mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	register that's read by the preheader terminator. rdar://11095580 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153492 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1446 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1446 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion on machine instructions. We
 | |
| // attempt to remove as much code from the body of a loop as possible.
 | |
| //
 | |
| // This pass does not attempt to throttle itself to limit register pressure.
 | |
| // The register allocation phases are expected to perform rematerialization
 | |
| // to recover when register pressure is high.
 | |
| //
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
 | |
| // constructs that are not exposed before lowering and instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-licm"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AvoidSpeculation("avoid-speculation",
 | |
|                  cl::desc("MachineLICM should avoid speculation"),
 | |
|                  cl::init(true), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumHoisted,
 | |
|           "Number of machine instructions hoisted out of loops");
 | |
| STATISTIC(NumLowRP,
 | |
|           "Number of instructions hoisted in low reg pressure situation");
 | |
| STATISTIC(NumHighLatency,
 | |
|           "Number of high latency instructions hoisted");
 | |
| STATISTIC(NumCSEed,
 | |
|           "Number of hoisted machine instructions CSEed");
 | |
| STATISTIC(NumPostRAHoisted,
 | |
|           "Number of machine instructions hoisted out of loops post regalloc");
 | |
| 
 | |
| namespace {
 | |
|   class MachineLICM : public MachineFunctionPass {
 | |
|     const TargetMachine   *TM;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetLowering *TLI;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const MachineFrameInfo *MFI;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     const InstrItineraryData *InstrItins;
 | |
|     bool PreRegAlloc;
 | |
| 
 | |
|     // Various analyses that we use...
 | |
|     AliasAnalysis        *AA;      // Alias analysis info.
 | |
|     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
 | |
|     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
 | |
| 
 | |
|     // State that is updated as we process loops
 | |
|     bool         Changed;          // True if a loop is changed.
 | |
|     bool         FirstInLoop;      // True if it's the first LICM in the loop.
 | |
|     MachineLoop *CurLoop;          // The current loop we are working on.
 | |
|     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
 | |
| 
 | |
|     // Track 'estimated' register pressure.
 | |
|     SmallSet<unsigned, 32> RegSeen;
 | |
|     SmallVector<unsigned, 8> RegPressure;
 | |
| 
 | |
|     // Register pressure "limit" per register class. If the pressure
 | |
|     // is higher than the limit, then it's considered high.
 | |
|     SmallVector<unsigned, 8> RegLimit;
 | |
| 
 | |
|     // Register pressure on path leading from loop preheader to current BB.
 | |
|     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
 | |
| 
 | |
|     // For each opcode, keep a list of potential CSE instructions.
 | |
|     DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
 | |
| 
 | |
|     enum {
 | |
|       SpeculateFalse   = 0,
 | |
|       SpeculateTrue    = 1,
 | |
|       SpeculateUnknown = 2
 | |
|     };
 | |
| 
 | |
|     // If a MBB does not dominate loop exiting blocks then it may not safe
 | |
|     // to hoist loads from this block.
 | |
|     // Tri-state: 0 - false, 1 - true, 2 - unknown
 | |
|     unsigned SpeculationState;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     MachineLICM() :
 | |
|       MachineFunctionPass(ID), PreRegAlloc(true) {
 | |
|         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
| 
 | |
|     explicit MachineLICM(bool PreRA) :
 | |
|       MachineFunctionPass(ID), PreRegAlloc(PreRA) {
 | |
|         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual void releaseMemory() {
 | |
|       RegSeen.clear();
 | |
|       RegPressure.clear();
 | |
|       RegLimit.clear();
 | |
|       BackTrace.clear();
 | |
|       for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
 | |
|              CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
 | |
|         CI->second.clear();
 | |
|       CSEMap.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// CandidateInfo - Keep track of information about hoisting candidates.
 | |
|     struct CandidateInfo {
 | |
|       MachineInstr *MI;
 | |
|       unsigned      Def;
 | |
|       int           FI;
 | |
|       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
 | |
|         : MI(mi), Def(def), FI(fi) {}
 | |
|     };
 | |
| 
 | |
|     /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | |
|     /// invariants out to the preheader.
 | |
|     void HoistRegionPostRA();
 | |
| 
 | |
|     /// HoistPostRA - When an instruction is found to only use loop invariant
 | |
|     /// operands that is safe to hoist, this instruction is called to do the
 | |
|     /// dirty work.
 | |
|     void HoistPostRA(MachineInstr *MI, unsigned Def);
 | |
| 
 | |
|     /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | |
|     /// gather register def and frame object update information.
 | |
|     void ProcessMI(MachineInstr *MI,
 | |
|                    BitVector &PhysRegDefs,
 | |
|                    BitVector &PhysRegClobbers,
 | |
|                    SmallSet<int, 32> &StoredFIs,
 | |
|                    SmallVector<CandidateInfo, 32> &Candidates);
 | |
| 
 | |
|     /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
 | |
|     /// current loop.
 | |
|     void AddToLiveIns(unsigned Reg);
 | |
| 
 | |
|     /// IsLICMCandidate - Returns true if the instruction may be a suitable
 | |
|     /// candidate for LICM. e.g. If the instruction is a call, then it's
 | |
|     /// obviously not safe to hoist it.
 | |
|     bool IsLICMCandidate(MachineInstr &I);
 | |
| 
 | |
|     /// IsLoopInvariantInst - Returns true if the instruction is loop
 | |
|     /// invariant. I.e., all virtual register operands are defined outside of
 | |
|     /// the loop, physical registers aren't accessed (explicitly or implicitly),
 | |
|     /// and the instruction is hoistable.
 | |
|     ///
 | |
|     bool IsLoopInvariantInst(MachineInstr &I);
 | |
| 
 | |
|     /// HasAnyPHIUse - Return true if the specified register is used by any
 | |
|     /// phi node.
 | |
|     bool HasAnyPHIUse(unsigned Reg) const;
 | |
| 
 | |
|     /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
 | |
|     /// and an use in the current loop, return true if the target considered
 | |
|     /// it 'high'.
 | |
|     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
 | |
|                                unsigned Reg) const;
 | |
| 
 | |
|     bool IsCheapInstruction(MachineInstr &MI) const;
 | |
| 
 | |
|     /// CanCauseHighRegPressure - Visit BBs from header to current BB,
 | |
|     /// check if hoisting an instruction of the given cost matrix can cause high
 | |
|     /// register pressure.
 | |
|     bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
 | |
| 
 | |
|     /// UpdateBackTraceRegPressure - Traverse the back trace from header to
 | |
|     /// the current block and update their register pressures to reflect the
 | |
|     /// effect of hoisting MI from the current block to the preheader.
 | |
|     void UpdateBackTraceRegPressure(const MachineInstr *MI);
 | |
| 
 | |
|     /// IsProfitableToHoist - Return true if it is potentially profitable to
 | |
|     /// hoist the given loop invariant.
 | |
|     bool IsProfitableToHoist(MachineInstr &MI);
 | |
| 
 | |
|     /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
 | |
|     /// If not then a load from this mbb may not be safe to hoist.
 | |
|     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
 | |
| 
 | |
|     void EnterScope(MachineBasicBlock *MBB);
 | |
| 
 | |
|     void ExitScope(MachineBasicBlock *MBB);
 | |
| 
 | |
|     /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
 | |
|     /// dominator tree node if its a leaf or all of its children are done. Walk
 | |
|     /// up the dominator tree to destroy ancestors which are now done.
 | |
|     void ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | |
|                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
 | |
| 
 | |
|     /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
 | |
|     /// blocks dominated by the specified header block, and that are in the
 | |
|     /// current loop) in depth first order w.r.t the DominatorTree. This allows
 | |
|     /// us to visit definitions before uses, allowing us to hoist a loop body in
 | |
|     /// one pass without iteration.
 | |
|     ///
 | |
|     void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
 | |
|     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
 | |
| 
 | |
|     /// getRegisterClassIDAndCost - For a given MI, register, and the operand
 | |
|     /// index, return the ID and cost of its representative register class by
 | |
|     /// reference.
 | |
|     void getRegisterClassIDAndCost(const MachineInstr *MI,
 | |
|                                    unsigned Reg, unsigned OpIdx,
 | |
|                                    unsigned &RCId, unsigned &RCCost) const;
 | |
| 
 | |
|     /// InitRegPressure - Find all virtual register references that are liveout
 | |
|     /// of the preheader to initialize the starting "register pressure". Note
 | |
|     /// this does not count live through (livein but not used) registers.
 | |
|     void InitRegPressure(MachineBasicBlock *BB);
 | |
| 
 | |
|     /// UpdateRegPressure - Update estimate of register pressure after the
 | |
|     /// specified instruction.
 | |
|     void UpdateRegPressure(const MachineInstr *MI);
 | |
| 
 | |
|     /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
 | |
|     /// the load itself could be hoisted. Return the unfolded and hoistable
 | |
|     /// load, or null if the load couldn't be unfolded or if it wouldn't
 | |
|     /// be hoistable.
 | |
|     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
 | |
| 
 | |
|     /// LookForDuplicate - Find an instruction amount PrevMIs that is a
 | |
|     /// duplicate of MI. Return this instruction if it's found.
 | |
|     const MachineInstr *LookForDuplicate(const MachineInstr *MI,
 | |
|                                      std::vector<const MachineInstr*> &PrevMIs);
 | |
| 
 | |
|     /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
 | |
|     /// the preheader that compute the same value. If it's found, do a RAU on
 | |
|     /// with the definition of the existing instruction rather than hoisting
 | |
|     /// the instruction to the preheader.
 | |
|     bool EliminateCSE(MachineInstr *MI,
 | |
|            DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
 | |
| 
 | |
|     /// MayCSE - Return true if the given instruction will be CSE'd if it's
 | |
|     /// hoisted out of the loop.
 | |
|     bool MayCSE(MachineInstr *MI);
 | |
| 
 | |
|     /// Hoist - When an instruction is found to only use loop invariant operands
 | |
|     /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
|     /// It returns true if the instruction is hoisted.
 | |
|     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
 | |
| 
 | |
|     /// InitCSEMap - Initialize the CSE map with instructions that are in the
 | |
|     /// current loop preheader that may become duplicates of instructions that
 | |
|     /// are hoisted out of the loop.
 | |
|     void InitCSEMap(MachineBasicBlock *BB);
 | |
| 
 | |
|     /// getCurPreheader - Get the preheader for the current loop, splitting
 | |
|     /// a critical edge if needed.
 | |
|     MachineBasicBlock *getCurPreheader();
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineLICM::ID = 0;
 | |
| char &llvm::MachineLICMID = MachineLICM::ID;
 | |
| INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
 | |
|                 "Machine Loop Invariant Code Motion", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(MachineLICM, "machinelicm",
 | |
|                 "Machine Loop Invariant Code Motion", false, false)
 | |
| 
 | |
| /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
 | |
| /// loop that has a unique predecessor.
 | |
| static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
 | |
|   // Check whether this loop even has a unique predecessor.
 | |
|   if (!CurLoop->getLoopPredecessor())
 | |
|     return false;
 | |
|   // Ok, now check to see if any of its outer loops do.
 | |
|   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
 | |
|     if (L->getLoopPredecessor())
 | |
|       return false;
 | |
|   // None of them did, so this is the outermost with a unique predecessor.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
 | |
|   Changed = FirstInLoop = false;
 | |
|   TM = &MF.getTarget();
 | |
|   TII = TM->getInstrInfo();
 | |
|   TLI = TM->getTargetLowering();
 | |
|   TRI = TM->getRegisterInfo();
 | |
|   MFI = MF.getFrameInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   InstrItins = TM->getInstrItineraryData();
 | |
| 
 | |
|   PreRegAlloc = MRI->isSSA();
 | |
| 
 | |
|   if (PreRegAlloc)
 | |
|     DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
 | |
|   else
 | |
|     DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
 | |
|   DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
 | |
| 
 | |
|   if (PreRegAlloc) {
 | |
|     // Estimate register pressure during pre-regalloc pass.
 | |
|     unsigned NumRC = TRI->getNumRegClasses();
 | |
|     RegPressure.resize(NumRC);
 | |
|     std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|     RegLimit.resize(NumRC);
 | |
|     for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|            E = TRI->regclass_end(); I != E; ++I)
 | |
|       RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
 | |
|   }
 | |
| 
 | |
|   // Get our Loop information...
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   DT  = &getAnalysis<MachineDominatorTree>();
 | |
|   AA  = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
 | |
|   while (!Worklist.empty()) {
 | |
|     CurLoop = Worklist.pop_back_val();
 | |
|     CurPreheader = 0;
 | |
| 
 | |
|     // If this is done before regalloc, only visit outer-most preheader-sporting
 | |
|     // loops.
 | |
|     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
 | |
|       Worklist.append(CurLoop->begin(), CurLoop->end());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!PreRegAlloc)
 | |
|       HoistRegionPostRA();
 | |
|     else {
 | |
|       // CSEMap is initialized for loop header when the first instruction is
 | |
|       // being hoisted.
 | |
|       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
 | |
|       FirstInLoop = true;
 | |
|       HoistOutOfLoop(N);
 | |
|       CSEMap.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// InstructionStoresToFI - Return true if instruction stores to the
 | |
| /// specified frame.
 | |
| static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end(); o != oe; ++o) {
 | |
|     if (!(*o)->isStore() || !(*o)->getValue())
 | |
|       continue;
 | |
|     if (const FixedStackPseudoSourceValue *Value =
 | |
|         dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|       if (Value->getFrameIndex() == FI)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | |
| /// gather register def and frame object update information.
 | |
| void MachineLICM::ProcessMI(MachineInstr *MI,
 | |
|                             BitVector &PhysRegDefs,
 | |
|                             BitVector &PhysRegClobbers,
 | |
|                             SmallSet<int, 32> &StoredFIs,
 | |
|                             SmallVector<CandidateInfo, 32> &Candidates) {
 | |
|   bool RuledOut = false;
 | |
|   bool HasNonInvariantUse = false;
 | |
|   unsigned Def = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isFI()) {
 | |
|       // Remember if the instruction stores to the frame index.
 | |
|       int FI = MO.getIndex();
 | |
|       if (!StoredFIs.count(FI) &&
 | |
|           MFI->isSpillSlotObjectIndex(FI) &&
 | |
|           InstructionStoresToFI(MI, FI))
 | |
|         StoredFIs.insert(FI);
 | |
|       HasNonInvariantUse = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We can't hoist an instruction defining a physreg that is clobbered in
 | |
|     // the loop.
 | |
|     if (MO.isRegMask()) {
 | |
|       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|            "Not expecting virtual register!");
 | |
| 
 | |
|     if (!MO.isDef()) {
 | |
|       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
 | |
|         // If it's using a non-loop-invariant register, then it's obviously not
 | |
|         // safe to hoist.
 | |
|         HasNonInvariantUse = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (MO.isImplicit()) {
 | |
|       for (const uint16_t *AS = TRI->getOverlaps(Reg); *AS; ++AS)
 | |
|         PhysRegClobbers.set(*AS);
 | |
|       if (!MO.isDead())
 | |
|         // Non-dead implicit def? This cannot be hoisted.
 | |
|         RuledOut = true;
 | |
|       // No need to check if a dead implicit def is also defined by
 | |
|       // another instruction.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // FIXME: For now, avoid instructions with multiple defs, unless
 | |
|     // it's a dead implicit def.
 | |
|     if (Def)
 | |
|       RuledOut = true;
 | |
|     else
 | |
|       Def = Reg;
 | |
| 
 | |
|     // If we have already seen another instruction that defines the same
 | |
|     // register, then this is not safe.  Two defs is indicated by setting a
 | |
|     // PhysRegClobbers bit.
 | |
|     for (const uint16_t *AS = TRI->getOverlaps(Reg); *AS; ++AS) {
 | |
|       if (PhysRegDefs.test(*AS))
 | |
|         PhysRegClobbers.set(*AS);
 | |
|       if (PhysRegClobbers.test(*AS))
 | |
|         // MI defined register is seen defined by another instruction in
 | |
|         // the loop, it cannot be a LICM candidate.
 | |
|         RuledOut = true;
 | |
|       PhysRegDefs.set(*AS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Only consider reloads for now and remats which do not have register
 | |
|   // operands. FIXME: Consider unfold load folding instructions.
 | |
|   if (Def && !RuledOut) {
 | |
|     int FI = INT_MIN;
 | |
|     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
 | |
|         (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
 | |
|       Candidates.push_back(CandidateInfo(MI, Def, FI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | |
| /// invariants out to the preheader.
 | |
| void MachineLICM::HoistRegionPostRA() {
 | |
|   MachineBasicBlock *Preheader = getCurPreheader();
 | |
|   if (!Preheader)
 | |
|     return;
 | |
| 
 | |
|   unsigned NumRegs = TRI->getNumRegs();
 | |
|   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
 | |
|   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
 | |
| 
 | |
|   SmallVector<CandidateInfo, 32> Candidates;
 | |
|   SmallSet<int, 32> StoredFIs;
 | |
| 
 | |
|   // Walk the entire region, count number of defs for each register, and
 | |
|   // collect potential LICM candidates.
 | |
|   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *BB = Blocks[i];
 | |
| 
 | |
|     // If the header of the loop containing this basic block is a landing pad,
 | |
|     // then don't try to hoist instructions out of this loop.
 | |
|     const MachineLoop *ML = MLI->getLoopFor(BB);
 | |
|     if (ML && ML->getHeader()->isLandingPad()) continue;
 | |
| 
 | |
|     // Conservatively treat live-in's as an external def.
 | |
|     // FIXME: That means a reload that're reused in successor block(s) will not
 | |
|     // be LICM'ed.
 | |
|     for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
 | |
|            E = BB->livein_end(); I != E; ++I) {
 | |
|       unsigned Reg = *I;
 | |
|       for (const uint16_t *AS = TRI->getOverlaps(Reg); *AS; ++AS)
 | |
|         PhysRegDefs.set(*AS);
 | |
|     }
 | |
| 
 | |
|     SpeculationState = SpeculateUnknown;
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Gather the registers read / clobbered by the terminator.
 | |
|   BitVector TermRegs(NumRegs);
 | |
|   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
 | |
|   if (TI != Preheader->end()) {
 | |
|     for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = TI->getOperand(i);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!Reg)
 | |
|         continue;
 | |
|       for (const uint16_t *AS = TRI->getOverlaps(Reg); *AS; ++AS)
 | |
|         TermRegs.set(*AS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now evaluate whether the potential candidates qualify.
 | |
|   // 1. Check if the candidate defined register is defined by another
 | |
|   //    instruction in the loop.
 | |
|   // 2. If the candidate is a load from stack slot (always true for now),
 | |
|   //    check if the slot is stored anywhere in the loop.
 | |
|   // 3. Make sure candidate def should not clobber
 | |
|   //    registers read by the terminator. Similarly its def should not be
 | |
|   //    clobbered by the terminator.
 | |
|   for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
 | |
|     if (Candidates[i].FI != INT_MIN &&
 | |
|         StoredFIs.count(Candidates[i].FI))
 | |
|       continue;
 | |
| 
 | |
|     unsigned Def = Candidates[i].Def;
 | |
|     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
 | |
|       bool Safe = true;
 | |
|       MachineInstr *MI = Candidates[i].MI;
 | |
|       for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
 | |
|         const MachineOperand &MO = MI->getOperand(j);
 | |
|         if (!MO.isReg() || MO.isDef() || !MO.getReg())
 | |
|           continue;
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (PhysRegDefs.test(Reg) ||
 | |
|             PhysRegClobbers.test(Reg)) {
 | |
|           // If it's using a non-loop-invariant register, then it's obviously
 | |
|           // not safe to hoist.
 | |
|           Safe = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (Safe)
 | |
|         HoistPostRA(MI, Candidates[i].Def);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
 | |
| /// loop, and make sure it is not killed by any instructions in the loop.
 | |
| void MachineLICM::AddToLiveIns(unsigned Reg) {
 | |
|   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *BB = Blocks[i];
 | |
|     if (!BB->isLiveIn(Reg))
 | |
|       BB->addLiveIn(Reg);
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
 | |
|         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
 | |
|           MO.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistPostRA - When an instruction is found to only use loop invariant
 | |
| /// operands that is safe to hoist, this instruction is called to do the
 | |
| /// dirty work.
 | |
| void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
 | |
|   MachineBasicBlock *Preheader = getCurPreheader();
 | |
| 
 | |
|   // Now move the instructions to the predecessor, inserting it before any
 | |
|   // terminator instructions.
 | |
|   DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
 | |
|                << MI->getParent()->getNumber() << ": " << *MI);
 | |
| 
 | |
|   // Splice the instruction to the preheader.
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
 | |
| 
 | |
|   // Add register to livein list to all the BBs in the current loop since a
 | |
|   // loop invariant must be kept live throughout the whole loop. This is
 | |
|   // important to ensure later passes do not scavenge the def register.
 | |
|   AddToLiveIns(Def);
 | |
| 
 | |
|   ++NumPostRAHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
 | |
| // If not then a load from this mbb may not be safe to hoist.
 | |
| bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
 | |
|   if (SpeculationState != SpeculateUnknown)
 | |
|     return SpeculationState == SpeculateFalse;
 | |
| 
 | |
|   if (BB != CurLoop->getHeader()) {
 | |
|     // Check loop exiting blocks.
 | |
|     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
 | |
|     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
 | |
|     for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
 | |
|       if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
 | |
|         SpeculationState = SpeculateTrue;
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   SpeculationState = SpeculateFalse;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
 | |
| 
 | |
|   // Remember livein register pressure.
 | |
|   BackTrace.push_back(RegPressure);
 | |
| }
 | |
| 
 | |
| void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
 | |
|   BackTrace.pop_back();
 | |
| }
 | |
| 
 | |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
 | |
| /// dominator tree node if its a leaf or all of its children are done. Walk
 | |
| /// up the dominator tree to destroy ancestors which are now done.
 | |
| void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | |
|                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
 | |
|   if (OpenChildren[Node])
 | |
|     return;
 | |
| 
 | |
|   // Pop scope.
 | |
|   ExitScope(Node->getBlock());
 | |
| 
 | |
|   // Now traverse upwards to pop ancestors whose offsprings are all done.
 | |
|   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
 | |
|     unsigned Left = --OpenChildren[Parent];
 | |
|     if (Left != 0)
 | |
|       break;
 | |
|     ExitScope(Parent->getBlock());
 | |
|     Node = Parent;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
 | |
| /// blocks dominated by the specified header block, and that are in the
 | |
| /// current loop) in depth first order w.r.t the DominatorTree. This allows
 | |
| /// us to visit definitions before uses, allowing us to hoist a loop body in
 | |
| /// one pass without iteration.
 | |
| ///
 | |
| void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
 | |
|   SmallVector<MachineDomTreeNode*, 32> Scopes;
 | |
|   SmallVector<MachineDomTreeNode*, 8> WorkList;
 | |
|   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
 | |
|   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
 | |
| 
 | |
|   // Perform a DFS walk to determine the order of visit.
 | |
|   WorkList.push_back(HeaderN);
 | |
|   do {
 | |
|     MachineDomTreeNode *Node = WorkList.pop_back_val();
 | |
|     assert(Node != 0 && "Null dominator tree node?");
 | |
|     MachineBasicBlock *BB = Node->getBlock();
 | |
| 
 | |
|     // If the header of the loop containing this basic block is a landing pad,
 | |
|     // then don't try to hoist instructions out of this loop.
 | |
|     const MachineLoop *ML = MLI->getLoopFor(BB);
 | |
|     if (ML && ML->getHeader()->isLandingPad())
 | |
|       continue;
 | |
| 
 | |
|     // If this subregion is not in the top level loop at all, exit.
 | |
|     if (!CurLoop->contains(BB))
 | |
|       continue;
 | |
| 
 | |
|     Scopes.push_back(Node);
 | |
|     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 | |
|     unsigned NumChildren = Children.size();
 | |
| 
 | |
|     // Don't hoist things out of a large switch statement.  This often causes
 | |
|     // code to be hoisted that wasn't going to be executed, and increases
 | |
|     // register pressure in a situation where it's likely to matter.
 | |
|     if (BB->succ_size() >= 25)
 | |
|       NumChildren = 0;
 | |
| 
 | |
|     OpenChildren[Node] = NumChildren;
 | |
|     // Add children in reverse order as then the next popped worklist node is
 | |
|     // the first child of this node.  This means we ultimately traverse the
 | |
|     // DOM tree in exactly the same order as if we'd recursed.
 | |
|     for (int i = (int)NumChildren-1; i >= 0; --i) {
 | |
|       MachineDomTreeNode *Child = Children[i];
 | |
|       ParentMap[Child] = Node;
 | |
|       WorkList.push_back(Child);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   if (Scopes.size() != 0) {
 | |
|     MachineBasicBlock *Preheader = getCurPreheader();
 | |
|     if (!Preheader)
 | |
|       return;
 | |
| 
 | |
|     // Compute registers which are livein into the loop headers.
 | |
|     RegSeen.clear();
 | |
|     BackTrace.clear();
 | |
|     InitRegPressure(Preheader);
 | |
|   }
 | |
| 
 | |
|   // Now perform LICM.
 | |
|   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 | |
|     MachineDomTreeNode *Node = Scopes[i];
 | |
|     MachineBasicBlock *MBB = Node->getBlock();
 | |
| 
 | |
|     MachineBasicBlock *Preheader = getCurPreheader();
 | |
|     if (!Preheader)
 | |
|       continue;
 | |
| 
 | |
|     EnterScope(MBB);
 | |
| 
 | |
|     // Process the block
 | |
|     SpeculationState = SpeculateUnknown;
 | |
|     for (MachineBasicBlock::iterator
 | |
|          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
 | |
|       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | |
|       MachineInstr *MI = &*MII;
 | |
|       if (!Hoist(MI, Preheader))
 | |
|         UpdateRegPressure(MI);
 | |
|       MII = NextMII;
 | |
|     }
 | |
| 
 | |
|     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
 | |
|     ExitScopeIfDone(Node, OpenChildren, ParentMap);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
 | |
|   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
 | |
| }
 | |
| 
 | |
| /// getRegisterClassIDAndCost - For a given MI, register, and the operand
 | |
| /// index, return the ID and cost of its representative register class.
 | |
| void
 | |
| MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
 | |
|                                        unsigned Reg, unsigned OpIdx,
 | |
|                                        unsigned &RCId, unsigned &RCCost) const {
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | |
|   EVT VT = *RC->vt_begin();
 | |
|   if (VT == MVT::Untyped) {
 | |
|     RCId = RC->getID();
 | |
|     RCCost = 1;
 | |
|   } else {
 | |
|     RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|     RCCost = TLI->getRepRegClassCostFor(VT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InitRegPressure - Find all virtual register references that are liveout of
 | |
| /// the preheader to initialize the starting "register pressure". Note this
 | |
| /// does not count live through (livein but not used) registers.
 | |
| void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
 | |
|   std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
| 
 | |
|   // If the preheader has only a single predecessor and it ends with a
 | |
|   // fallthrough or an unconditional branch, then scan its predecessor for live
 | |
|   // defs as well. This happens whenever the preheader is created by splitting
 | |
|   // the critical edge from the loop predecessor to the loop header.
 | |
|   if (BB->pred_size() == 1) {
 | |
|     MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|     SmallVector<MachineOperand, 4> Cond;
 | |
|     if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
 | |
|       InitRegPressure(*BB->pred_begin());
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
 | |
|        MII != E; ++MII) {
 | |
|     MachineInstr *MI = &*MII;
 | |
|     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isImplicit())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|         continue;
 | |
| 
 | |
|       bool isNew = RegSeen.insert(Reg);
 | |
|       unsigned RCId, RCCost;
 | |
|       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
 | |
|       if (MO.isDef())
 | |
|         RegPressure[RCId] += RCCost;
 | |
|       else {
 | |
|         bool isKill = isOperandKill(MO, MRI);
 | |
|         if (isNew && !isKill)
 | |
|           // Haven't seen this, it must be a livein.
 | |
|           RegPressure[RCId] += RCCost;
 | |
|         else if (!isNew && isKill)
 | |
|           RegPressure[RCId] -= RCCost;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// UpdateRegPressure - Update estimate of register pressure after the
 | |
| /// specified instruction.
 | |
| void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
 | |
|   if (MI->isImplicitDef())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<unsigned, 4> Defs;
 | |
|   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || MO.isImplicit())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     bool isNew = RegSeen.insert(Reg);
 | |
|     if (MO.isDef())
 | |
|       Defs.push_back(Reg);
 | |
|     else if (!isNew && isOperandKill(MO, MRI)) {
 | |
|       unsigned RCId, RCCost;
 | |
|       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
 | |
|       if (RCCost > RegPressure[RCId])
 | |
|         RegPressure[RCId] = 0;
 | |
|       else
 | |
|         RegPressure[RCId] -= RCCost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Idx = 0;
 | |
|   while (!Defs.empty()) {
 | |
|     unsigned Reg = Defs.pop_back_val();
 | |
|     unsigned RCId, RCCost;
 | |
|     getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
 | |
|     RegPressure[RCId] += RCCost;
 | |
|     ++Idx;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLoadFromGOTOrConstantPool - Return true if this machine instruction
 | |
| /// loads from global offset table or constant pool.
 | |
| static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
 | |
|   assert (MI.mayLoad() && "Expected MI that loads!");
 | |
|   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
 | |
|          E = MI.memoperands_end(); I != E; ++I) {
 | |
|     if (const Value *V = (*I)->getValue()) {
 | |
|       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
 | |
|         if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
 | |
|           return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable
 | |
| /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
 | |
| /// not safe to hoist it.
 | |
| bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
 | |
|   // Check if it's safe to move the instruction.
 | |
|   bool DontMoveAcrossStore = true;
 | |
|   if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
 | |
|     return false;
 | |
| 
 | |
|   // If it is load then check if it is guaranteed to execute by making sure that
 | |
|   // it dominates all exiting blocks. If it doesn't, then there is a path out of
 | |
|   // the loop which does not execute this load, so we can't hoist it. Loads
 | |
|   // from constant memory are not safe to speculate all the time, for example
 | |
|   // indexed load from a jump table.
 | |
|   // Stores and side effects are already checked by isSafeToMove.
 | |
|   if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
 | |
|       !IsGuaranteedToExecute(I.getParent()))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsLoopInvariantInst - Returns true if the instruction is loop
 | |
| /// invariant. I.e., all virtual register operands are defined outside of the
 | |
| /// loop, physical registers aren't accessed explicitly, and there are no side
 | |
| /// effects that aren't captured by the operands or other flags.
 | |
| ///
 | |
| bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
 | |
|   if (!IsLICMCandidate(I))
 | |
|     return false;
 | |
| 
 | |
|   // The instruction is loop invariant if all of its operands are.
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = I.getOperand(i);
 | |
| 
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
| 
 | |
|     // Don't hoist an instruction that uses or defines a physical register.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
 | |
|           return false;
 | |
|         // Otherwise it's safe to move.
 | |
|         continue;
 | |
|       } else if (!MO.isDead()) {
 | |
|         // A def that isn't dead. We can't move it.
 | |
|         return false;
 | |
|       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
 | |
|         // If the reg is live into the loop, we can't hoist an instruction
 | |
|         // which would clobber it.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!MO.isUse())
 | |
|       continue;
 | |
| 
 | |
|     assert(MRI->getVRegDef(Reg) &&
 | |
|            "Machine instr not mapped for this vreg?!");
 | |
| 
 | |
|     // If the loop contains the definition of an operand, then the instruction
 | |
|     // isn't loop invariant.
 | |
|     if (CurLoop->contains(MRI->getVRegDef(Reg)))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we got this far, the instruction is loop invariant!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// HasAnyPHIUse - Return true if the specified register is used by any
 | |
| /// phi node.
 | |
| bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineInstr *UseMI = &*UI;
 | |
|     if (UseMI->isPHI())
 | |
|       return true;
 | |
|     // Look pass copies as well.
 | |
|     if (UseMI->isCopy()) {
 | |
|       unsigned Def = UseMI->getOperand(0).getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Def) &&
 | |
|           HasAnyPHIUse(Def))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
 | |
| /// and an use in the current loop, return true if the target considered
 | |
| /// it 'high'.
 | |
| bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
 | |
|                                         unsigned DefIdx, unsigned Reg) const {
 | |
|   if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
 | |
|     return false;
 | |
| 
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
 | |
|          E = MRI->use_nodbg_end(); I != E; ++I) {
 | |
|     MachineInstr *UseMI = &*I;
 | |
|     if (UseMI->isCopyLike())
 | |
|       continue;
 | |
|     if (!CurLoop->contains(UseMI->getParent()))
 | |
|       continue;
 | |
|     for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = UseMI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse())
 | |
|         continue;
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (MOReg != Reg)
 | |
|         continue;
 | |
| 
 | |
|       if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Only look at the first in loop use.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
 | |
| /// the operand latency between its def and a use is one or less.
 | |
| bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
 | |
|   if (MI.isAsCheapAsAMove() || MI.isCopyLike())
 | |
|     return true;
 | |
|   if (!InstrItins || InstrItins->isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   bool isCheap = false;
 | |
|   unsigned NumDefs = MI.getDesc().getNumDefs();
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
 | |
|     MachineOperand &DefMO = MI.getOperand(i);
 | |
|     if (!DefMO.isReg() || !DefMO.isDef())
 | |
|       continue;
 | |
|     --NumDefs;
 | |
|     unsigned Reg = DefMO.getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     if (!TII->hasLowDefLatency(InstrItins, &MI, i))
 | |
|       return false;
 | |
|     isCheap = true;
 | |
|   }
 | |
| 
 | |
|   return isCheap;
 | |
| }
 | |
| 
 | |
| /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
 | |
| /// if hoisting an instruction of the given cost matrix can cause high
 | |
| /// register pressure.
 | |
| bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
 | |
|   for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
 | |
|        CI != CE; ++CI) {
 | |
|     if (CI->second <= 0)
 | |
|       continue;
 | |
| 
 | |
|     unsigned RCId = CI->first;
 | |
|     unsigned Limit = RegLimit[RCId];
 | |
|     int Cost = CI->second;
 | |
|     for (unsigned i = BackTrace.size(); i != 0; --i) {
 | |
|       SmallVector<unsigned, 8> &RP = BackTrace[i-1];
 | |
|       if (RP[RCId] + Cost >= Limit)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
 | |
| /// current block and update their register pressures to reflect the effect
 | |
| /// of hoisting MI from the current block to the preheader.
 | |
| void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
 | |
|   if (MI->isImplicitDef())
 | |
|     return;
 | |
| 
 | |
|   // First compute the 'cost' of the instruction, i.e. its contribution
 | |
|   // to register pressure.
 | |
|   DenseMap<unsigned, int> Cost;
 | |
|   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || MO.isImplicit())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     unsigned RCId, RCCost;
 | |
|     getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
 | |
|     if (MO.isDef()) {
 | |
|       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
 | |
|       if (CI != Cost.end())
 | |
|         CI->second += RCCost;
 | |
|       else
 | |
|         Cost.insert(std::make_pair(RCId, RCCost));
 | |
|     } else if (isOperandKill(MO, MRI)) {
 | |
|       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
 | |
|       if (CI != Cost.end())
 | |
|         CI->second -= RCCost;
 | |
|       else
 | |
|         Cost.insert(std::make_pair(RCId, -RCCost));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update register pressure of blocks from loop header to current block.
 | |
|   for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
 | |
|     SmallVector<unsigned, 8> &RP = BackTrace[i];
 | |
|     for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
 | |
|          CI != CE; ++CI) {
 | |
|       unsigned RCId = CI->first;
 | |
|       RP[RCId] += CI->second;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
 | |
| /// the given loop invariant.
 | |
| bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
 | |
|   if (MI.isImplicitDef())
 | |
|     return true;
 | |
| 
 | |
|   // If the instruction is cheap, only hoist if it is re-materilizable. LICM
 | |
|   // will increase register pressure. It's probably not worth it if the
 | |
|   // instruction is cheap.
 | |
|   // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
 | |
|   // these tend to help performance in low register pressure situation. The
 | |
|   // trade off is it may cause spill in high pressure situation. It will end up
 | |
|   // adding a store in the loop preheader. But the reload is no more expensive.
 | |
|   // The side benefit is these loads are frequently CSE'ed.
 | |
|   if (IsCheapInstruction(MI)) {
 | |
|     if (!TII->isTriviallyReMaterializable(&MI, AA))
 | |
|       return false;
 | |
|   } else {
 | |
|     // Estimate register pressure to determine whether to LICM the instruction.
 | |
|     // In low register pressure situation, we can be more aggressive about
 | |
|     // hoisting. Also, favors hoisting long latency instructions even in
 | |
|     // moderately high pressure situation.
 | |
|     // FIXME: If there are long latency loop-invariant instructions inside the
 | |
|     // loop at this point, why didn't the optimizer's LICM hoist them?
 | |
|     DenseMap<unsigned, int> Cost;
 | |
|     for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isReg() || MO.isImplicit())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|         continue;
 | |
| 
 | |
|       unsigned RCId, RCCost;
 | |
|       getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
 | |
|       if (MO.isDef()) {
 | |
|         if (HasHighOperandLatency(MI, i, Reg)) {
 | |
|           ++NumHighLatency;
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
 | |
|         if (CI != Cost.end())
 | |
|           CI->second += RCCost;
 | |
|         else
 | |
|           Cost.insert(std::make_pair(RCId, RCCost));
 | |
|       } else if (isOperandKill(MO, MRI)) {
 | |
|         // Is a virtual register use is a kill, hoisting it out of the loop
 | |
|         // may actually reduce register pressure or be register pressure
 | |
|         // neutral.
 | |
|         DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
 | |
|         if (CI != Cost.end())
 | |
|           CI->second -= RCCost;
 | |
|         else
 | |
|           Cost.insert(std::make_pair(RCId, -RCCost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Visit BBs from header to current BB, if hoisting this doesn't cause
 | |
|     // high register pressure, then it's safe to proceed.
 | |
|     if (!CanCauseHighRegPressure(Cost)) {
 | |
|       ++NumLowRP;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Do not "speculate" in high register pressure situation. If an
 | |
|     // instruction is not guaranteed to be executed in the loop, it's best to be
 | |
|     // conservative.
 | |
|     if (AvoidSpeculation &&
 | |
|         (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
 | |
|       return false;
 | |
| 
 | |
|     // High register pressure situation, only hoist if the instruction is going
 | |
|     // to be remat'ed.
 | |
|     if (!TII->isTriviallyReMaterializable(&MI, AA) &&
 | |
|         !MI.isInvariantLoad(AA))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If result(s) of this instruction is used by PHIs outside of the loop, then
 | |
|   // don't hoist it if the instruction because it will introduce an extra copy.
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     if (HasAnyPHIUse(MO.getReg()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
 | |
|   // Don't unfold simple loads.
 | |
|   if (MI->canFoldAsLoad())
 | |
|     return 0;
 | |
| 
 | |
|   // If not, we may be able to unfold a load and hoist that.
 | |
|   // First test whether the instruction is loading from an amenable
 | |
|   // memory location.
 | |
|   if (!MI->isInvariantLoad(AA))
 | |
|     return 0;
 | |
| 
 | |
|   // Next determine the register class for a temporary register.
 | |
|   unsigned LoadRegIndex;
 | |
|   unsigned NewOpc =
 | |
|     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
 | |
|                                     /*UnfoldLoad=*/true,
 | |
|                                     /*UnfoldStore=*/false,
 | |
|                                     &LoadRegIndex);
 | |
|   if (NewOpc == 0) return 0;
 | |
|   const MCInstrDesc &MID = TII->get(NewOpc);
 | |
|   if (MID.getNumDefs() != 1) return 0;
 | |
|   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
 | |
|   // Ok, we're unfolding. Create a temporary register and do the unfold.
 | |
|   unsigned Reg = MRI->createVirtualRegister(RC);
 | |
| 
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   SmallVector<MachineInstr *, 2> NewMIs;
 | |
|   bool Success =
 | |
|     TII->unfoldMemoryOperand(MF, MI, Reg,
 | |
|                              /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
 | |
|                              NewMIs);
 | |
|   (void)Success;
 | |
|   assert(Success &&
 | |
|          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
 | |
|          "succeeded!");
 | |
|   assert(NewMIs.size() == 2 &&
 | |
|          "Unfolded a load into multiple instructions!");
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineBasicBlock::iterator Pos = MI;
 | |
|   MBB->insert(Pos, NewMIs[0]);
 | |
|   MBB->insert(Pos, NewMIs[1]);
 | |
|   // If unfolding produced a load that wasn't loop-invariant or profitable to
 | |
|   // hoist, discard the new instructions and bail.
 | |
|   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
 | |
|     NewMIs[0]->eraseFromParent();
 | |
|     NewMIs[1]->eraseFromParent();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Update register pressure for the unfolded instruction.
 | |
|   UpdateRegPressure(NewMIs[1]);
 | |
| 
 | |
|   // Otherwise we successfully unfolded a load that we can hoist.
 | |
|   MI->eraseFromParent();
 | |
|   return NewMIs[0];
 | |
| }
 | |
| 
 | |
| void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
 | |
|   for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
 | |
|     const MachineInstr *MI = &*I;
 | |
|     unsigned Opcode = MI->getOpcode();
 | |
|     DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | |
|       CI = CSEMap.find(Opcode);
 | |
|     if (CI != CSEMap.end())
 | |
|       CI->second.push_back(MI);
 | |
|     else {
 | |
|       std::vector<const MachineInstr*> CSEMIs;
 | |
|       CSEMIs.push_back(MI);
 | |
|       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const MachineInstr*
 | |
| MachineLICM::LookForDuplicate(const MachineInstr *MI,
 | |
|                               std::vector<const MachineInstr*> &PrevMIs) {
 | |
|   for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
 | |
|     const MachineInstr *PrevMI = PrevMIs[i];
 | |
|     if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
 | |
|       return PrevMI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool MachineLICM::EliminateCSE(MachineInstr *MI,
 | |
|           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
 | |
|   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
 | |
|   // the undef property onto uses.
 | |
|   if (CI == CSEMap.end() || MI->isImplicitDef())
 | |
|     return false;
 | |
| 
 | |
|   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
 | |
|     DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
 | |
| 
 | |
|     // Replace virtual registers defined by MI by their counterparts defined
 | |
|     // by Dup.
 | |
|     SmallVector<unsigned, 2> Defs;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|       // Physical registers may not differ here.
 | |
|       assert((!MO.isReg() || MO.getReg() == 0 ||
 | |
|               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
 | |
|               MO.getReg() == Dup->getOperand(i).getReg()) &&
 | |
|              "Instructions with different phys regs are not identical!");
 | |
| 
 | |
|       if (MO.isReg() && MO.isDef() &&
 | |
|           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
 | |
|         Defs.push_back(i);
 | |
|     }
 | |
| 
 | |
|     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
 | |
|     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
 | |
|       unsigned Idx = Defs[i];
 | |
|       unsigned Reg = MI->getOperand(Idx).getReg();
 | |
|       unsigned DupReg = Dup->getOperand(Idx).getReg();
 | |
|       OrigRCs.push_back(MRI->getRegClass(DupReg));
 | |
| 
 | |
|       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
 | |
|         // Restore old RCs if more than one defs.
 | |
|         for (unsigned j = 0; j != i; ++j)
 | |
|           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
 | |
|       unsigned Idx = Defs[i];
 | |
|       unsigned Reg = MI->getOperand(Idx).getReg();
 | |
|       unsigned DupReg = Dup->getOperand(Idx).getReg();
 | |
|       MRI->replaceRegWith(Reg, DupReg);
 | |
|       MRI->clearKillFlags(DupReg);
 | |
|     }
 | |
| 
 | |
|     MI->eraseFromParent();
 | |
|     ++NumCSEed;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MayCSE - Return true if the given instruction will be CSE'd if it's
 | |
| /// hoisted out of the loop.
 | |
| bool MachineLICM::MayCSE(MachineInstr *MI) {
 | |
|   unsigned Opcode = MI->getOpcode();
 | |
|   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | |
|     CI = CSEMap.find(Opcode);
 | |
|   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
 | |
|   // the undef property onto uses.
 | |
|   if (CI == CSEMap.end() || MI->isImplicitDef())
 | |
|     return false;
 | |
| 
 | |
|   return LookForDuplicate(MI, CI->second) != 0;
 | |
| }
 | |
| 
 | |
| /// Hoist - When an instruction is found to use only loop invariant operands
 | |
| /// that are safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
 | |
|   // First check whether we should hoist this instruction.
 | |
|   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
 | |
|     // If not, try unfolding a hoistable load.
 | |
|     MI = ExtractHoistableLoad(MI);
 | |
|     if (!MI) return false;
 | |
|   }
 | |
| 
 | |
|   // Now move the instructions to the predecessor, inserting it before any
 | |
|   // terminator instructions.
 | |
|   DEBUG({
 | |
|       dbgs() << "Hoisting " << *MI;
 | |
|       if (Preheader->getBasicBlock())
 | |
|         dbgs() << " to MachineBasicBlock "
 | |
|                << Preheader->getName();
 | |
|       if (MI->getParent()->getBasicBlock())
 | |
|         dbgs() << " from MachineBasicBlock "
 | |
|                << MI->getParent()->getName();
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| 
 | |
|   // If this is the first instruction being hoisted to the preheader,
 | |
|   // initialize the CSE map with potential common expressions.
 | |
|   if (FirstInLoop) {
 | |
|     InitCSEMap(Preheader);
 | |
|     FirstInLoop = false;
 | |
|   }
 | |
| 
 | |
|   // Look for opportunity to CSE the hoisted instruction.
 | |
|   unsigned Opcode = MI->getOpcode();
 | |
|   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | |
|     CI = CSEMap.find(Opcode);
 | |
|   if (!EliminateCSE(MI, CI)) {
 | |
|     // Otherwise, splice the instruction to the preheader.
 | |
|     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
 | |
| 
 | |
|     // Update register pressure for BBs from header to this block.
 | |
|     UpdateBackTraceRegPressure(MI);
 | |
| 
 | |
|     // Clear the kill flags of any register this instruction defines,
 | |
|     // since they may need to be live throughout the entire loop
 | |
|     // rather than just live for part of it.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDef() && !MO.isDead())
 | |
|         MRI->clearKillFlags(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     // Add to the CSE map.
 | |
|     if (CI != CSEMap.end())
 | |
|       CI->second.push_back(MI);
 | |
|     else {
 | |
|       std::vector<const MachineInstr*> CSEMIs;
 | |
|       CSEMIs.push_back(MI);
 | |
|       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumHoisted;
 | |
|   Changed = true;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *MachineLICM::getCurPreheader() {
 | |
|   // Determine the block to which to hoist instructions. If we can't find a
 | |
|   // suitable loop predecessor, we can't do any hoisting.
 | |
| 
 | |
|   // If we've tried to get a preheader and failed, don't try again.
 | |
|   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
 | |
|     return 0;
 | |
| 
 | |
|   if (!CurPreheader) {
 | |
|     CurPreheader = CurLoop->getLoopPreheader();
 | |
|     if (!CurPreheader) {
 | |
|       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
 | |
|       if (!Pred) {
 | |
|         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
 | |
|       if (!CurPreheader) {
 | |
|         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return CurPreheader;
 | |
| }
 |