						|
  // larger.
 | 
						|
  // FIXME: Should still merge them if they are unnamed_addr and produce an
 | 
						|
  // alias.
 | 
						|
  if (NewF.getFunc()->size() == 1) {
 | 
						|
    if (NewF.getFunc()->front().size() <= 2) {
 | 
						|
      DEBUG(dbgs() << NewF.getFunc()->getName()
 | 
						|
            << " is to small to bother merging\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Never thunk a strong function to a weak function.
 | 
						|
  assert(!OldF.getFunc()->mayBeOverridden() ||
 | 
						|
         NewF.getFunc()->mayBeOverridden());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
 | 
						|
               << NewF.getFunc()->getName() << '\n');
 | 
						|
 | 
						|
  Function *DeleteF = NewF.getFunc();
 | 
						|
  NewF.release();
 | 
						|
  mergeTwoFunctions(OldF.getFunc(), DeleteF);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
 | 
						|
// so that we'll look at it in the next round.
 | 
						|
void MergeFunctions::remove(Function *F) {
 | 
						|
  // We need to make sure we remove F, not a function "equal" to F per the
 | 
						|
  // function equality comparator.
 | 
						|
  //
 | 
						|
  // The special "lookup only" ComparableFunction bypasses the expensive
 | 
						|
  // function comparison in favour of a pointer comparison on the underlying
 | 
						|
  // Function*'s.
 | 
						|
  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
 | 
						|
  if (FnSet.erase(CF)) {
 | 
						|
    DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
 | 
						|
    Deferred.push_back(F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For each instruction used by the value, remove() the function that contains
 | 
						|
// the instruction. This should happen right before a call to RAUW.
 | 
						|
void MergeFunctions::removeUsers(Value *V) {
 | 
						|
  std::vector<Value *> Worklist;
 | 
						|
  Worklist.push_back(V);
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Value *V = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    for (User *U : V->users()) {
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(U)) {
 | 
						|
        remove(I->getParent()->getParent());
 | 
						|
      } else if (isa<GlobalValue>(U)) {
 | 
						|
        // do nothing
 | 
						|
      } else if (Constant *C = dyn_cast<Constant>(U)) {
 | 
						|
        for (User *UU : C->users())
 | 
						|
          Worklist.push_back(UU);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |