mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13738 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1257 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1257 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Constant* classes...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "ConstantFolding.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
ConstantBool *ConstantBool::True  = new ConstantBool(true);
 | 
						|
ConstantBool *ConstantBool::False = new ConstantBool(false);
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Constant Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Specialize setName to take care of symbol table majik
 | 
						|
void Constant::setName(const std::string &Name, SymbolTable *ST) {
 | 
						|
  assert(ST && "Type::setName - Must provide symbol table argument!");
 | 
						|
 | 
						|
  if (Name.size()) ST->insert(Name, this);
 | 
						|
}
 | 
						|
 | 
						|
void Constant::destroyConstantImpl() {
 | 
						|
  // When a Constant is destroyed, there may be lingering
 | 
						|
  // references to the constant by other constants in the constant pool.  These
 | 
						|
  // constants are implicitly dependent on the module that is being deleted,
 | 
						|
  // but they don't know that.  Because we only find out when the CPV is
 | 
						|
  // deleted, we must now notify all of our users (that should only be
 | 
						|
  // Constants) that they are, in fact, invalid now and should be deleted.
 | 
						|
  //
 | 
						|
  while (!use_empty()) {
 | 
						|
    Value *V = use_back();
 | 
						|
#ifndef NDEBUG      // Only in -g mode...
 | 
						|
    if (!isa<Constant>(V))
 | 
						|
      std::cerr << "While deleting: " << *this
 | 
						|
                << "\n\nUse still stuck around after Def is destroyed: "
 | 
						|
                << *V << "\n\n";
 | 
						|
#endif
 | 
						|
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | 
						|
    Constant *CPV = cast<Constant>(V);
 | 
						|
    CPV->destroyConstant();
 | 
						|
 | 
						|
    // The constant should remove itself from our use list...
 | 
						|
    assert((use_empty() || use_back() != V) && "Constant not removed!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Value has no outstanding references it is safe to delete it now...
 | 
						|
  delete this;
 | 
						|
}
 | 
						|
 | 
						|
// Static constructor to create a '0' constant of arbitrary type...
 | 
						|
Constant *Constant::getNullValue(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID: {
 | 
						|
    static Constant *NullBool = ConstantBool::get(false);
 | 
						|
    return NullBool;
 | 
						|
  }
 | 
						|
  case Type::SByteTyID: {
 | 
						|
    static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
 | 
						|
    return NullSByte;
 | 
						|
  }
 | 
						|
  case Type::UByteTyID: {
 | 
						|
    static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
 | 
						|
    return NullUByte;
 | 
						|
  }
 | 
						|
  case Type::ShortTyID: {
 | 
						|
    static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
 | 
						|
    return NullShort;
 | 
						|
  }
 | 
						|
  case Type::UShortTyID: {
 | 
						|
    static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
 | 
						|
    return NullUShort;
 | 
						|
  }
 | 
						|
  case Type::IntTyID: {
 | 
						|
    static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
 | 
						|
    return NullInt;
 | 
						|
  }
 | 
						|
  case Type::UIntTyID: {
 | 
						|
    static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
 | 
						|
    return NullUInt;
 | 
						|
  }
 | 
						|
  case Type::LongTyID: {
 | 
						|
    static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
 | 
						|
    return NullLong;
 | 
						|
  }
 | 
						|
  case Type::ULongTyID: {
 | 
						|
    static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
 | 
						|
    return NullULong;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
 | 
						|
    return NullFloat;
 | 
						|
  }
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
 | 
						|
    return NullDouble;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID: 
 | 
						|
    return ConstantPointerNull::get(cast<PointerType>(Ty));
 | 
						|
 | 
						|
  case Type::StructTyID:
 | 
						|
  case Type::ArrayTyID:
 | 
						|
    return ConstantAggregateZero::get(Ty);
 | 
						|
  default:
 | 
						|
    // Function, Type, Label, or Opaque type?
 | 
						|
    assert(0 && "Cannot create a null constant of that type!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Static constructor to create the maximum constant of an integral type...
 | 
						|
ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID:   return ConstantBool::True;
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::LongTyID: {
 | 
						|
    // Calculate 011111111111111... 
 | 
						|
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | 
						|
    int64_t Val = INT64_MAX;             // All ones
 | 
						|
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
    return ConstantSInt::get(Ty, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::ULongTyID:  return getAllOnesValue(Ty);
 | 
						|
 | 
						|
  default: return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Static constructor to create the minimum constant for an integral type...
 | 
						|
ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID:   return ConstantBool::False;
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::LongTyID: {
 | 
						|
     // Calculate 1111111111000000000000 
 | 
						|
     unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | 
						|
     int64_t Val = -1;                    // All ones
 | 
						|
     Val <<= TypeBits-1;                  // Shift over to the right spot
 | 
						|
     return ConstantSInt::get(Ty, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);
 | 
						|
 | 
						|
  default: return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Static constructor to create an integral constant with all bits set
 | 
						|
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID:   return ConstantBool::True;
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::LongTyID:   return ConstantSInt::get(Ty, -1);
 | 
						|
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::ULongTyID: {
 | 
						|
    // Calculate ~0 of the right type...
 | 
						|
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | 
						|
    uint64_t Val = ~0ULL;                // All ones
 | 
						|
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
    return ConstantUInt::get(Ty, Val);
 | 
						|
  }
 | 
						|
  default: return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantUInt::isAllOnesValue() const {
 | 
						|
  unsigned TypeBits = getType()->getPrimitiveSize()*8;
 | 
						|
  uint64_t Val = ~0ULL;                // All ones
 | 
						|
  Val >>= 64-TypeBits;                 // Shift out inappropriate bits
 | 
						|
  return getValue() == Val;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            ConstantXXX Classes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Normal Constructors
 | 
						|
 | 
						|
ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy) {
 | 
						|
  Val = V;
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty) {
 | 
						|
  Val.Unsigned = V;
 | 
						|
}
 | 
						|
 | 
						|
ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) {
 | 
						|
  assert(Ty->isInteger() && Ty->isSigned() &&
 | 
						|
         "Illegal type for unsigned integer constant!");
 | 
						|
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | 
						|
}
 | 
						|
 | 
						|
ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) {
 | 
						|
  assert(Ty->isInteger() && Ty->isUnsigned() &&
 | 
						|
         "Illegal type for unsigned integer constant!");
 | 
						|
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | 
						|
}
 | 
						|
 | 
						|
ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) {
 | 
						|
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | 
						|
  Val = V;
 | 
						|
}
 | 
						|
 | 
						|
ConstantArray::ConstantArray(const ArrayType *T,
 | 
						|
                             const std::vector<Constant*> &V) : Constant(T) {
 | 
						|
  Operands.reserve(V.size());
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | 
						|
    assert(V[i]->getType() == T->getElementType() ||
 | 
						|
           (T->isAbstract() &&
 | 
						|
            V[i]->getType()->getPrimitiveID() ==
 | 
						|
            T->getElementType()->getPrimitiveID()));
 | 
						|
    Operands.push_back(Use(V[i], this));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ConstantStruct::ConstantStruct(const StructType *T,
 | 
						|
                               const std::vector<Constant*> &V) : Constant(T) {
 | 
						|
  assert(V.size() == T->getNumElements() &&
 | 
						|
         "Invalid initializer vector for constant structure");
 | 
						|
  Operands.reserve(V.size());
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | 
						|
    assert((V[i]->getType() == T->getElementType(i) ||
 | 
						|
            ((T->getElementType(i)->isAbstract() ||
 | 
						|
              V[i]->getType()->isAbstract()) &&
 | 
						|
             T->getElementType(i)->getPrimitiveID() == 
 | 
						|
                      V[i]->getType()->getPrimitiveID())) &&
 | 
						|
           "Initializer for struct element doesn't match struct element type!");
 | 
						|
    Operands.push_back(Use(V[i], this));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ConstantPointerRef::ConstantPointerRef(GlobalValue *GV)
 | 
						|
  : Constant(GV->getType()) {
 | 
						|
  Operands.reserve(1);
 | 
						|
  Operands.push_back(Use(GV, this));
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | 
						|
  : Constant(Ty), iType(Opcode) {
 | 
						|
  Operands.reserve(1);
 | 
						|
  Operands.push_back(Use(C, this));
 | 
						|
}
 | 
						|
 | 
						|
// Select instruction creation ctor
 | 
						|
ConstantExpr::ConstantExpr(Constant *C, Constant *V1, Constant *V2)
 | 
						|
  : Constant(V1->getType()), iType(Instruction::Select) {
 | 
						|
  Operands.reserve(3);
 | 
						|
  Operands.push_back(Use(C, this));
 | 
						|
  Operands.push_back(Use(V1, this));
 | 
						|
  Operands.push_back(Use(V2, this));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool isSetCC(unsigned Opcode) {
 | 
						|
  return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
 | 
						|
         Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
 | 
						|
         Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | 
						|
  : Constant(isSetCC(Opcode) ? Type::BoolTy : C1->getType()), iType(Opcode) {
 | 
						|
  Operands.reserve(2);
 | 
						|
  Operands.push_back(Use(C1, this));
 | 
						|
  Operands.push_back(Use(C2, this));
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | 
						|
                           const Type *DestTy)
 | 
						|
  : Constant(DestTy), iType(Instruction::GetElementPtr) {
 | 
						|
  Operands.reserve(1+IdxList.size());
 | 
						|
  Operands.push_back(Use(C, this));
 | 
						|
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | 
						|
    Operands.push_back(Use(IdxList[i], this));
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantExpr::get* - Return some common constants without having to
 | 
						|
/// specify the full Instruction::OPCODE identifier.
 | 
						|
///
 | 
						|
Constant *ConstantExpr::getNeg(Constant *C) {
 | 
						|
  if (!C->getType()->isFloatingPoint())
 | 
						|
    return get(Instruction::Sub, getNullValue(C->getType()), C);
 | 
						|
  else
 | 
						|
    return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getNot(Constant *C) {
 | 
						|
  assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
 | 
						|
  return get(Instruction::Xor, C,
 | 
						|
             ConstantIntegral::getAllOnesValue(C->getType()));
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Add, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Sub, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Mul, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Div, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Rem, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::And, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Or, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Xor, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetEQ, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetNE, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetLT, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetGT, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetLE, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::SetGE, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Shl, C1, C2);
 | 
						|
}
 | 
						|
Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) {
 | 
						|
  return get(Instruction::Shr, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) {
 | 
						|
  if (C1->getType()->isUnsigned()) return getShr(C1, C2);
 | 
						|
  return getCast(getShr(getCast(C1,
 | 
						|
                    C1->getType()->getUnsignedVersion()), C2), C1->getType());
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) {
 | 
						|
  if (C1->getType()->isSigned()) return getShr(C1, C2);
 | 
						|
  return getCast(getShr(getCast(C1,
 | 
						|
                        C1->getType()->getSignedVersion()), C2), C1->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           classof implementations
 | 
						|
 | 
						|
bool ConstantIntegral::classof(const Constant *CPV) {
 | 
						|
  return CPV->getType()->isIntegral() && !isa<ConstantExpr>(CPV);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantInt::classof(const Constant *CPV) {
 | 
						|
  return CPV->getType()->isInteger() && !isa<ConstantExpr>(CPV);
 | 
						|
}
 | 
						|
bool ConstantSInt::classof(const Constant *CPV) {
 | 
						|
  return CPV->getType()->isSigned() && !isa<ConstantExpr>(CPV);
 | 
						|
}
 | 
						|
bool ConstantUInt::classof(const Constant *CPV) {
 | 
						|
  return CPV->getType()->isUnsigned() && !isa<ConstantExpr>(CPV);
 | 
						|
}
 | 
						|
bool ConstantFP::classof(const Constant *CPV) {
 | 
						|
  const Type *Ty = CPV->getType();
 | 
						|
  return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) &&
 | 
						|
          !isa<ConstantExpr>(CPV));
 | 
						|
}
 | 
						|
bool ConstantAggregateZero::classof(const Constant *CPV) {
 | 
						|
  return (isa<ArrayType>(CPV->getType()) || isa<StructType>(CPV->getType())) &&
 | 
						|
         CPV->isNullValue();
 | 
						|
}
 | 
						|
bool ConstantArray::classof(const Constant *CPV) {
 | 
						|
  return isa<ArrayType>(CPV->getType()) && !CPV->isNullValue();
 | 
						|
}
 | 
						|
bool ConstantStruct::classof(const Constant *CPV) {
 | 
						|
  return isa<StructType>(CPV->getType()) && !CPV->isNullValue();
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantPointerNull::classof(const Constant *CPV) {
 | 
						|
  return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
 | 
						|
         CPV->getNumOperands() == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantPointerRef::classof(const Constant *CPV) {
 | 
						|
  return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
 | 
						|
         CPV->getNumOperands() == 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      isValueValidForType implementations
 | 
						|
 | 
						|
bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  default:
 | 
						|
    return false;         // These can't be represented as integers!!!
 | 
						|
 | 
						|
    // Signed types...
 | 
						|
  case Type::SByteTyID:
 | 
						|
    return (Val <= INT8_MAX && Val >= INT8_MIN);
 | 
						|
  case Type::ShortTyID:
 | 
						|
    return (Val <= INT16_MAX && Val >= INT16_MIN);
 | 
						|
  case Type::IntTyID:
 | 
						|
    return (Val <= INT32_MAX && Val >= INT32_MIN);
 | 
						|
  case Type::LongTyID:
 | 
						|
    return true;          // This is the largest type...
 | 
						|
  }
 | 
						|
  assert(0 && "WTF?");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  default:
 | 
						|
    return false;         // These can't be represented as integers!!!
 | 
						|
 | 
						|
    // Unsigned types...
 | 
						|
  case Type::UByteTyID:
 | 
						|
    return (Val <= UINT8_MAX);
 | 
						|
  case Type::UShortTyID:
 | 
						|
    return (Val <= UINT16_MAX);
 | 
						|
  case Type::UIntTyID:
 | 
						|
    return (Val <= UINT32_MAX);
 | 
						|
  case Type::ULongTyID:
 | 
						|
    return true;          // This is the largest type...
 | 
						|
  }
 | 
						|
  assert(0 && "WTF?");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  default:
 | 
						|
    return false;         // These can't be represented as floating point!
 | 
						|
 | 
						|
    // TODO: Figure out how to test if a double can be cast to a float!
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    return true;          // This is the largest type...
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                replaceUsesOfWithOnConstant implementations
 | 
						|
 | 
						|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                bool DisableChecking) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
 | 
						|
  std::vector<Constant*> Values;
 | 
						|
  Values.reserve(getValues().size());  // Build replacement array...
 | 
						|
  for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
 | 
						|
    Constant *Val = cast<Constant>(getValues()[i]);
 | 
						|
    if (Val == From) Val = cast<Constant>(To);
 | 
						|
    Values.push_back(Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = ConstantArray::get(getType(), Values);
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
 | 
						|
  // Everyone using this now uses the replacement...
 | 
						|
  if (DisableChecking)
 | 
						|
    uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  else
 | 
						|
    replaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();  
 | 
						|
}
 | 
						|
 | 
						|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                 bool DisableChecking) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
 | 
						|
  std::vector<Constant*> Values;
 | 
						|
  Values.reserve(getValues().size());
 | 
						|
  for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
 | 
						|
    Constant *Val = cast<Constant>(getValues()[i]);
 | 
						|
    if (Val == From) Val = cast<Constant>(To);
 | 
						|
    Values.push_back(Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = ConstantStruct::get(getType(), Values);
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
 | 
						|
  // Everyone using this now uses the replacement...
 | 
						|
  if (DisableChecking)
 | 
						|
    uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  else
 | 
						|
    replaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantPointerRef::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                     bool DisableChecking) {
 | 
						|
  if (isa<GlobalValue>(To)) {
 | 
						|
    assert(From == getOperand(0) && "Doesn't contain from!");
 | 
						|
    ConstantPointerRef *Replacement =
 | 
						|
      ConstantPointerRef::get(cast<GlobalValue>(To));
 | 
						|
    
 | 
						|
    // Everyone using this now uses the replacement...
 | 
						|
    if (DisableChecking)
 | 
						|
      uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
    else
 | 
						|
      replaceAllUsesWith(Replacement);
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Just replace ourselves with the To value specified.
 | 
						|
    if (DisableChecking)
 | 
						|
      uncheckedReplaceAllUsesWith(To);
 | 
						|
    else
 | 
						|
      replaceAllUsesWith(To);
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | 
						|
                                               bool DisableChecking) {
 | 
						|
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *To = cast<Constant>(ToV);
 | 
						|
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    std::vector<Constant*> Indices;
 | 
						|
    Constant *Pointer = getOperand(0);
 | 
						|
    Indices.reserve(getNumOperands()-1);
 | 
						|
    if (Pointer == From) Pointer = To;
 | 
						|
    
 | 
						|
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
      Constant *Val = getOperand(i);
 | 
						|
      if (Val == From) Val = To;
 | 
						|
      Indices.push_back(Val);
 | 
						|
    }
 | 
						|
    Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
 | 
						|
  } else if (getOpcode() == Instruction::Cast) {
 | 
						|
    assert(getOperand(0) == From && "Cast only has one use!");
 | 
						|
    Replacement = ConstantExpr::getCast(To, getType());
 | 
						|
  } else if (getOpcode() == Instruction::Select) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(2);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | 
						|
  } else if (getNumOperands() == 2) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    Replacement = ConstantExpr::get(getOpcode(), C1, C2);
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown ConstantExpr type!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
 | 
						|
  // Everyone using this now uses the replacement...
 | 
						|
  if (DisableChecking)
 | 
						|
    uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  else
 | 
						|
    replaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Factory Function Implementation
 | 
						|
 | 
						|
// ConstantCreator - A class that is used to create constants by
 | 
						|
// ValueMap*.  This class should be partially specialized if there is
 | 
						|
// something strange that needs to be done to interface to the ctor for the
 | 
						|
// constant.
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<class ConstantClass, class TypeClass, class ValType>
 | 
						|
  struct ConstantCreator {
 | 
						|
    static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | 
						|
      return new ConstantClass(Ty, V);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  template<class ConstantClass, class TypeClass>
 | 
						|
  struct ConvertConstantType {
 | 
						|
    static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | 
						|
      assert(0 && "This type cannot be converted!\n");
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class ValType, class TypeClass, class ConstantClass>
 | 
						|
  class ValueMap : public AbstractTypeUser {
 | 
						|
    typedef std::pair<const TypeClass*, ValType> MapKey;
 | 
						|
    typedef std::map<MapKey, ConstantClass *> MapTy;
 | 
						|
    typedef typename MapTy::iterator MapIterator;
 | 
						|
    MapTy Map;
 | 
						|
 | 
						|
    typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
 | 
						|
    AbstractTypeMapTy AbstractTypeMap;
 | 
						|
  public:
 | 
						|
    // getOrCreate - Return the specified constant from the map, creating it if
 | 
						|
    // necessary.
 | 
						|
    ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | 
						|
      MapKey Lookup(Ty, V);
 | 
						|
      MapIterator I = Map.lower_bound(Lookup);
 | 
						|
      if (I != Map.end() && I->first == Lookup)
 | 
						|
        return I->second;  // Is it in the map?
 | 
						|
 | 
						|
      // If no preexisting value, create one now...
 | 
						|
      ConstantClass *Result =
 | 
						|
        ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | 
						|
 | 
						|
 | 
						|
      /// FIXME: why does this assert fail when loading 176.gcc?
 | 
						|
      //assert(Result->getType() == Ty && "Type specified is not correct!");
 | 
						|
      I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | 
						|
 | 
						|
      // If the type of the constant is abstract, make sure that an entry exists
 | 
						|
      // for it in the AbstractTypeMap.
 | 
						|
      if (Ty->isAbstract()) {
 | 
						|
        typename AbstractTypeMapTy::iterator TI =
 | 
						|
          AbstractTypeMap.lower_bound(Ty);
 | 
						|
 | 
						|
        if (TI == AbstractTypeMap.end() || TI->first != Ty) {
 | 
						|
          // Add ourselves to the ATU list of the type.
 | 
						|
          cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | 
						|
 | 
						|
          AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    
 | 
						|
    void remove(ConstantClass *CP) {
 | 
						|
      // FIXME: This should not use a linear scan.  If this gets to be a
 | 
						|
      // performance problem, someone should look at this.
 | 
						|
      MapIterator I = Map.begin();
 | 
						|
      for (MapIterator E = Map.end(); I != E && I->second != CP; ++I)
 | 
						|
        /* empty */;
 | 
						|
      
 | 
						|
      assert(I != Map.end() && "Constant not found in constant table!");
 | 
						|
 | 
						|
      // Now that we found the entry, make sure this isn't the entry that
 | 
						|
      // the AbstractTypeMap points to.
 | 
						|
      const TypeClass *Ty = I->first.first;
 | 
						|
      if (Ty->isAbstract()) {
 | 
						|
        assert(AbstractTypeMap.count(Ty) &&
 | 
						|
               "Abstract type not in AbstractTypeMap?");
 | 
						|
        MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
 | 
						|
        if (ATMEntryIt == I) {
 | 
						|
          // Yes, we are removing the representative entry for this type.
 | 
						|
          // See if there are any other entries of the same type.
 | 
						|
          MapIterator TmpIt = ATMEntryIt;
 | 
						|
          
 | 
						|
          // First check the entry before this one...
 | 
						|
          if (TmpIt != Map.begin()) {
 | 
						|
            --TmpIt;
 | 
						|
            if (TmpIt->first.first != Ty) // Not the same type, move back...
 | 
						|
              ++TmpIt;
 | 
						|
          }
 | 
						|
          
 | 
						|
          // If we didn't find the same type, try to move forward...
 | 
						|
          if (TmpIt == ATMEntryIt) {
 | 
						|
            ++TmpIt;
 | 
						|
            if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | 
						|
              --TmpIt;   // No entry afterwards with the same type
 | 
						|
          }
 | 
						|
 | 
						|
          // If there is another entry in the map of the same abstract type,
 | 
						|
          // update the AbstractTypeMap entry now.
 | 
						|
          if (TmpIt != ATMEntryIt) {
 | 
						|
            ATMEntryIt = TmpIt;
 | 
						|
          } else {
 | 
						|
            // Otherwise, we are removing the last instance of this type
 | 
						|
            // from the table.  Remove from the ATM, and from user list.
 | 
						|
            cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | 
						|
            AbstractTypeMap.erase(Ty);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      Map.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | 
						|
      typename AbstractTypeMapTy::iterator I = 
 | 
						|
        AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | 
						|
 | 
						|
      assert(I != AbstractTypeMap.end() &&
 | 
						|
             "Abstract type not in AbstractTypeMap?");
 | 
						|
 | 
						|
      // Convert a constant at a time until the last one is gone.  The last one
 | 
						|
      // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | 
						|
      // eliminated eventually.
 | 
						|
      do {
 | 
						|
        ConvertConstantType<ConstantClass,
 | 
						|
                            TypeClass>::convert(I->second->second,
 | 
						|
                                                cast<TypeClass>(NewTy));
 | 
						|
 | 
						|
        I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | 
						|
      } while (I != AbstractTypeMap.end());
 | 
						|
    }
 | 
						|
 | 
						|
    // If the type became concrete without being refined to any other existing
 | 
						|
    // type, we just remove ourselves from the ATU list.
 | 
						|
    void typeBecameConcrete(const DerivedType *AbsTy) {
 | 
						|
      AbsTy->removeAbstractTypeUser(this);
 | 
						|
    }
 | 
						|
 | 
						|
    void dump() const {
 | 
						|
      std::cerr << "Constant.cpp: ValueMap\n";
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---- ConstantUInt::get() and ConstantSInt::get() implementations...
 | 
						|
//
 | 
						|
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
 | 
						|
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
 | 
						|
 | 
						|
ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
 | 
						|
  return SIntConstants.getOrCreate(Ty, V);
 | 
						|
}
 | 
						|
 | 
						|
ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
 | 
						|
  return UIntConstants.getOrCreate(Ty, V);
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
 | 
						|
  assert(V <= 127 && "Can only be used with very small positive constants!");
 | 
						|
  if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
 | 
						|
  return ConstantUInt::get(Ty, V);
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantFP::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConstantCreator<ConstantFP, Type, uint64_t> {
 | 
						|
    static ConstantFP *create(const Type *Ty, uint64_t V) {
 | 
						|
      assert(Ty == Type::DoubleTy);
 | 
						|
      union {
 | 
						|
        double F;
 | 
						|
        uint64_t I;
 | 
						|
      } T;
 | 
						|
      T.I = V;
 | 
						|
      return new ConstantFP(Ty, T.F);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  template<>
 | 
						|
  struct ConstantCreator<ConstantFP, Type, uint32_t> {
 | 
						|
    static ConstantFP *create(const Type *Ty, uint32_t V) {
 | 
						|
      assert(Ty == Type::FloatTy);
 | 
						|
      union {
 | 
						|
        float F;
 | 
						|
        uint32_t I;
 | 
						|
      } T;
 | 
						|
      T.I = V;
 | 
						|
      return new ConstantFP(Ty, T.F);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
 | 
						|
static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;
 | 
						|
 | 
						|
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
 | 
						|
  if (Ty == Type::FloatTy) {
 | 
						|
    // Force the value through memory to normalize it.
 | 
						|
    union {
 | 
						|
      float F;
 | 
						|
      uint32_t I;
 | 
						|
    } T;
 | 
						|
    T.F = (float)V;
 | 
						|
    return FloatConstants.getOrCreate(Ty, T.I);
 | 
						|
  } else {
 | 
						|
    assert(Ty == Type::DoubleTy);
 | 
						|
    union {
 | 
						|
      double F;
 | 
						|
      uint64_t I;
 | 
						|
    } T;
 | 
						|
    T.F = V;
 | 
						|
    return DoubleConstants.getOrCreate(Ty, T.I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantAggregateZero::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  // ConstantAggregateZero does not take extra "value" argument...
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | 
						|
    static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | 
						|
      return new ConstantAggregateZero(Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantAggregateZero, Type> {
 | 
						|
    static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      Constant *New = ConstantAggregateZero::get(NewTy);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();     // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
 | 
						|
 | 
						|
Constant *ConstantAggregateZero::get(const Type *Ty) {
 | 
						|
  return AggZeroConstants.getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantAggregateZero::destroyConstant() {
 | 
						|
  AggZeroConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantAggregateZero::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                        bool DisableChecking) {
 | 
						|
  assert(0 && "No uses!");
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---- ConstantArray::get() implementation...
 | 
						|
//
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantArray, ArrayType> {
 | 
						|
    static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      std::vector<Constant*> C;
 | 
						|
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
        C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
      Constant *New = ConstantArray::get(NewTy, C);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ValueMap<std::vector<Constant*>, ArrayType,
 | 
						|
                ConstantArray> ArrayConstants;
 | 
						|
 | 
						|
Constant *ConstantArray::get(const ArrayType *Ty,
 | 
						|
                             const std::vector<Constant*> &V) {
 | 
						|
  // If this is an all-zero array, return a ConstantAggregateZero object
 | 
						|
  if (!V.empty()) {
 | 
						|
    Constant *C = V[0];
 | 
						|
    if (!C->isNullValue())
 | 
						|
      return ArrayConstants.getOrCreate(Ty, V);
 | 
						|
    for (unsigned i = 1, e = V.size(); i != e; ++i)
 | 
						|
      if (V[i] != C)
 | 
						|
        return ArrayConstants.getOrCreate(Ty, V);
 | 
						|
  }
 | 
						|
  return ConstantAggregateZero::get(Ty);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantArray::destroyConstant() {
 | 
						|
  ArrayConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
// ConstantArray::get(const string&) - Return an array that is initialized to
 | 
						|
// contain the specified string.  A null terminator is added to the specified
 | 
						|
// string so that it may be used in a natural way...
 | 
						|
//
 | 
						|
Constant *ConstantArray::get(const std::string &Str) {
 | 
						|
  std::vector<Constant*> ElementVals;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Str.length(); ++i)
 | 
						|
    ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));
 | 
						|
 | 
						|
  // Add a null terminator to the string...
 | 
						|
  ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));
 | 
						|
 | 
						|
  ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
 | 
						|
  return ConstantArray::get(ATy, ElementVals);
 | 
						|
}
 | 
						|
 | 
						|
/// isString - This method returns true if the array is an array of sbyte or
 | 
						|
/// ubyte, and if the elements of the array are all ConstantInt's.
 | 
						|
bool ConstantArray::isString() const {
 | 
						|
  // Check the element type for sbyte or ubyte...
 | 
						|
  if (getType()->getElementType() != Type::UByteTy &&
 | 
						|
      getType()->getElementType() != Type::SByteTy)
 | 
						|
    return false;
 | 
						|
  // Check the elements to make sure they are all integers, not constant
 | 
						|
  // expressions.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// getAsString - If the sub-element type of this array is either sbyte or ubyte,
 | 
						|
// then this method converts the array to an std::string and returns it.
 | 
						|
// Otherwise, it asserts out.
 | 
						|
//
 | 
						|
std::string ConstantArray::getAsString() const {
 | 
						|
  assert(isString() && "Not a string!");
 | 
						|
  std::string Result;
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- ConstantStruct::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantStruct, StructType> {
 | 
						|
    static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      std::vector<Constant*> C;
 | 
						|
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
        C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
      Constant *New = ConstantStruct::get(NewTy, C);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ValueMap<std::vector<Constant*>, StructType, 
 | 
						|
                ConstantStruct> StructConstants;
 | 
						|
 | 
						|
Constant *ConstantStruct::get(const StructType *Ty,
 | 
						|
                              const std::vector<Constant*> &V) {
 | 
						|
  // Create a ConstantAggregateZero value if all elements are zeros...
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i)
 | 
						|
    if (!V[i]->isNullValue())
 | 
						|
      return StructConstants.getOrCreate(Ty, V);
 | 
						|
 | 
						|
  return ConstantAggregateZero::get(Ty);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantStruct::destroyConstant() {
 | 
						|
  StructConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantPointerNull::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  // ConstantPointerNull does not take extra "value" argument...
 | 
						|
  template<class ValType>
 | 
						|
  struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | 
						|
    static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | 
						|
      return new ConstantPointerNull(Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | 
						|
    static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | 
						|
      // Make everyone now use a constant of the new type...
 | 
						|
      Constant *New = ConstantPointerNull::get(NewTy);
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();     // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
 | 
						|
 | 
						|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | 
						|
  return NullPtrConstants.getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantPointerNull::destroyConstant() {
 | 
						|
  NullPtrConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- ConstantPointerRef::get() implementation...
 | 
						|
//
 | 
						|
ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) {
 | 
						|
  assert(GV->getParent() && "Global Value must be attached to a module!");
 | 
						|
  
 | 
						|
  // The Module handles the pointer reference sharing...
 | 
						|
  return GV->getParent()->getConstantPointerRef(GV);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantPointerRef::destroyConstant() {
 | 
						|
  getValue()->getParent()->destroyConstantPointerRef(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- ConstantExpr::get() implementations...
 | 
						|
//
 | 
						|
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | 
						|
    static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
 | 
						|
      if (V.first == Instruction::Cast)
 | 
						|
        return new ConstantExpr(Instruction::Cast, V.second[0], Ty);
 | 
						|
      if ((V.first >= Instruction::BinaryOpsBegin &&
 | 
						|
           V.first < Instruction::BinaryOpsEnd) ||
 | 
						|
          V.first == Instruction::Shl || V.first == Instruction::Shr)
 | 
						|
        return new ConstantExpr(V.first, V.second[0], V.second[1]);
 | 
						|
      if (V.first == Instruction::Select)
 | 
						|
        return new ConstantExpr(V.second[0], V.second[1], V.second[2]);
 | 
						|
      
 | 
						|
      assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
 | 
						|
      
 | 
						|
      std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
 | 
						|
      return new ConstantExpr(V.second[0], IdxList, Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct ConvertConstantType<ConstantExpr, Type> {
 | 
						|
    static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | 
						|
      Constant *New;
 | 
						|
      switch (OldC->getOpcode()) {
 | 
						|
      case Instruction::Cast:
 | 
						|
        New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
 | 
						|
                                        OldC->getOperand(1),
 | 
						|
                                        OldC->getOperand(2));
 | 
						|
        break;
 | 
						|
      case Instruction::Shl:
 | 
						|
      case Instruction::Shr:
 | 
						|
        New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
 | 
						|
                                     OldC->getOperand(0), OldC->getOperand(1));
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | 
						|
               OldC->getOpcode() < Instruction::BinaryOpsEnd);
 | 
						|
        New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | 
						|
                                  OldC->getOperand(1));
 | 
						|
        break;
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
        // Make everyone now use a constant of the new type... 
 | 
						|
        std::vector<Constant*> C;
 | 
						|
        for (unsigned i = 1, e = OldC->getNumOperands(); i != e; ++i)
 | 
						|
          C.push_back(cast<Constant>(OldC->getOperand(i)));
 | 
						|
        New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), C);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      assert(New != OldC && "Didn't replace constant??");
 | 
						|
      OldC->uncheckedReplaceAllUsesWith(New);
 | 
						|
      OldC->destroyConstant();    // This constant is now dead, destroy it.
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
 | 
						|
static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
 | 
						|
 | 
						|
Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
 | 
						|
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> argVec(1, C);
 | 
						|
  ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
 | 
						|
  return ExprConstants.getOrCreate(Ty, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
 | 
						|
  assert(C->getType()->isInteger() && Ty->isInteger() &&
 | 
						|
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
 | 
						|
         "This is an illegal sign extension!");
 | 
						|
  C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
 | 
						|
  return ConstantExpr::getCast(C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
 | 
						|
  assert(C->getType()->isInteger() && Ty->isInteger() &&
 | 
						|
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
 | 
						|
         "This is an illegal zero extension!");
 | 
						|
  C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
 | 
						|
  return ConstantExpr::getCast(C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | 
						|
                              Constant *C1, Constant *C2) {
 | 
						|
  if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
 | 
						|
    return getShiftTy(ReqTy, Opcode, C1, C2);
 | 
						|
  // Check the operands for consistency first
 | 
						|
  assert((Opcode >= Instruction::BinaryOpsBegin &&
 | 
						|
          Opcode < Instruction::BinaryOpsEnd) &&
 | 
						|
         "Invalid opcode in binary constant expression");
 | 
						|
  assert(C1->getType() == C2->getType() &&
 | 
						|
         "Operand types in binary constant expression should match");
 | 
						|
 | 
						|
  if (ReqTy == C1->getType())
 | 
						|
    if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | 
						|
      return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | 
						|
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | 
						|
  return ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | 
						|
                                    Constant *V1, Constant *V2) {
 | 
						|
  assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
 | 
						|
  assert(V1->getType() == V2->getType() && "Select value types must match!");
 | 
						|
  assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
 | 
						|
 | 
						|
  if (ReqTy == V1->getType())
 | 
						|
    if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
 | 
						|
      return SC;        // Fold common cases
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(3, C);
 | 
						|
  argVec[1] = V1;
 | 
						|
  argVec[2] = V2;
 | 
						|
  ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec);
 | 
						|
  return ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
/// getShiftTy - Return a shift left or shift right constant expr
 | 
						|
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
 | 
						|
                                   Constant *C1, Constant *C2) {
 | 
						|
  // Check the operands for consistency first
 | 
						|
  assert((Opcode == Instruction::Shl ||
 | 
						|
          Opcode == Instruction::Shr) &&
 | 
						|
         "Invalid opcode in binary constant expression");
 | 
						|
  assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
 | 
						|
         "Invalid operand types for Shift constant expr!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | 
						|
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | 
						|
  return ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | 
						|
                                        const std::vector<Constant*> &IdxList) {
 | 
						|
  assert(GetElementPtrInst::getIndexedType(C->getType(),
 | 
						|
                   std::vector<Value*>(IdxList.begin(), IdxList.end()), true) &&
 | 
						|
         "GEP indices invalid!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  assert(isa<PointerType>(C->getType()) &&
 | 
						|
         "Non-pointer type for constant GetElementPtr expression");
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> argVec(1, C);
 | 
						|
  argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
 | 
						|
  const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec);
 | 
						|
  return ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtr(Constant *C,
 | 
						|
                                         const std::vector<Constant*> &IdxList){
 | 
						|
  // Get the result type of the getelementptr!
 | 
						|
  std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
 | 
						|
 | 
						|
  const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
 | 
						|
                                                     true);
 | 
						|
  assert(Ty && "GEP indices invalid!");
 | 
						|
  return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantExpr::destroyConstant() {
 | 
						|
  ExprConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
const char *ConstantExpr::getOpcodeName() const {
 | 
						|
  return Instruction::getOpcodeName(getOpcode());
 | 
						|
}
 |