mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Make ConstantInt::uge() const so it may be used in const contexts. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138579 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			928 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			928 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// @file
 | |
| /// This file contains the declarations for the subclasses of Constant, 
 | |
| /// which represent the different flavors of constant values that live in LLVM.
 | |
| /// Note that Constants are immutable (once created they never change) and are 
 | |
| /// fully shared by structural equivalence.  This means that two structurally
 | |
| /// equivalent constants will always have the same address.  Constant's are
 | |
| /// created on demand as needed and never deleted: thus clients don't have to
 | |
| /// worry about the lifetime of the objects.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CONSTANTS_H
 | |
| #define LLVM_CONSTANTS_H
 | |
| 
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/OperandTraits.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class ArrayType;
 | |
| class IntegerType;
 | |
| class StructType;
 | |
| class PointerType;
 | |
| class VectorType;
 | |
| 
 | |
| template<class ConstantClass, class TypeClass, class ValType>
 | |
| struct ConstantCreator;
 | |
| template<class ConstantClass, class TypeClass>
 | |
| struct ConvertConstantType;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// This is the shared class of boolean and integer constants. This class 
 | |
| /// represents both boolean and integral constants.
 | |
| /// @brief Class for constant integers.
 | |
| class ConstantInt : public Constant {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
|   ConstantInt(const ConstantInt &);      // DO NOT IMPLEMENT
 | |
|   ConstantInt(IntegerType *Ty, const APInt& V);
 | |
|   APInt Val;
 | |
| protected:
 | |
|   // allocate space for exactly zero operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 0);
 | |
|   }
 | |
| public:
 | |
|   static ConstantInt *getTrue(LLVMContext &Context);
 | |
|   static ConstantInt *getFalse(LLVMContext &Context);
 | |
|   static Constant *getTrue(Type *Ty);
 | |
|   static Constant *getFalse(Type *Ty);
 | |
|   
 | |
|   /// If Ty is a vector type, return a Constant with a splat of the given
 | |
|   /// value. Otherwise return a ConstantInt for the given value.
 | |
|   static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
 | |
|                               
 | |
|   /// Return a ConstantInt with the specified integer value for the specified
 | |
|   /// type. If the type is wider than 64 bits, the value will be zero-extended
 | |
|   /// to fit the type, unless isSigned is true, in which case the value will
 | |
|   /// be interpreted as a 64-bit signed integer and sign-extended to fit
 | |
|   /// the type.
 | |
|   /// @brief Get a ConstantInt for a specific value.
 | |
|   static ConstantInt *get(IntegerType *Ty, uint64_t V,
 | |
|                           bool isSigned = false);
 | |
| 
 | |
|   /// Return a ConstantInt with the specified value for the specified type. The
 | |
|   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
 | |
|   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
 | |
|   /// signed value for the type Ty.
 | |
|   /// @brief Get a ConstantInt for a specific signed value.
 | |
|   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
 | |
|   static Constant *getSigned(Type *Ty, int64_t V);
 | |
|   
 | |
|   /// Return a ConstantInt with the specified value and an implied Type. The
 | |
|   /// type is the integer type that corresponds to the bit width of the value.
 | |
|   static ConstantInt *get(LLVMContext &Context, const APInt &V);
 | |
| 
 | |
|   /// Return a ConstantInt constructed from the string strStart with the given
 | |
|   /// radix. 
 | |
|   static ConstantInt *get(IntegerType *Ty, StringRef Str,
 | |
|                           uint8_t radix);
 | |
|   
 | |
|   /// If Ty is a vector type, return a Constant with a splat of the given
 | |
|   /// value. Otherwise return a ConstantInt for the given value.
 | |
|   static Constant *get(Type* Ty, const APInt& V);
 | |
|   
 | |
|   /// Return the constant as an APInt value reference. This allows clients to
 | |
|   /// obtain a copy of the value, with all its precision in tact.
 | |
|   /// @brief Return the constant's value.
 | |
|   inline const APInt &getValue() const {
 | |
|     return Val;
 | |
|   }
 | |
|   
 | |
|   /// getBitWidth - Return the bitwidth of this constant.
 | |
|   unsigned getBitWidth() const { return Val.getBitWidth(); }
 | |
| 
 | |
|   /// Return the constant as a 64-bit unsigned integer value after it
 | |
|   /// has been zero extended as appropriate for the type of this constant. Note
 | |
|   /// that this method can assert if the value does not fit in 64 bits.
 | |
|   /// @deprecated
 | |
|   /// @brief Return the zero extended value.
 | |
|   inline uint64_t getZExtValue() const {
 | |
|     return Val.getZExtValue();
 | |
|   }
 | |
| 
 | |
|   /// Return the constant as a 64-bit integer value after it has been sign
 | |
|   /// extended as appropriate for the type of this constant. Note that
 | |
|   /// this method can assert if the value does not fit in 64 bits.
 | |
|   /// @deprecated
 | |
|   /// @brief Return the sign extended value.
 | |
|   inline int64_t getSExtValue() const {
 | |
|     return Val.getSExtValue();
 | |
|   }
 | |
| 
 | |
|   /// A helper method that can be used to determine if the constant contained 
 | |
|   /// within is equal to a constant.  This only works for very small values, 
 | |
|   /// because this is all that can be represented with all types.
 | |
|   /// @brief Determine if this constant's value is same as an unsigned char.
 | |
|   bool equalsInt(uint64_t V) const {
 | |
|     return Val == V;
 | |
|   }
 | |
| 
 | |
|   /// getType - Specialize the getType() method to always return an IntegerType,
 | |
|   /// which reduces the amount of casting needed in parts of the compiler.
 | |
|   ///
 | |
|   inline IntegerType *getType() const {
 | |
|     return reinterpret_cast<IntegerType*>(Value::getType());
 | |
|   }
 | |
| 
 | |
|   /// This static method returns true if the type Ty is big enough to 
 | |
|   /// represent the value V. This can be used to avoid having the get method 
 | |
|   /// assert when V is larger than Ty can represent. Note that there are two
 | |
|   /// versions of this method, one for unsigned and one for signed integers.
 | |
|   /// Although ConstantInt canonicalizes everything to an unsigned integer, 
 | |
|   /// the signed version avoids callers having to convert a signed quantity
 | |
|   /// to the appropriate unsigned type before calling the method.
 | |
|   /// @returns true if V is a valid value for type Ty
 | |
|   /// @brief Determine if the value is in range for the given type.
 | |
|   static bool isValueValidForType(Type *Ty, uint64_t V);
 | |
|   static bool isValueValidForType(Type *Ty, int64_t V);
 | |
| 
 | |
|   bool isNegative() const { return Val.isNegative(); }
 | |
| 
 | |
|   /// This is just a convenience method to make client code smaller for a
 | |
|   /// common code. It also correctly performs the comparison without the
 | |
|   /// potential for an assertion from getZExtValue().
 | |
|   bool isZero() const {
 | |
|     return Val == 0;
 | |
|   }
 | |
| 
 | |
|   /// This is just a convenience method to make client code smaller for a 
 | |
|   /// common case. It also correctly performs the comparison without the
 | |
|   /// potential for an assertion from getZExtValue().
 | |
|   /// @brief Determine if the value is one.
 | |
|   bool isOne() const {
 | |
|     return Val == 1;
 | |
|   }
 | |
| 
 | |
|   /// This function will return true iff every bit in this constant is set
 | |
|   /// to true.
 | |
|   /// @returns true iff this constant's bits are all set to true.
 | |
|   /// @brief Determine if the value is all ones.
 | |
|   bool isMinusOne() const { 
 | |
|     return Val.isAllOnesValue();
 | |
|   }
 | |
| 
 | |
|   /// This function will return true iff this constant represents the largest
 | |
|   /// value that may be represented by the constant's type.
 | |
|   /// @returns true iff this is the largest value that may be represented 
 | |
|   /// by this type.
 | |
|   /// @brief Determine if the value is maximal.
 | |
|   bool isMaxValue(bool isSigned) const {
 | |
|     if (isSigned) 
 | |
|       return Val.isMaxSignedValue();
 | |
|     else
 | |
|       return Val.isMaxValue();
 | |
|   }
 | |
| 
 | |
|   /// This function will return true iff this constant represents the smallest
 | |
|   /// value that may be represented by this constant's type.
 | |
|   /// @returns true if this is the smallest value that may be represented by 
 | |
|   /// this type.
 | |
|   /// @brief Determine if the value is minimal.
 | |
|   bool isMinValue(bool isSigned) const {
 | |
|     if (isSigned) 
 | |
|       return Val.isMinSignedValue();
 | |
|     else
 | |
|       return Val.isMinValue();
 | |
|   }
 | |
| 
 | |
|   /// This function will return true iff this constant represents a value with
 | |
|   /// active bits bigger than 64 bits or a value greater than the given uint64_t
 | |
|   /// value.
 | |
|   /// @returns true iff this constant is greater or equal to the given number.
 | |
|   /// @brief Determine if the value is greater or equal to the given number.
 | |
|   bool uge(uint64_t Num) const {
 | |
|     return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
 | |
|   }
 | |
| 
 | |
|   /// getLimitedValue - If the value is smaller than the specified limit,
 | |
|   /// return it, otherwise return the limit value.  This causes the value
 | |
|   /// to saturate to the limit.
 | |
|   /// @returns the min of the value of the constant and the specified value
 | |
|   /// @brief Get the constant's value with a saturation limit
 | |
|   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
 | |
|     return Val.getLimitedValue(Limit);
 | |
|   }
 | |
| 
 | |
|   /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const ConstantInt *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantIntVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantFP - Floating Point Values [float, double]
 | |
| ///
 | |
| class ConstantFP : public Constant {
 | |
|   APFloat Val;
 | |
|   void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
 | |
|   ConstantFP(const ConstantFP &);      // DO NOT IMPLEMENT
 | |
|   friend class LLVMContextImpl;
 | |
| protected:
 | |
|   ConstantFP(Type *Ty, const APFloat& V);
 | |
| protected:
 | |
|   // allocate space for exactly zero operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 0);
 | |
|   }
 | |
| public:
 | |
|   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
 | |
|   /// method returns the negative zero constant for floating point or vector
 | |
|   /// floating point types; for all other types, it returns the null value.
 | |
|   static Constant *getZeroValueForNegation(Type *Ty);
 | |
|   
 | |
|   /// get() - This returns a ConstantFP, or a vector containing a splat of a
 | |
|   /// ConstantFP, for the specified value in the specified type.  This should
 | |
|   /// only be used for simple constant values like 2.0/1.0 etc, that are
 | |
|   /// known-valid both as host double and as the target format.
 | |
|   static Constant *get(Type* Ty, double V);
 | |
|   static Constant *get(Type* Ty, StringRef Str);
 | |
|   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
 | |
|   static ConstantFP *getNegativeZero(Type* Ty);
 | |
|   static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
 | |
|   
 | |
|   /// isValueValidForType - return true if Ty is big enough to represent V.
 | |
|   static bool isValueValidForType(Type *Ty, const APFloat &V);
 | |
|   inline const APFloat &getValueAPF() const { return Val; }
 | |
| 
 | |
|   /// isZero - Return true if the value is positive or negative zero.
 | |
|   bool isZero() const { return Val.isZero(); }
 | |
| 
 | |
|   /// isNegative - Return true if the sign bit is set.
 | |
|   bool isNegative() const { return Val.isNegative(); }
 | |
| 
 | |
|   /// isNaN - Return true if the value is a NaN.
 | |
|   bool isNaN() const { return Val.isNaN(); }
 | |
| 
 | |
|   /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
|   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
|   /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
|   /// two floating point values.  The version with a double operand is retained
 | |
|   /// because it's so convenient to write isExactlyValue(2.0), but please use
 | |
|   /// it only for simple constants.
 | |
|   bool isExactlyValue(const APFloat &V) const;
 | |
| 
 | |
|   bool isExactlyValue(double V) const {
 | |
|     bool ignored;
 | |
|     // convert is not supported on this type
 | |
|     if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|       return false;
 | |
|     APFloat FV(V);
 | |
|     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
 | |
|     return isExactlyValue(FV);
 | |
|   }
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantFP *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantFPVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantAggregateZero - All zero aggregate value
 | |
| ///
 | |
| class ConstantAggregateZero : public Constant {
 | |
|   friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
 | |
|   void *operator new(size_t, unsigned);                      // DO NOT IMPLEMENT
 | |
|   ConstantAggregateZero(const ConstantAggregateZero &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   explicit ConstantAggregateZero(Type *ty)
 | |
|     : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
 | |
| protected:
 | |
|   // allocate space for exactly zero operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 0);
 | |
|   }
 | |
| public:
 | |
|   static ConstantAggregateZero* get(Type *Ty);
 | |
|   
 | |
|   virtual void destroyConstant();
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   ///
 | |
|   static bool classof(const ConstantAggregateZero *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantAggregateZeroVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantArray - Constant Array Declarations
 | |
| ///
 | |
| class ConstantArray : public Constant {
 | |
|   friend struct ConstantCreator<ConstantArray, ArrayType,
 | |
|                                     std::vector<Constant*> >;
 | |
|   ConstantArray(const ConstantArray &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
 | |
| public:
 | |
|   // ConstantArray accessors
 | |
|   static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
 | |
|                              
 | |
|   /// This method constructs a ConstantArray and initializes it with a text
 | |
|   /// string. The default behavior (AddNull==true) causes a null terminator to
 | |
|   /// be placed at the end of the array. This effectively increases the length
 | |
|   /// of the array by one (you've been warned).  However, in some situations 
 | |
|   /// this is not desired so if AddNull==false then the string is copied without
 | |
|   /// null termination.
 | |
|   static Constant *get(LLVMContext &Context, StringRef Initializer,
 | |
|                        bool AddNull = true);
 | |
|   
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | |
| 
 | |
|   /// getType - Specialize the getType() method to always return an ArrayType,
 | |
|   /// which reduces the amount of casting needed in parts of the compiler.
 | |
|   ///
 | |
|   inline ArrayType *getType() const {
 | |
|     return reinterpret_cast<ArrayType*>(Value::getType());
 | |
|   }
 | |
| 
 | |
|   /// isString - This method returns true if the array is an array of i8 and
 | |
|   /// the elements of the array are all ConstantInt's.
 | |
|   bool isString() const;
 | |
| 
 | |
|   /// isCString - This method returns true if the array is a string (see
 | |
|   /// @verbatim
 | |
|   /// isString) and it ends in a null byte \0 and does not contains any other
 | |
|   /// @endverbatim
 | |
|   /// null bytes except its terminator.
 | |
|   bool isCString() const;
 | |
| 
 | |
|   /// getAsString - If this array is isString(), then this method converts the
 | |
|   /// array to an std::string and returns it.  Otherwise, it asserts out.
 | |
|   ///
 | |
|   std::string getAsString() const;
 | |
| 
 | |
|   /// getAsCString - If this array is isCString(), then this method converts the
 | |
|   /// array (without the trailing null byte) to an std::string and returns it.
 | |
|   /// Otherwise, it asserts out.
 | |
|   ///
 | |
|   std::string getAsCString() const;
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
|   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantArray *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantArrayVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ConstantArray> :
 | |
|   public VariadicOperandTraits<ConstantArray> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ConstantStruct - Constant Struct Declarations
 | |
| //
 | |
| class ConstantStruct : public Constant {
 | |
|   friend struct ConstantCreator<ConstantStruct, StructType,
 | |
|                                     std::vector<Constant*> >;
 | |
|   ConstantStruct(const ConstantStruct &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
 | |
| public:
 | |
|   // ConstantStruct accessors
 | |
|   static Constant *get(StructType *T, ArrayRef<Constant*> V);
 | |
|   static Constant *get(StructType *T, ...) END_WITH_NULL;
 | |
| 
 | |
|   /// getAnon - Return an anonymous struct that has the specified
 | |
|   /// elements.  If the struct is possibly empty, then you must specify a
 | |
|   /// context.
 | |
|   static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
 | |
|     return get(getTypeForElements(V, Packed), V);
 | |
|   }
 | |
|   static Constant *getAnon(LLVMContext &Ctx, 
 | |
|                            ArrayRef<Constant*> V, bool Packed = false) {
 | |
|     return get(getTypeForElements(Ctx, V, Packed), V);
 | |
|   }
 | |
| 
 | |
|   /// getTypeForElements - Return an anonymous struct type to use for a constant
 | |
|   /// with the specified set of elements.  The list must not be empty.
 | |
|   static StructType *getTypeForElements(ArrayRef<Constant*> V,
 | |
|                                         bool Packed = false);
 | |
|   /// getTypeForElements - This version of the method allows an empty list.
 | |
|   static StructType *getTypeForElements(LLVMContext &Ctx,
 | |
|                                         ArrayRef<Constant*> V,
 | |
|                                         bool Packed = false);
 | |
|   
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | |
| 
 | |
|   /// getType() specialization - Reduce amount of casting...
 | |
|   ///
 | |
|   inline StructType *getType() const {
 | |
|     return reinterpret_cast<StructType*>(Value::getType());
 | |
|   }
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
|   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantStruct *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantStructVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ConstantStruct> :
 | |
|   public VariadicOperandTraits<ConstantStruct> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantVector - Constant Vector Declarations
 | |
| ///
 | |
| class ConstantVector : public Constant {
 | |
|   friend struct ConstantCreator<ConstantVector, VectorType,
 | |
|                                     std::vector<Constant*> >;
 | |
|   ConstantVector(const ConstantVector &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
 | |
| public:
 | |
|   // ConstantVector accessors
 | |
|   static Constant *get(ArrayRef<Constant*> V);
 | |
|   
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | |
| 
 | |
|   /// getType - Specialize the getType() method to always return a VectorType,
 | |
|   /// which reduces the amount of casting needed in parts of the compiler.
 | |
|   ///
 | |
|   inline VectorType *getType() const {
 | |
|     return reinterpret_cast<VectorType*>(Value::getType());
 | |
|   }
 | |
|   
 | |
|   /// This function will return true iff every element in this vector constant
 | |
|   /// is set to all ones.
 | |
|   /// @returns true iff this constant's emements are all set to all ones.
 | |
|   /// @brief Determine if the value is all ones.
 | |
|   bool isAllOnesValue() const;
 | |
| 
 | |
|   /// getSplatValue - If this is a splat constant, meaning that all of the
 | |
|   /// elements have the same value, return that value. Otherwise return NULL.
 | |
|   Constant *getSplatValue() const;
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
|   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantVector *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantVectorVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ConstantVector> :
 | |
|   public VariadicOperandTraits<ConstantVector> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantPointerNull - a constant pointer value that points to null
 | |
| ///
 | |
| class ConstantPointerNull : public Constant {
 | |
|   friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
 | |
|   void *operator new(size_t, unsigned);                  // DO NOT IMPLEMENT
 | |
|   ConstantPointerNull(const ConstantPointerNull &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   explicit ConstantPointerNull(PointerType *T)
 | |
|     : Constant(reinterpret_cast<Type*>(T),
 | |
|                Value::ConstantPointerNullVal, 0, 0) {}
 | |
| 
 | |
| protected:
 | |
|   // allocate space for exactly zero operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 0);
 | |
|   }
 | |
| public:
 | |
|   /// get() - Static factory methods - Return objects of the specified value
 | |
|   static ConstantPointerNull *get(PointerType *T);
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
| 
 | |
|   /// getType - Specialize the getType() method to always return an PointerType,
 | |
|   /// which reduces the amount of casting needed in parts of the compiler.
 | |
|   ///
 | |
|   inline PointerType *getType() const {
 | |
|     return reinterpret_cast<PointerType*>(Value::getType());
 | |
|   }
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantPointerNull *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantPointerNullVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// BlockAddress - The address of a basic block.
 | |
| ///
 | |
| class BlockAddress : public Constant {
 | |
|   void *operator new(size_t, unsigned);                  // DO NOT IMPLEMENT
 | |
|   void *operator new(size_t s) { return User::operator new(s, 2); }
 | |
|   BlockAddress(Function *F, BasicBlock *BB);
 | |
| public:
 | |
|   /// get - Return a BlockAddress for the specified function and basic block.
 | |
|   static BlockAddress *get(Function *F, BasicBlock *BB);
 | |
|   
 | |
|   /// get - Return a BlockAddress for the specified basic block.  The basic
 | |
|   /// block must be embedded into a function.
 | |
|   static BlockAddress *get(BasicBlock *BB);
 | |
|   
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
|   
 | |
|   Function *getFunction() const { return (Function*)Op<0>().get(); }
 | |
|   BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
 | |
|   
 | |
|   virtual void destroyConstant();
 | |
|   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
 | |
|   
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const BlockAddress *) { return true; }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return V->getValueID() == BlockAddressVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<BlockAddress> :
 | |
|   public FixedNumOperandTraits<BlockAddress, 2> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
 | |
|   
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ConstantExpr - a constant value that is initialized with an expression using
 | |
| /// other constant values.
 | |
| ///
 | |
| /// This class uses the standard Instruction opcodes to define the various
 | |
| /// constant expressions.  The Opcode field for the ConstantExpr class is
 | |
| /// maintained in the Value::SubclassData field.
 | |
| class ConstantExpr : public Constant {
 | |
|   friend struct ConstantCreator<ConstantExpr,Type,
 | |
|                             std::pair<unsigned, std::vector<Constant*> > >;
 | |
|   friend struct ConvertConstantType<ConstantExpr, Type>;
 | |
| 
 | |
| protected:
 | |
|   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
 | |
|     : Constant(ty, ConstantExprVal, Ops, NumOps) {
 | |
|     // Operation type (an Instruction opcode) is stored as the SubclassData.
 | |
|     setValueSubclassData(Opcode);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   // Static methods to construct a ConstantExpr of different kinds.  Note that
 | |
|   // these methods may return a object that is not an instance of the
 | |
|   // ConstantExpr class, because they will attempt to fold the constant
 | |
|   // expression into something simpler if possible.
 | |
| 
 | |
|   /// getAlignOf constant expr - computes the alignment of a type in a target
 | |
|   /// independent way (Note: the return type is an i64).
 | |
|   static Constant *getAlignOf(Type *Ty);
 | |
|   
 | |
|   /// getSizeOf constant expr - computes the (alloc) size of a type (in
 | |
|   /// address-units, not bits) in a target independent way (Note: the return
 | |
|   /// type is an i64).
 | |
|   ///
 | |
|   static Constant *getSizeOf(Type *Ty);
 | |
| 
 | |
|   /// getOffsetOf constant expr - computes the offset of a struct field in a 
 | |
|   /// target independent way (Note: the return type is an i64).
 | |
|   ///
 | |
|   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
 | |
| 
 | |
|   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
 | |
|   /// which supports any aggregate type, and any Constant index.
 | |
|   ///
 | |
|   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
 | |
|   
 | |
|   static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
 | |
|   static Constant *getFNeg(Constant *C);
 | |
|   static Constant *getNot(Constant *C);
 | |
|   static Constant *getAdd(Constant *C1, Constant *C2,
 | |
|                           bool HasNUW = false, bool HasNSW = false);
 | |
|   static Constant *getFAdd(Constant *C1, Constant *C2);
 | |
|   static Constant *getSub(Constant *C1, Constant *C2,
 | |
|                           bool HasNUW = false, bool HasNSW = false);
 | |
|   static Constant *getFSub(Constant *C1, Constant *C2);
 | |
|   static Constant *getMul(Constant *C1, Constant *C2,
 | |
|                           bool HasNUW = false, bool HasNSW = false);
 | |
|   static Constant *getFMul(Constant *C1, Constant *C2);
 | |
|   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
 | |
|   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
 | |
|   static Constant *getFDiv(Constant *C1, Constant *C2);
 | |
|   static Constant *getURem(Constant *C1, Constant *C2);
 | |
|   static Constant *getSRem(Constant *C1, Constant *C2);
 | |
|   static Constant *getFRem(Constant *C1, Constant *C2);
 | |
|   static Constant *getAnd(Constant *C1, Constant *C2);
 | |
|   static Constant *getOr(Constant *C1, Constant *C2);
 | |
|   static Constant *getXor(Constant *C1, Constant *C2);
 | |
|   static Constant *getShl(Constant *C1, Constant *C2,
 | |
|                           bool HasNUW = false, bool HasNSW = false);
 | |
|   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
 | |
|   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
 | |
|   static Constant *getTrunc   (Constant *C, Type *Ty);
 | |
|   static Constant *getSExt    (Constant *C, Type *Ty);
 | |
|   static Constant *getZExt    (Constant *C, Type *Ty);
 | |
|   static Constant *getFPTrunc (Constant *C, Type *Ty);
 | |
|   static Constant *getFPExtend(Constant *C, Type *Ty);
 | |
|   static Constant *getUIToFP  (Constant *C, Type *Ty);
 | |
|   static Constant *getSIToFP  (Constant *C, Type *Ty);
 | |
|   static Constant *getFPToUI  (Constant *C, Type *Ty);
 | |
|   static Constant *getFPToSI  (Constant *C, Type *Ty);
 | |
|   static Constant *getPtrToInt(Constant *C, Type *Ty);
 | |
|   static Constant *getIntToPtr(Constant *C, Type *Ty);
 | |
|   static Constant *getBitCast (Constant *C, Type *Ty);
 | |
| 
 | |
|   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
 | |
|   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
 | |
|   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
 | |
|     return getAdd(C1, C2, false, true);
 | |
|   }
 | |
|   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
 | |
|     return getAdd(C1, C2, true, false);
 | |
|   }
 | |
|   static Constant *getNSWSub(Constant *C1, Constant *C2) {
 | |
|     return getSub(C1, C2, false, true);
 | |
|   }
 | |
|   static Constant *getNUWSub(Constant *C1, Constant *C2) {
 | |
|     return getSub(C1, C2, true, false);
 | |
|   }
 | |
|   static Constant *getNSWMul(Constant *C1, Constant *C2) {
 | |
|     return getMul(C1, C2, false, true);
 | |
|   }
 | |
|   static Constant *getNUWMul(Constant *C1, Constant *C2) {
 | |
|     return getMul(C1, C2, true, false);
 | |
|   }
 | |
|   static Constant *getNSWShl(Constant *C1, Constant *C2) {
 | |
|     return getShl(C1, C2, false, true);
 | |
|   }
 | |
|   static Constant *getNUWShl(Constant *C1, Constant *C2) {
 | |
|     return getShl(C1, C2, true, false);
 | |
|   }
 | |
|   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
 | |
|     return getSDiv(C1, C2, true);
 | |
|   }
 | |
|   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
 | |
|     return getUDiv(C1, C2, true);
 | |
|   }
 | |
|   static Constant *getExactAShr(Constant *C1, Constant *C2) {
 | |
|     return getAShr(C1, C2, true);
 | |
|   }
 | |
|   static Constant *getExactLShr(Constant *C1, Constant *C2) {
 | |
|     return getLShr(C1, C2, true);
 | |
|   }
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | |
| 
 | |
|   // @brief Convenience function for getting one of the casting operations
 | |
|   // using a CastOps opcode.
 | |
|   static Constant *getCast(
 | |
|     unsigned ops,  ///< The opcode for the conversion
 | |
|     Constant *C,   ///< The constant to be converted
 | |
|     Type *Ty ///< The type to which the constant is converted
 | |
|   );
 | |
| 
 | |
|   // @brief Create a ZExt or BitCast cast constant expression
 | |
|   static Constant *getZExtOrBitCast(
 | |
|     Constant *C,   ///< The constant to zext or bitcast
 | |
|     Type *Ty ///< The type to zext or bitcast C to
 | |
|   );
 | |
| 
 | |
|   // @brief Create a SExt or BitCast cast constant expression 
 | |
|   static Constant *getSExtOrBitCast(
 | |
|     Constant *C,   ///< The constant to sext or bitcast
 | |
|     Type *Ty ///< The type to sext or bitcast C to
 | |
|   );
 | |
| 
 | |
|   // @brief Create a Trunc or BitCast cast constant expression
 | |
|   static Constant *getTruncOrBitCast(
 | |
|     Constant *C,   ///< The constant to trunc or bitcast
 | |
|     Type *Ty ///< The type to trunc or bitcast C to
 | |
|   );
 | |
| 
 | |
|   /// @brief Create a BitCast or a PtrToInt cast constant expression
 | |
|   static Constant *getPointerCast(
 | |
|     Constant *C,   ///< The pointer value to be casted (operand 0)
 | |
|     Type *Ty ///< The type to which cast should be made
 | |
|   );
 | |
| 
 | |
|   /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
 | |
|   static Constant *getIntegerCast(
 | |
|     Constant *C,    ///< The integer constant to be casted 
 | |
|     Type *Ty, ///< The integer type to cast to
 | |
|     bool isSigned   ///< Whether C should be treated as signed or not
 | |
|   );
 | |
| 
 | |
|   /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
 | |
|   static Constant *getFPCast(
 | |
|     Constant *C,    ///< The integer constant to be casted 
 | |
|     Type *Ty ///< The integer type to cast to
 | |
|   );
 | |
| 
 | |
|   /// @brief Return true if this is a convert constant expression
 | |
|   bool isCast() const;
 | |
| 
 | |
|   /// @brief Return true if this is a compare constant expression
 | |
|   bool isCompare() const;
 | |
| 
 | |
|   /// @brief Return true if this is an insertvalue or extractvalue expression,
 | |
|   /// and the getIndices() method may be used.
 | |
|   bool hasIndices() const;
 | |
| 
 | |
|   /// @brief Return true if this is a getelementptr expression and all
 | |
|   /// the index operands are compile-time known integers within the
 | |
|   /// corresponding notional static array extents. Note that this is
 | |
|   /// not equivalant to, a subset of, or a superset of the "inbounds"
 | |
|   /// property.
 | |
|   bool isGEPWithNoNotionalOverIndexing() const;
 | |
| 
 | |
|   /// Select constant expr
 | |
|   ///
 | |
|   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);
 | |
| 
 | |
|   /// get - Return a binary or shift operator constant expression,
 | |
|   /// folding if possible.
 | |
|   ///
 | |
|   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
 | |
|                        unsigned Flags = 0);
 | |
| 
 | |
|   /// @brief Return an ICmp or FCmp comparison operator constant expression.
 | |
|   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
 | |
| 
 | |
|   /// get* - Return some common constants without having to
 | |
|   /// specify the full Instruction::OPCODE identifier.
 | |
|   ///
 | |
|   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
 | |
|   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
 | |
| 
 | |
|   /// Getelementptr form.  Value* is only accepted for convenience;
 | |
|   /// all elements must be Constant's.
 | |
|   ///
 | |
|   static Constant *getGetElementPtr(Constant *C,
 | |
|                                     ArrayRef<Constant *> IdxList,
 | |
|                                     bool InBounds = false) {
 | |
|     return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
 | |
|                                             IdxList.size()),
 | |
|                             InBounds);
 | |
|   }
 | |
|   static Constant *getGetElementPtr(Constant *C,
 | |
|                                     Constant *Idx,
 | |
|                                     bool InBounds = false) {
 | |
|     // This form of the function only exists to avoid ambiguous overload
 | |
|     // warnings about whether to convert Idx to ArrayRef<Constant *> or
 | |
|     // ArrayRef<Value *>.
 | |
|     return getGetElementPtr(C, cast<Value>(Idx), InBounds);
 | |
|   }
 | |
|   static Constant *getGetElementPtr(Constant *C,
 | |
|                                     ArrayRef<Value *> IdxList,
 | |
|                                     bool InBounds = false);
 | |
| 
 | |
|   /// Create an "inbounds" getelementptr. See the documentation for the
 | |
|   /// "inbounds" flag in LangRef.html for details.
 | |
|   static Constant *getInBoundsGetElementPtr(Constant *C,
 | |
|                                             ArrayRef<Constant *> IdxList) {
 | |
|     return getGetElementPtr(C, IdxList, true);
 | |
|   }
 | |
|   static Constant *getInBoundsGetElementPtr(Constant *C,
 | |
|                                             Constant *Idx) {
 | |
|     // This form of the function only exists to avoid ambiguous overload
 | |
|     // warnings about whether to convert Idx to ArrayRef<Constant *> or
 | |
|     // ArrayRef<Value *>.
 | |
|     return getGetElementPtr(C, Idx, true);
 | |
|   }
 | |
|   static Constant *getInBoundsGetElementPtr(Constant *C,
 | |
|                                             ArrayRef<Value *> IdxList) {
 | |
|     return getGetElementPtr(C, IdxList, true);
 | |
|   }
 | |
| 
 | |
|   static Constant *getExtractElement(Constant *Vec, Constant *Idx);
 | |
|   static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
 | |
|   static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
 | |
|   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
 | |
|   static Constant *getInsertValue(Constant *Agg, Constant *Val,
 | |
|                                   ArrayRef<unsigned> Idxs);
 | |
| 
 | |
|   /// getOpcode - Return the opcode at the root of this constant expression
 | |
|   unsigned getOpcode() const { return getSubclassDataFromValue(); }
 | |
| 
 | |
|   /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
 | |
|   /// not an ICMP or FCMP constant expression.
 | |
|   unsigned getPredicate() const;
 | |
| 
 | |
|   /// getIndices - Assert that this is an insertvalue or exactvalue
 | |
|   /// expression and return the list of indices.
 | |
|   ArrayRef<unsigned> getIndices() const;
 | |
| 
 | |
|   /// getOpcodeName - Return a string representation for an opcode.
 | |
|   const char *getOpcodeName() const;
 | |
| 
 | |
|   /// getWithOperandReplaced - Return a constant expression identical to this
 | |
|   /// one, but with the specified operand set to the specified value.
 | |
|   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
 | |
|   
 | |
|   /// getWithOperands - This returns the current constant expression with the
 | |
|   /// operands replaced with the specified values.  The specified array must
 | |
|   /// have the same number of operands as our current one.
 | |
|   Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
 | |
|     return getWithOperands(Ops, getType());
 | |
|   }
 | |
| 
 | |
|   /// getWithOperands - This returns the current constant expression with the
 | |
|   /// operands replaced with the specified values and with the specified result
 | |
|   /// type.  The specified array must have the same number of operands as our
 | |
|   /// current one.
 | |
|   Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
|   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ConstantExpr *) { return true; }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return V->getValueID() == ConstantExprVal;
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   // Shadow Value::setValueSubclassData with a private forwarding method so that
 | |
|   // subclasses cannot accidentally use it.
 | |
|   void setValueSubclassData(unsigned short D) {
 | |
|     Value::setValueSubclassData(D);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ConstantExpr> :
 | |
|   public VariadicOperandTraits<ConstantExpr, 1> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// UndefValue - 'undef' values are things that do not have specified contents.
 | |
| /// These are used for a variety of purposes, including global variable
 | |
| /// initializers and operands to instructions.  'undef' values can occur with
 | |
| /// any first-class type.
 | |
| ///
 | |
| /// Undef values aren't exactly constants; if they have multiple uses, they
 | |
| /// can appear to have different bit patterns at each use. See
 | |
| /// LangRef.html#undefvalues for details.
 | |
| ///
 | |
| class UndefValue : public Constant {
 | |
|   friend struct ConstantCreator<UndefValue, Type, char>;
 | |
|   void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
 | |
|   UndefValue(const UndefValue &);      // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {}
 | |
| protected:
 | |
|   // allocate space for exactly zero operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 0);
 | |
|   }
 | |
| public:
 | |
|   /// get() - Static factory methods - Return an 'undef' object of the specified
 | |
|   /// type.
 | |
|   ///
 | |
|   static UndefValue *get(Type *T);
 | |
| 
 | |
|   virtual void destroyConstant();
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const UndefValue *) { return true; }
 | |
|   static bool classof(const Value *V) {
 | |
|     return V->getValueID() == UndefValueVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |