mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99501 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			572 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			572 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAG class, which is a base class used by
 | |
| // scheduling implementation classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "InstrEmitter.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtarget.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(LoadsClustered, "Number of loads clustered together");
 | |
| 
 | |
| ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
 | |
|   : ScheduleDAG(mf) {
 | |
| }
 | |
| 
 | |
| /// Run - perform scheduling.
 | |
| ///
 | |
| void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
 | |
|                              MachineBasicBlock::iterator insertPos) {
 | |
|   DAG = dag;
 | |
|   ScheduleDAG::Run(bb, insertPos);
 | |
| }
 | |
| 
 | |
| SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
 | |
|   SUnit *SU = NewSUnit(Old->getNode());
 | |
|   SU->OrigNode = Old->OrigNode;
 | |
|   SU->Latency = Old->Latency;
 | |
|   SU->isTwoAddress = Old->isTwoAddress;
 | |
|   SU->isCommutable = Old->isCommutable;
 | |
|   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
 | |
|   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
 | |
|   Old->isCloned = true;
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| /// CheckForPhysRegDependency - Check if the dependency between def and use of
 | |
| /// a specified operand is a physical register dependency. If so, returns the
 | |
| /// register and the cost of copying the register.
 | |
| static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
 | |
|                                       const TargetRegisterInfo *TRI, 
 | |
|                                       const TargetInstrInfo *TII,
 | |
|                                       unsigned &PhysReg, int &Cost) {
 | |
|   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
 | |
|     return;
 | |
| 
 | |
|   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return;
 | |
| 
 | |
|   unsigned ResNo = User->getOperand(2).getResNo();
 | |
|   if (Def->isMachineOpcode()) {
 | |
|     const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
 | |
|     if (ResNo >= II.getNumDefs() &&
 | |
|         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
 | |
|       PhysReg = Reg;
 | |
|       const TargetRegisterClass *RC =
 | |
|         TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
 | |
|       Cost = RC->getCopyCost();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
 | |
|                      SelectionDAG *DAG) {
 | |
|   SmallVector<EVT, 4> VTs;
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
 | |
|     VTs.push_back(N->getValueType(i));
 | |
|   if (AddFlag)
 | |
|     VTs.push_back(MVT::Flag);
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(N->getOperand(i));
 | |
|   if (Flag.getNode())
 | |
|     Ops.push_back(Flag);
 | |
|   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
 | |
|   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
 | |
| /// This function finds loads of the same base and different offsets. If the
 | |
| /// offsets are not far apart (target specific), it add MVT::Flag inputs and
 | |
| /// outputs to ensure they are scheduled together and in order. This
 | |
| /// optimization may benefit some targets by improving cache locality.
 | |
| void ScheduleDAGSDNodes::ClusterNeighboringLoads() {
 | |
|   SmallPtrSet<SDNode*, 16> Visited;
 | |
|   SmallVector<int64_t, 4> Offsets;
 | |
|   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
 | |
|        E = DAG->allnodes_end(); NI != E; ++NI) {
 | |
|     SDNode *Node = &*NI;
 | |
|     if (!Node || !Node->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc = Node->getMachineOpcode();
 | |
|     const TargetInstrDesc &TID = TII->get(Opc);
 | |
|     if (!TID.mayLoad())
 | |
|       continue;
 | |
| 
 | |
|     SDNode *Chain = 0;
 | |
|     unsigned NumOps = Node->getNumOperands();
 | |
|     if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
 | |
|       Chain = Node->getOperand(NumOps-1).getNode();
 | |
|     if (!Chain)
 | |
|       continue;
 | |
| 
 | |
|     // Look for other loads of the same chain. Find loads that are loading from
 | |
|     // the same base pointer and different offsets.
 | |
|     Visited.clear();
 | |
|     Offsets.clear();
 | |
|     O2SMap.clear();
 | |
|     bool Cluster = false;
 | |
|     SDNode *Base = Node;
 | |
|     int64_t BaseOffset;
 | |
|     for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
 | |
|          I != E; ++I) {
 | |
|       SDNode *User = *I;
 | |
|       if (User == Node || !Visited.insert(User))
 | |
|         continue;
 | |
|       int64_t Offset1, Offset2;
 | |
|       if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
 | |
|           Offset1 == Offset2)
 | |
|         // FIXME: Should be ok if they addresses are identical. But earlier
 | |
|         // optimizations really should have eliminated one of the loads.
 | |
|         continue;
 | |
|       if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
 | |
|         Offsets.push_back(Offset1);
 | |
|       O2SMap.insert(std::make_pair(Offset2, User));
 | |
|       Offsets.push_back(Offset2);
 | |
|       if (Offset2 < Offset1) {
 | |
|         Base = User;
 | |
|         BaseOffset = Offset2;
 | |
|       } else {
 | |
|         BaseOffset = Offset1;
 | |
|       }
 | |
|       Cluster = true;
 | |
|     }
 | |
| 
 | |
|     if (!Cluster)
 | |
|       continue;
 | |
| 
 | |
|     // Sort them in increasing order.
 | |
|     std::sort(Offsets.begin(), Offsets.end());
 | |
| 
 | |
|     // Check if the loads are close enough.
 | |
|     SmallVector<SDNode*, 4> Loads;
 | |
|     unsigned NumLoads = 0;
 | |
|     int64_t BaseOff = Offsets[0];
 | |
|     SDNode *BaseLoad = O2SMap[BaseOff];
 | |
|     Loads.push_back(BaseLoad);
 | |
|     for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
 | |
|       int64_t Offset = Offsets[i];
 | |
|       SDNode *Load = O2SMap[Offset];
 | |
|       if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,
 | |
|                                         NumLoads))
 | |
|         break; // Stop right here. Ignore loads that are further away.
 | |
|       Loads.push_back(Load);
 | |
|       ++NumLoads;
 | |
|     }
 | |
| 
 | |
|     if (NumLoads == 0)
 | |
|       continue;
 | |
| 
 | |
|     // Cluster loads by adding MVT::Flag outputs and inputs. This also
 | |
|     // ensure they are scheduled in order of increasing addresses.
 | |
|     SDNode *Lead = Loads[0];
 | |
|     AddFlags(Lead, SDValue(0,0), true, DAG);
 | |
|     SDValue InFlag = SDValue(Lead, Lead->getNumValues()-1);
 | |
|     for (unsigned i = 1, e = Loads.size(); i != e; ++i) {
 | |
|       bool OutFlag = i < e-1;
 | |
|       SDNode *Load = Loads[i];
 | |
|       AddFlags(Load, InFlag, OutFlag, DAG);
 | |
|       if (OutFlag)
 | |
|         InFlag = SDValue(Load, Load->getNumValues()-1);
 | |
|       ++LoadsClustered;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::BuildSchedUnits() {
 | |
|   // During scheduling, the NodeId field of SDNode is used to map SDNodes
 | |
|   // to their associated SUnits by holding SUnits table indices. A value
 | |
|   // of -1 means the SDNode does not yet have an associated SUnit.
 | |
|   unsigned NumNodes = 0;
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
 | |
|        E = DAG->allnodes_end(); NI != E; ++NI) {
 | |
|     NI->setNodeId(-1);
 | |
|     ++NumNodes;
 | |
|   }
 | |
| 
 | |
|   // Reserve entries in the vector for each of the SUnits we are creating.  This
 | |
|   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | |
|   // invalidated.
 | |
|   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
 | |
|   // This is a temporary workaround.
 | |
|   SUnits.reserve(NumNodes * 2);
 | |
|   
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   bool UnitLatencies = ForceUnitLatencies();
 | |
| 
 | |
|   // Add all nodes in depth first order.
 | |
|   SmallVector<SDNode*, 64> Worklist;
 | |
|   SmallPtrSet<SDNode*, 64> Visited;
 | |
|   Worklist.push_back(DAG->getRoot().getNode());
 | |
|   Visited.insert(DAG->getRoot().getNode());
 | |
|   
 | |
|   while (!Worklist.empty()) {
 | |
|     SDNode *NI = Worklist.pop_back_val();
 | |
|     
 | |
|     // Add all operands to the worklist unless they've already been added.
 | |
|     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
 | |
|       if (Visited.insert(NI->getOperand(i).getNode()))
 | |
|         Worklist.push_back(NI->getOperand(i).getNode());
 | |
|   
 | |
|     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | |
|       continue;
 | |
|     
 | |
|     // If this node has already been processed, stop now.
 | |
|     if (NI->getNodeId() != -1) continue;
 | |
|     
 | |
|     SUnit *NodeSUnit = NewSUnit(NI);
 | |
|     
 | |
|     // See if anything is flagged to this node, if so, add them to flagged
 | |
|     // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | |
|     // are required to be the last operand and result of a node.
 | |
|     
 | |
|     // Scan up to find flagged preds.
 | |
|     SDNode *N = NI;
 | |
|     while (N->getNumOperands() &&
 | |
|            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | |
|       N = N->getOperand(N->getNumOperands()-1).getNode();
 | |
|       assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|       N->setNodeId(NodeSUnit->NodeNum);
 | |
|     }
 | |
|     
 | |
|     // Scan down to find any flagged succs.
 | |
|     N = NI;
 | |
|     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | |
|       SDValue FlagVal(N, N->getNumValues()-1);
 | |
|       
 | |
|       // There are either zero or one users of the Flag result.
 | |
|       bool HasFlagUse = false;
 | |
|       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | |
|            UI != E; ++UI)
 | |
|         if (FlagVal.isOperandOf(*UI)) {
 | |
|           HasFlagUse = true;
 | |
|           assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|           N->setNodeId(NodeSUnit->NodeNum);
 | |
|           N = *UI;
 | |
|           break;
 | |
|         }
 | |
|       if (!HasFlagUse) break;
 | |
|     }
 | |
|     
 | |
|     // If there are flag operands involved, N is now the bottom-most node
 | |
|     // of the sequence of nodes that are flagged together.
 | |
|     // Update the SUnit.
 | |
|     NodeSUnit->setNode(N);
 | |
|     assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|     N->setNodeId(NodeSUnit->NodeNum);
 | |
| 
 | |
|     // Assign the Latency field of NodeSUnit using target-provided information.
 | |
|     if (UnitLatencies)
 | |
|       NodeSUnit->Latency = 1;
 | |
|     else
 | |
|       ComputeLatency(NodeSUnit);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::AddSchedEdges() {
 | |
|   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   bool UnitLatencies = ForceUnitLatencies();
 | |
| 
 | |
|   // Pass 2: add the preds, succs, etc.
 | |
|   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | |
|     SUnit *SU = &SUnits[su];
 | |
|     SDNode *MainNode = SU->getNode();
 | |
|     
 | |
|     if (MainNode->isMachineOpcode()) {
 | |
|       unsigned Opc = MainNode->getMachineOpcode();
 | |
|       const TargetInstrDesc &TID = TII->get(Opc);
 | |
|       for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | |
|         if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | |
|           SU->isTwoAddress = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (TID.isCommutable())
 | |
|         SU->isCommutable = true;
 | |
|     }
 | |
|     
 | |
|     // Find all predecessors and successors of the group.
 | |
|     for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
 | |
|       if (N->isMachineOpcode() &&
 | |
|           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
 | |
|         SU->hasPhysRegClobbers = true;
 | |
|         unsigned NumUsed = InstrEmitter::CountResults(N);
 | |
|         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
 | |
|           --NumUsed;    // Skip over unused values at the end.
 | |
|         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
 | |
|           SU->hasPhysRegDefs = true;
 | |
|       }
 | |
|       
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|         SDNode *OpN = N->getOperand(i).getNode();
 | |
|         if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | |
|         SUnit *OpSU = &SUnits[OpN->getNodeId()];
 | |
|         assert(OpSU && "Node has no SUnit!");
 | |
|         if (OpSU == SU) continue;           // In the same group.
 | |
| 
 | |
|         EVT OpVT = N->getOperand(i).getValueType();
 | |
|         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | |
|         bool isChain = OpVT == MVT::Other;
 | |
| 
 | |
|         unsigned PhysReg = 0;
 | |
|         int Cost = 1;
 | |
|         // Determine if this is a physical register dependency.
 | |
|         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
 | |
|         assert((PhysReg == 0 || !isChain) &&
 | |
|                "Chain dependence via physreg data?");
 | |
|         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
 | |
|         // emits a copy from the physical register to a virtual register unless
 | |
|         // it requires a cross class copy (cost < 0). That means we are only
 | |
|         // treating "expensive to copy" register dependency as physical register
 | |
|         // dependency. This may change in the future though.
 | |
|         if (Cost >= 0)
 | |
|           PhysReg = 0;
 | |
| 
 | |
|         const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
 | |
|                                OpSU->Latency, PhysReg);
 | |
|         if (!isChain && !UnitLatencies) {
 | |
|           ComputeOperandLatency(OpSU, SU, (SDep &)dep);
 | |
|           ST.adjustSchedDependency(OpSU, SU, (SDep &)dep);
 | |
|         }
 | |
| 
 | |
|         SU->addPred(dep);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
 | |
| /// are input.  This SUnit graph is similar to the SelectionDAG, but
 | |
| /// excludes nodes that aren't interesting to scheduling, and represents
 | |
| /// flagged together nodes with a single SUnit.
 | |
| void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
 | |
|   // Cluster loads from "near" addresses into combined SUnits.
 | |
|   ClusterNeighboringLoads();
 | |
|   // Populate the SUnits array.
 | |
|   BuildSchedUnits();
 | |
|   // Compute all the scheduling dependencies between nodes.
 | |
|   AddSchedEdges();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
 | |
|   const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | |
|   
 | |
|   // Compute the latency for the node.  We use the sum of the latencies for
 | |
|   // all nodes flagged together into this SUnit.
 | |
|   SU->Latency = 0;
 | |
|   for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
 | |
|     if (N->isMachineOpcode()) {
 | |
|       SU->Latency += InstrItins.
 | |
|         getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
 | |
|   if (!SU->getNode()) {
 | |
|     dbgs() << "PHYS REG COPY\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SU->getNode()->dump(DAG);
 | |
|   dbgs() << "\n";
 | |
|   SmallVector<SDNode *, 4> FlaggedNodes;
 | |
|   for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
 | |
|     FlaggedNodes.push_back(N);
 | |
|   while (!FlaggedNodes.empty()) {
 | |
|     dbgs() << "    ";
 | |
|     FlaggedNodes.back()->dump(DAG);
 | |
|     dbgs() << "\n";
 | |
|     FlaggedNodes.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct OrderSorter {
 | |
|     bool operator()(const std::pair<unsigned, MachineInstr*> &A,
 | |
|                     const std::pair<unsigned, MachineInstr*> &B) {
 | |
|       return A.first < B.first;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // ProcessSourceNode - Process nodes with source order numbers. These are added
 | |
| // to a vector which EmitSchedule use to determine how to insert dbg_value
 | |
| // instructions in the right order.
 | |
| static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
 | |
|                            InstrEmitter &Emitter,
 | |
|                            DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM,
 | |
|                            DenseMap<SDValue, unsigned> &VRBaseMap,
 | |
|                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
 | |
|                            SmallSet<unsigned, 8> &Seen) {
 | |
|   unsigned Order = DAG->GetOrdering(N);
 | |
|   if (!Order || !Seen.insert(Order))
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *BB = Emitter.getBlock();
 | |
|   if (BB->empty() || BB->back().isPHI()) {
 | |
|     // Did not insert any instruction.
 | |
|     Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Orders.push_back(std::make_pair(Order, &BB->back()));
 | |
|   if (!N->getHasDebugValue())
 | |
|     return;
 | |
|   // Opportunistically insert immediate dbg_value uses, i.e. those with source
 | |
|   // order number right after the N.
 | |
|   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
 | |
|   SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
 | |
|   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
 | |
|     if (DVs[i]->isInvalidated())
 | |
|       continue;
 | |
|     unsigned DVOrder = DVs[i]->getOrder();
 | |
|     if (DVOrder == ++Order) {
 | |
|       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], BB, VRBaseMap, EM);
 | |
|       Orders.push_back(std::make_pair(DVOrder, DbgMI));
 | |
|       BB->insert(InsertPos, DbgMI);
 | |
|       DVs[i]->setIsInvalidated();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitSchedule - Emit the machine code in scheduled order.
 | |
| MachineBasicBlock *ScheduleDAGSDNodes::
 | |
| EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
 | |
|   InstrEmitter Emitter(BB, InsertPos);
 | |
|   DenseMap<SDValue, unsigned> VRBaseMap;
 | |
|   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
 | |
|   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
 | |
|   SmallSet<unsigned, 8> Seen;
 | |
|   bool HasDbg = DAG->hasDebugValues();
 | |
| 
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) {
 | |
|       // Null SUnit* is a noop.
 | |
|       EmitNoop();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For pre-regalloc scheduling, create instructions corresponding to the
 | |
|     // SDNode and any flagged SDNodes and append them to the block.
 | |
|     if (!SU->getNode()) {
 | |
|       // Emit a copy.
 | |
|       EmitPhysRegCopy(SU, CopyVRBaseMap);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDNode *, 4> FlaggedNodes;
 | |
|     for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
 | |
|          N = N->getFlaggedNode())
 | |
|       FlaggedNodes.push_back(N);
 | |
|     while (!FlaggedNodes.empty()) {
 | |
|       SDNode *N = FlaggedNodes.back();
 | |
|       Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
 | |
|                        VRBaseMap, EM);
 | |
|       // Remember the the source order of the inserted instruction.
 | |
|       if (HasDbg)
 | |
|         ProcessSourceNode(N, DAG, Emitter, EM, VRBaseMap, Orders, Seen);
 | |
|       FlaggedNodes.pop_back();
 | |
|     }
 | |
|     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
 | |
|                      VRBaseMap, EM);
 | |
|     // Remember the the source order of the inserted instruction.
 | |
|     if (HasDbg)
 | |
|       ProcessSourceNode(SU->getNode(), DAG, Emitter, EM, VRBaseMap, Orders,
 | |
|                         Seen);
 | |
|   }
 | |
| 
 | |
|   // Insert all the dbg_value which have not already been inserted in source
 | |
|   // order sequence.
 | |
|   if (HasDbg) {
 | |
|     MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin();
 | |
|     while (BBBegin != BB->end() && BBBegin->isPHI())
 | |
|       ++BBBegin;
 | |
| 
 | |
|     // Sort the source order instructions and use the order to insert debug
 | |
|     // values.
 | |
|     std::sort(Orders.begin(), Orders.end(), OrderSorter());
 | |
| 
 | |
|     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
 | |
|     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
 | |
|     // Now emit the rest according to source order.
 | |
|     unsigned LastOrder = 0;
 | |
|     MachineInstr *LastMI = 0;
 | |
|     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
 | |
|       unsigned Order = Orders[i].first;
 | |
|       MachineInstr *MI = Orders[i].second;
 | |
|       // Insert all SDDbgValue's whose order(s) are before "Order".
 | |
|       if (!MI)
 | |
|         continue;
 | |
|       MachineBasicBlock *MIBB = MI->getParent();
 | |
| #ifndef NDEBUG
 | |
|       unsigned LastDIOrder = 0;
 | |
| #endif
 | |
|       for (; DI != DE &&
 | |
|              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
 | |
| #ifndef NDEBUG
 | |
|         assert((*DI)->getOrder() >= LastDIOrder &&
 | |
|                "SDDbgValue nodes must be in source order!");
 | |
|         LastDIOrder = (*DI)->getOrder();
 | |
| #endif
 | |
|         if ((*DI)->isInvalidated())
 | |
|           continue;
 | |
|         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, MIBB, VRBaseMap, EM);
 | |
|         if (!LastOrder)
 | |
|           // Insert to start of the BB (after PHIs).
 | |
|           BB->insert(BBBegin, DbgMI);
 | |
|         else {
 | |
|           MachineBasicBlock::iterator Pos = MI;
 | |
|           MIBB->insert(llvm::next(Pos), DbgMI);
 | |
|         }
 | |
|       }
 | |
|       LastOrder = Order;
 | |
|       LastMI = MI;
 | |
|     }
 | |
|     // Add trailing DbgValue's before the terminator. FIXME: May want to add
 | |
|     // some of them before one or more conditional branches?
 | |
|     while (DI != DE) {
 | |
|       MachineBasicBlock *InsertBB = Emitter.getBlock();
 | |
|       MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
 | |
|       if (!(*DI)->isInvalidated()) {
 | |
|         MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, InsertBB, VRBaseMap, EM);
 | |
|         InsertBB->insert(Pos, DbgMI);
 | |
|       }
 | |
|       ++DI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BB = Emitter.getBlock();
 | |
|   InsertPos = Emitter.getInsertPos();
 | |
|   return BB;
 | |
| }
 |