llvm-6502/lib/Target/SparcV9/SparcV9PreSelection.cpp
Chris Lattner dac9131e28 Preselection is _not_ a basicblock pass, because it adds global variables to
the module.  This change converts it from being a basic block pass to being
a simple pass.  This allows elimination of the annotation and simplification
of the logic for moving constants into global variables.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9320 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-21 14:49:19 +00:00

287 lines
11 KiB
C++

//===- PreSelection.cpp - Specialize LLVM code for target machine ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PreSelection pass which specializes LLVM code for a
// target machine, while remaining in legal portable LLVM form and
// preserving type information and type safety. This is meant to enable
// dataflow optimizations on target-specific operations such as accesses to
// constants, globals, and array indexing.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Pass.h"
#include <algorithm>
namespace {
//===--------------------------------------------------------------------===//
// PreSelection Pass - Specialize LLVM code for the current target machine.
//
class PreSelection : public Pass, public InstVisitor<PreSelection> {
const TargetInstrInfo &instrInfo;
Module *TheModule;
std::map<const Constant*, GlobalVariable*> gvars;
GlobalVariable* getGlobalForConstant(Constant* CV) {
std::map<const Constant*, GlobalVariable*>::iterator I = gvars.find(CV);
if (I != gvars.end()) return I->second; // global exists so return it
return I->second = new GlobalVariable(CV->getType(), true,
GlobalValue::InternalLinkage, CV,
"immcst", TheModule);
}
public:
PreSelection(const TargetMachine &T)
: instrInfo(T.getInstrInfo()), TheModule(0) {}
// runOnBasicBlock - apply this pass to each BB
bool run(Module &M) {
TheModule = &M;
// Build reverse map for pre-existing global constants so we can find them
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
if (I->hasInitializer() && I->isConstant())
gvars[I->getInitializer()] = I;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
visit(*I);
gvars.clear();
return true;
}
// These methods do the actual work of specializing code
void visitInstruction(Instruction &I); // common work for every instr.
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitCallInst(CallInst &I);
// Helper functions for visiting operands of every instruction
//
// visitOperands() works on every operand in [firstOp, lastOp-1].
// If lastOp==0, lastOp defaults to #operands or #incoming Phi values.
//
// visitOneOperand() does all the work for one operand.
//
void visitOperands(Instruction &I, int firstOp=0, int lastOp=0);
void visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
Instruction& insertBefore);
};
// Register the pass...
RegisterOpt<PreSelection> X("preselect",
"Specialize LLVM code for a target machine",
createPreSelectionPass);
} // end anonymous namespace
//------------------------------------------------------------------------------
// Helper functions used by methods of class PreSelection
//------------------------------------------------------------------------------
// getGlobalAddr(): Put address of a global into a v. register.
static GetElementPtrInst* getGlobalAddr(Value* ptr, Instruction& insertBefore)
{
if (isa<ConstantPointerRef>(ptr))
ptr = cast<ConstantPointerRef>(ptr)->getValue();
return (isa<GlobalVariable>(ptr))
? new GetElementPtrInst(ptr,
std::vector<Value*>(1, ConstantSInt::get(Type::LongTy, 0U)),
"addrOfGlobal", &insertBefore)
: NULL;
}
// Wrapper on Constant::classof to use in find_if :-(
inline static bool nonConstant(const Use& U)
{
return ! isa<Constant>(U);
}
static Instruction* DecomposeConstantExpr(ConstantExpr* CE,
Instruction& insertBefore)
{
Value *getArg1, *getArg2;
switch(CE->getOpcode())
{
case Instruction::Cast:
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
return new CastInst(getArg1, CE->getType(), "constantCast",&insertBefore);
case Instruction::GetElementPtr:
assert(find_if(CE->op_begin()+1, CE->op_end(),nonConstant) == CE->op_end()
&& "All indices in ConstantExpr getelementptr must be constant!");
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
else if (GetElementPtrInst* gep = getGlobalAddr(getArg1, insertBefore))
getArg1 = gep;
return new GetElementPtrInst(getArg1,
std::vector<Value*>(CE->op_begin()+1, CE->op_end()),
"constantGEP", &insertBefore);
default: // must be a binary operator
assert(CE->getOpcode() >= Instruction::BinaryOpsBegin &&
CE->getOpcode() < Instruction::BinaryOpsEnd &&
"Unrecognized opcode in ConstantExpr");
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
getArg2 = CE->getOperand(1);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg2))
getArg2 = DecomposeConstantExpr(CEarg, insertBefore);
return BinaryOperator::create((Instruction::BinaryOps) CE->getOpcode(),
getArg1, getArg2,
"constantBinaryOp", &insertBefore);
}
}
//------------------------------------------------------------------------------
// Instruction visitor methods to perform instruction-specific operations
//------------------------------------------------------------------------------
inline void
PreSelection::visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
Instruction& insertBefore)
{
assert(&insertBefore != NULL && "Must have instruction to insert before.");
if (GetElementPtrInst* gep = getGlobalAddr(Op, insertBefore)) {
I.setOperand(opNum, gep); // replace global operand
return; // nothing more to do for this op.
}
Constant* CV = dyn_cast<Constant>(Op);
if (CV == NULL)
return;
if (ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
{ // load-time constant: factor it out so we optimize as best we can
Instruction* computeConst = DecomposeConstantExpr(CE, insertBefore);
I.setOperand(opNum, computeConst); // replace expr operand with result
}
else if (instrInfo.ConstantTypeMustBeLoaded(CV))
{ // load address of constant into a register, then load the constant
GetElementPtrInst* gep = getGlobalAddr(getGlobalForConstant(CV),
insertBefore);
LoadInst* ldI = new LoadInst(gep, "loadConst", &insertBefore);
I.setOperand(opNum, ldI); // replace operand with copy in v.reg.
}
else if (instrInfo.ConstantMayNotFitInImmedField(CV, &I))
{ // put the constant into a virtual register using a cast
CastInst* castI = new CastInst(CV, CV->getType(), "copyConst",
&insertBefore);
I.setOperand(opNum, castI); // replace operand with copy in v.reg.
}
}
// visitOperands() transforms individual operands of all instructions:
// -- Load "large" int constants into a virtual register. What is large
// depends on the type of instruction and on the target architecture.
// -- For any constants that cannot be put in an immediate field,
// load address into virtual register first, and then load the constant.
//
// firstOp and lastOp can be used to skip leading and trailing operands.
// If lastOp is 0, it defaults to #operands or #incoming Phi values.
//
inline void
PreSelection::visitOperands(Instruction &I, int firstOp, int lastOp)
{
// For any instruction other than PHI, copies go just before the instr.
// For a PHI, operand copies must be before the terminator of the
// appropriate predecessor basic block. Remaining logic is simple
// so just handle PHIs and other instructions separately.
//
if (PHINode* phi = dyn_cast<PHINode>(&I))
{
if (lastOp == 0)
lastOp = phi->getNumIncomingValues();
for (unsigned i=firstOp, N=lastOp; i < N; ++i)
this->visitOneOperand(I, phi->getIncomingValue(i),
phi->getOperandNumForIncomingValue(i),
* phi->getIncomingBlock(i)->getTerminator());
}
else
{
if (lastOp == 0)
lastOp = I.getNumOperands();
for (unsigned i=firstOp, N=lastOp; i < N; ++i)
this->visitOneOperand(I, I.getOperand(i), i, I);
}
}
// Common work for *all* instructions. This needs to be called explicitly
// by other visit<InstructionType> functions.
inline void
PreSelection::visitInstruction(Instruction &I)
{
visitOperands(I); // Perform operand transformations
}
// GetElementPtr instructions: check if pointer is a global
void
PreSelection::visitGetElementPtrInst(GetElementPtrInst &I)
{
Instruction* curI = &I;
// Decompose multidimensional array references
if (I.getNumIndices() >= 2) {
// DecomposeArrayRef() replaces I and deletes it, if successful,
// so remember predecessor in order to find the replacement instruction.
// Also remember the basic block in case there is no predecessor.
Instruction* prevI = I.getPrev();
BasicBlock* bb = I.getParent();
if (DecomposeArrayRef(&I))
// first instr. replacing I
curI = cast<GetElementPtrInst>(prevI? prevI->getNext() : &bb->front());
}
// Perform other transformations common to all instructions
visitInstruction(*curI);
}
void
PreSelection::visitCallInst(CallInst &I)
{
// Tell visitOperands to ignore the function name if this is a direct call.
visitOperands(I, (/*firstOp=*/ I.getCalledFunction()? 1 : 0));
}
//===----------------------------------------------------------------------===//
// createPreSelectionPass - Public entrypoint for pre-selection pass
// and this file as a whole...
//
Pass* createPreSelectionPass(TargetMachine &T) {
return new PreSelection(T);
}