mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
4fa57932c7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174786 91177308-0d34-0410-b5e6-96231b3b80d8
571 lines
21 KiB
C++
571 lines
21 KiB
C++
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the generic implementation of LoopInfo used for both Loops and
|
|
// MachineLoops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
|
|
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
|
|
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// APIs for simple analysis of the loop. See header notes.
|
|
|
|
/// getExitingBlocks - Return all blocks inside the loop that have successors
|
|
/// outside of the loop. These are the blocks _inside of the current loop_
|
|
/// which branch out. The returned list is always unique.
|
|
///
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::
|
|
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
// lookups.
|
|
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
|
|
for (typename BlockTraits::ChildIteratorType I =
|
|
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
|
|
I != E; ++I)
|
|
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
|
|
// Not in current loop? It must be an exit block.
|
|
ExitingBlocks.push_back(*BI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// getExitingBlock - If getExitingBlocks would return exactly one block,
|
|
/// return that block. Otherwise return null.
|
|
template<class BlockT, class LoopT>
|
|
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
|
|
SmallVector<BlockT*, 8> ExitingBlocks;
|
|
getExitingBlocks(ExitingBlocks);
|
|
if (ExitingBlocks.size() == 1)
|
|
return ExitingBlocks[0];
|
|
return 0;
|
|
}
|
|
|
|
/// getExitBlocks - Return all of the successor blocks of this loop. These
|
|
/// are the blocks _outside of the current loop_ which are branched to.
|
|
///
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::
|
|
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
// lookups.
|
|
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
|
|
for (typename BlockTraits::ChildIteratorType I =
|
|
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
|
|
I != E; ++I)
|
|
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
|
// Not in current loop? It must be an exit block.
|
|
ExitBlocks.push_back(*I);
|
|
}
|
|
|
|
/// getExitBlock - If getExitBlocks would return exactly one block,
|
|
/// return that block. Otherwise return null.
|
|
template<class BlockT, class LoopT>
|
|
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
|
|
SmallVector<BlockT*, 8> ExitBlocks;
|
|
getExitBlocks(ExitBlocks);
|
|
if (ExitBlocks.size() == 1)
|
|
return ExitBlocks[0];
|
|
return 0;
|
|
}
|
|
|
|
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::
|
|
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
// lookups.
|
|
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
|
|
array_pod_sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
|
|
for (typename BlockTraits::ChildIteratorType I =
|
|
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
|
|
I != E; ++I)
|
|
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
|
|
// Not in current loop? It must be an exit block.
|
|
ExitEdges.push_back(Edge(*BI, *I));
|
|
}
|
|
|
|
/// getLoopPreheader - If there is a preheader for this loop, return it. A
|
|
/// loop has a preheader if there is only one edge to the header of the loop
|
|
/// from outside of the loop. If this is the case, the block branching to the
|
|
/// header of the loop is the preheader node.
|
|
///
|
|
/// This method returns null if there is no preheader for the loop.
|
|
///
|
|
template<class BlockT, class LoopT>
|
|
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
|
|
// Keep track of nodes outside the loop branching to the header...
|
|
BlockT *Out = getLoopPredecessor();
|
|
if (!Out) return 0;
|
|
|
|
// Make sure there is only one exit out of the preheader.
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
|
|
++SI;
|
|
if (SI != BlockTraits::child_end(Out))
|
|
return 0; // Multiple exits from the block, must not be a preheader.
|
|
|
|
// The predecessor has exactly one successor, so it is a preheader.
|
|
return Out;
|
|
}
|
|
|
|
/// getLoopPredecessor - If the given loop's header has exactly one unique
|
|
/// predecessor outside the loop, return it. Otherwise return null.
|
|
/// This is less strict that the loop "preheader" concept, which requires
|
|
/// the predecessor to have exactly one successor.
|
|
///
|
|
template<class BlockT, class LoopT>
|
|
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
|
|
// Keep track of nodes outside the loop branching to the header...
|
|
BlockT *Out = 0;
|
|
|
|
// Loop over the predecessors of the header node...
|
|
BlockT *Header = getHeader();
|
|
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
|
|
for (typename InvBlockTraits::ChildIteratorType PI =
|
|
InvBlockTraits::child_begin(Header),
|
|
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
|
|
typename InvBlockTraits::NodeType *N = *PI;
|
|
if (!contains(N)) { // If the block is not in the loop...
|
|
if (Out && Out != N)
|
|
return 0; // Multiple predecessors outside the loop
|
|
Out = N;
|
|
}
|
|
}
|
|
|
|
// Make sure there is only one exit out of the preheader.
|
|
assert(Out && "Header of loop has no predecessors from outside loop?");
|
|
return Out;
|
|
}
|
|
|
|
/// getLoopLatch - If there is a single latch block for this loop, return it.
|
|
/// A latch block is a block that contains a branch back to the header.
|
|
template<class BlockT, class LoopT>
|
|
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
|
|
BlockT *Header = getHeader();
|
|
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
|
|
typename InvBlockTraits::ChildIteratorType PI =
|
|
InvBlockTraits::child_begin(Header);
|
|
typename InvBlockTraits::ChildIteratorType PE =
|
|
InvBlockTraits::child_end(Header);
|
|
BlockT *Latch = 0;
|
|
for (; PI != PE; ++PI) {
|
|
typename InvBlockTraits::NodeType *N = *PI;
|
|
if (contains(N)) {
|
|
if (Latch) return 0;
|
|
Latch = N;
|
|
}
|
|
}
|
|
|
|
return Latch;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// APIs for updating loop information after changing the CFG
|
|
//
|
|
|
|
/// addBasicBlockToLoop - This method is used by other analyses to update loop
|
|
/// information. NewBB is set to be a new member of the current loop.
|
|
/// Because of this, it is added as a member of all parent loops, and is added
|
|
/// to the specified LoopInfo object as being in the current basic block. It
|
|
/// is not valid to replace the loop header with this method.
|
|
///
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::
|
|
addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
|
|
assert((Blocks.empty() || LIB[getHeader()] == this) &&
|
|
"Incorrect LI specified for this loop!");
|
|
assert(NewBB && "Cannot add a null basic block to the loop!");
|
|
assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
|
|
|
|
LoopT *L = static_cast<LoopT *>(this);
|
|
|
|
// Add the loop mapping to the LoopInfo object...
|
|
LIB.BBMap[NewBB] = L;
|
|
|
|
// Add the basic block to this loop and all parent loops...
|
|
while (L) {
|
|
L->Blocks.push_back(NewBB);
|
|
L = L->getParentLoop();
|
|
}
|
|
}
|
|
|
|
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
|
|
/// the OldChild entry in our children list with NewChild, and updates the
|
|
/// parent pointer of OldChild to be null and the NewChild to be this loop.
|
|
/// This updates the loop depth of the new child.
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::
|
|
replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
|
|
assert(OldChild->ParentLoop == this && "This loop is already broken!");
|
|
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
|
|
typename std::vector<LoopT *>::iterator I =
|
|
std::find(SubLoops.begin(), SubLoops.end(), OldChild);
|
|
assert(I != SubLoops.end() && "OldChild not in loop!");
|
|
*I = NewChild;
|
|
OldChild->ParentLoop = 0;
|
|
NewChild->ParentLoop = static_cast<LoopT *>(this);
|
|
}
|
|
|
|
/// verifyLoop - Verify loop structure
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::verifyLoop() const {
|
|
#ifndef NDEBUG
|
|
assert(!Blocks.empty() && "Loop header is missing");
|
|
|
|
// Setup for using a depth-first iterator to visit every block in the loop.
|
|
SmallVector<BlockT*, 8> ExitBBs;
|
|
getExitBlocks(ExitBBs);
|
|
llvm::SmallPtrSet<BlockT*, 8> VisitSet;
|
|
VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
|
|
df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
|
|
BI = df_ext_begin(getHeader(), VisitSet),
|
|
BE = df_ext_end(getHeader(), VisitSet);
|
|
|
|
// Keep track of the number of BBs visited.
|
|
unsigned NumVisited = 0;
|
|
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
// lookups.
|
|
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
|
|
std::sort(LoopBBs.begin(), LoopBBs.end());
|
|
|
|
// Check the individual blocks.
|
|
for ( ; BI != BE; ++BI) {
|
|
BlockT *BB = *BI;
|
|
bool HasInsideLoopSuccs = false;
|
|
bool HasInsideLoopPreds = false;
|
|
SmallVector<BlockT *, 2> OutsideLoopPreds;
|
|
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
for (typename BlockTraits::ChildIteratorType SI =
|
|
BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
|
|
SI != SE; ++SI)
|
|
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
|
|
HasInsideLoopSuccs = true;
|
|
break;
|
|
}
|
|
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
|
|
for (typename InvBlockTraits::ChildIteratorType PI =
|
|
InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
|
|
PI != PE; ++PI) {
|
|
BlockT *N = *PI;
|
|
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
|
|
HasInsideLoopPreds = true;
|
|
else
|
|
OutsideLoopPreds.push_back(N);
|
|
}
|
|
|
|
if (BB == getHeader()) {
|
|
assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
|
|
} else if (!OutsideLoopPreds.empty()) {
|
|
// A non-header loop shouldn't be reachable from outside the loop,
|
|
// though it is permitted if the predecessor is not itself actually
|
|
// reachable.
|
|
BlockT *EntryBB = BB->getParent()->begin();
|
|
for (df_iterator<BlockT *> NI = df_begin(EntryBB),
|
|
NE = df_end(EntryBB); NI != NE; ++NI)
|
|
for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
|
|
assert(*NI != OutsideLoopPreds[i] &&
|
|
"Loop has multiple entry points!");
|
|
}
|
|
assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
|
|
assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
|
|
assert(BB != getHeader()->getParent()->begin() &&
|
|
"Loop contains function entry block!");
|
|
|
|
NumVisited++;
|
|
}
|
|
|
|
assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
|
|
|
|
// Check the subloops.
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
// Each block in each subloop should be contained within this loop.
|
|
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
|
|
BI != BE; ++BI) {
|
|
assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
|
|
"Loop does not contain all the blocks of a subloop!");
|
|
}
|
|
|
|
// Check the parent loop pointer.
|
|
if (ParentLoop) {
|
|
assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
|
|
ParentLoop->end() &&
|
|
"Loop is not a subloop of its parent!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// verifyLoop - Verify loop structure of this loop and all nested loops.
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::verifyLoopNest(
|
|
DenseSet<const LoopT*> *Loops) const {
|
|
Loops->insert(static_cast<const LoopT *>(this));
|
|
// Verify this loop.
|
|
verifyLoop();
|
|
// Verify the subloops.
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
(*I)->verifyLoopNest(Loops);
|
|
}
|
|
|
|
template<class BlockT, class LoopT>
|
|
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
|
|
OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
|
|
<< " containing: ";
|
|
|
|
for (unsigned i = 0; i < getBlocks().size(); ++i) {
|
|
if (i) OS << ",";
|
|
BlockT *BB = getBlocks()[i];
|
|
WriteAsOperand(OS, BB, false);
|
|
if (BB == getHeader()) OS << "<header>";
|
|
if (BB == getLoopLatch()) OS << "<latch>";
|
|
if (isLoopExiting(BB)) OS << "<exiting>";
|
|
}
|
|
OS << "\n";
|
|
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
(*I)->print(OS, Depth+2);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
|
|
/// result does / not depend on use list (block predecessor) order.
|
|
///
|
|
|
|
/// Discover a subloop with the specified backedges such that: All blocks within
|
|
/// this loop are mapped to this loop or a subloop. And all subloops within this
|
|
/// loop have their parent loop set to this loop or a subloop.
|
|
template<class BlockT, class LoopT>
|
|
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
|
|
LoopInfoBase<BlockT, LoopT> *LI,
|
|
DominatorTreeBase<BlockT> &DomTree) {
|
|
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
|
|
|
|
unsigned NumBlocks = 0;
|
|
unsigned NumSubloops = 0;
|
|
|
|
// Perform a backward CFG traversal using a worklist.
|
|
std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
|
|
while (!ReverseCFGWorklist.empty()) {
|
|
BlockT *PredBB = ReverseCFGWorklist.back();
|
|
ReverseCFGWorklist.pop_back();
|
|
|
|
LoopT *Subloop = LI->getLoopFor(PredBB);
|
|
if (!Subloop) {
|
|
if (!DomTree.isReachableFromEntry(PredBB))
|
|
continue;
|
|
|
|
// This is an undiscovered block. Map it to the current loop.
|
|
LI->changeLoopFor(PredBB, L);
|
|
++NumBlocks;
|
|
if (PredBB == L->getHeader())
|
|
continue;
|
|
// Push all block predecessors on the worklist.
|
|
ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
|
|
InvBlockTraits::child_begin(PredBB),
|
|
InvBlockTraits::child_end(PredBB));
|
|
}
|
|
else {
|
|
// This is a discovered block. Find its outermost discovered loop.
|
|
while (LoopT *Parent = Subloop->getParentLoop())
|
|
Subloop = Parent;
|
|
|
|
// If it is already discovered to be a subloop of this loop, continue.
|
|
if (Subloop == L)
|
|
continue;
|
|
|
|
// Discover a subloop of this loop.
|
|
Subloop->setParentLoop(L);
|
|
++NumSubloops;
|
|
NumBlocks += Subloop->getBlocks().capacity();
|
|
PredBB = Subloop->getHeader();
|
|
// Continue traversal along predecessors that are not loop-back edges from
|
|
// within this subloop tree itself. Note that a predecessor may directly
|
|
// reach another subloop that is not yet discovered to be a subloop of
|
|
// this loop, which we must traverse.
|
|
for (typename InvBlockTraits::ChildIteratorType PI =
|
|
InvBlockTraits::child_begin(PredBB),
|
|
PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
|
|
if (LI->getLoopFor(*PI) != Subloop)
|
|
ReverseCFGWorklist.push_back(*PI);
|
|
}
|
|
}
|
|
}
|
|
L->getSubLoopsVector().reserve(NumSubloops);
|
|
L->getBlocksVector().reserve(NumBlocks);
|
|
}
|
|
|
|
namespace {
|
|
/// Populate all loop data in a stable order during a single forward DFS.
|
|
template<class BlockT, class LoopT>
|
|
class PopulateLoopsDFS {
|
|
typedef GraphTraits<BlockT*> BlockTraits;
|
|
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
|
|
|
|
LoopInfoBase<BlockT, LoopT> *LI;
|
|
DenseSet<const BlockT *> VisitedBlocks;
|
|
std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
|
|
|
|
public:
|
|
PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
|
|
LI(li) {}
|
|
|
|
void traverse(BlockT *EntryBlock);
|
|
|
|
protected:
|
|
void insertIntoLoop(BlockT *Block);
|
|
|
|
BlockT *dfsSource() { return DFSStack.back().first; }
|
|
SuccIterTy &dfsSucc() { return DFSStack.back().second; }
|
|
SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
|
|
|
|
void pushBlock(BlockT *Block) {
|
|
DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
|
|
}
|
|
};
|
|
} // anonymous
|
|
|
|
/// Top-level driver for the forward DFS within the loop.
|
|
template<class BlockT, class LoopT>
|
|
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
|
|
pushBlock(EntryBlock);
|
|
VisitedBlocks.insert(EntryBlock);
|
|
while (!DFSStack.empty()) {
|
|
// Traverse the leftmost path as far as possible.
|
|
while (dfsSucc() != dfsSuccEnd()) {
|
|
BlockT *BB = *dfsSucc();
|
|
++dfsSucc();
|
|
if (!VisitedBlocks.insert(BB).second)
|
|
continue;
|
|
|
|
// Push the next DFS successor onto the stack.
|
|
pushBlock(BB);
|
|
}
|
|
// Visit the top of the stack in postorder and backtrack.
|
|
insertIntoLoop(dfsSource());
|
|
DFSStack.pop_back();
|
|
}
|
|
}
|
|
|
|
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
|
|
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
|
|
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
|
|
template<class BlockT, class LoopT>
|
|
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
|
|
LoopT *Subloop = LI->getLoopFor(Block);
|
|
if (Subloop && Block == Subloop->getHeader()) {
|
|
// We reach this point once per subloop after processing all the blocks in
|
|
// the subloop.
|
|
if (Subloop->getParentLoop())
|
|
Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
|
|
else
|
|
LI->addTopLevelLoop(Subloop);
|
|
|
|
// For convenience, Blocks and Subloops are inserted in postorder. Reverse
|
|
// the lists, except for the loop header, which is always at the beginning.
|
|
std::reverse(Subloop->getBlocksVector().begin()+1,
|
|
Subloop->getBlocksVector().end());
|
|
std::reverse(Subloop->getSubLoopsVector().begin(),
|
|
Subloop->getSubLoopsVector().end());
|
|
|
|
Subloop = Subloop->getParentLoop();
|
|
}
|
|
for (; Subloop; Subloop = Subloop->getParentLoop())
|
|
Subloop->getBlocksVector().push_back(Block);
|
|
}
|
|
|
|
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
|
|
/// interleaved with backward CFG traversals within each subloop
|
|
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
|
|
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
|
|
/// Block vectors are then populated during a single forward CFG traversal
|
|
/// (PopulateLoopDFS).
|
|
///
|
|
/// During the two CFG traversals each block is seen three times:
|
|
/// 1) Discovered and mapped by a reverse CFG traversal.
|
|
/// 2) Visited during a forward DFS CFG traversal.
|
|
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
|
|
///
|
|
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
|
|
/// insertions per block.
|
|
template<class BlockT, class LoopT>
|
|
void LoopInfoBase<BlockT, LoopT>::
|
|
Analyze(DominatorTreeBase<BlockT> &DomTree) {
|
|
|
|
// Postorder traversal of the dominator tree.
|
|
DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
|
|
for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
|
|
DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
|
|
|
|
BlockT *Header = DomIter->getBlock();
|
|
SmallVector<BlockT *, 4> Backedges;
|
|
|
|
// Check each predecessor of the potential loop header.
|
|
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
|
|
for (typename InvBlockTraits::ChildIteratorType PI =
|
|
InvBlockTraits::child_begin(Header),
|
|
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
|
|
|
|
BlockT *Backedge = *PI;
|
|
|
|
// If Header dominates predBB, this is a new loop. Collect the backedges.
|
|
if (DomTree.dominates(Header, Backedge)
|
|
&& DomTree.isReachableFromEntry(Backedge)) {
|
|
Backedges.push_back(Backedge);
|
|
}
|
|
}
|
|
// Perform a backward CFG traversal to discover and map blocks in this loop.
|
|
if (!Backedges.empty()) {
|
|
LoopT *L = new LoopT(Header);
|
|
discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
|
|
}
|
|
}
|
|
// Perform a single forward CFG traversal to populate block and subloop
|
|
// vectors for all loops.
|
|
PopulateLoopsDFS<BlockT, LoopT> DFS(this);
|
|
DFS.traverse(DomRoot->getBlock());
|
|
}
|
|
|
|
// Debugging
|
|
template<class BlockT, class LoopT>
|
|
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
|
|
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
|
|
TopLevelLoops[i]->print(OS);
|
|
#if 0
|
|
for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
|
|
E = BBMap.end(); I != E; ++I)
|
|
OS << "BB '" << I->first->getName() << "' level = "
|
|
<< I->second->getLoopDepth() << "\n";
|
|
#endif
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|