llvm-6502/lib/Transforms/IPO/OldPoolAllocate.cpp
2002-04-01 01:26:53 +00:00

896 lines
34 KiB
C++

//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
//
// This transform changes programs so that disjoint data structures are
// allocated out of different pools of memory, increasing locality and shrinking
// pointer size.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PoolAllocate.h"
#include "llvm/Transforms/CloneFunction.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DataStructureGraph.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/ConstantVals.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/DepthFirstIterator.h"
#include "Support/STLExtras.h"
#include <algorithm>
// FIXME: This is dependant on the sparc backend layout conventions!!
static TargetData TargetData("test");
namespace {
// ScalarInfo - Information about an LLVM value that we know points to some
// datastructure we are processing.
//
struct ScalarInfo {
Value *Val; // Scalar value in Current Function
DSNode *Node; // DataStructure node it points to
Value *PoolHandle; // PoolTy* LLVM value
ScalarInfo(Value *V, DSNode *N, Value *PH)
: Val(V), Node(N), PoolHandle(PH) {
assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
}
};
// CallArgInfo - Information on one operand for a call that got expanded.
struct CallArgInfo {
int ArgNo; // Call argument number this corresponds to
DSNode *Node; // The graph node for the pool
Value *PoolHandle; // The LLVM value that is the pool pointer
CallArgInfo(int Arg, DSNode *N, Value *PH)
: ArgNo(Arg), Node(N), PoolHandle(PH) {
assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
}
// operator< when sorting, sort by argument number.
bool operator<(const CallArgInfo &CAI) const {
return ArgNo < CAI.ArgNo;
}
};
// TransformFunctionInfo - Information about how a function eeds to be
// transformed.
//
struct TransformFunctionInfo {
// ArgInfo - Maintain information about the arguments that need to be
// processed. Each pair corresponds to an argument (whose number is the
// first element) that needs to have a pool pointer (the second element)
// passed into the transformed function with it.
//
// As a special case, "argument" number -1 corresponds to the return value.
//
vector<CallArgInfo> ArgInfo;
// Func - The function to be transformed...
Function *Func;
// The call instruction that is used to map CallArgInfo PoolHandle values
// into the new function values.
CallInst *Call;
// default ctor...
TransformFunctionInfo() : Func(0), Call(0) {}
bool operator<(const TransformFunctionInfo &TFI) const {
if (Func < TFI.Func) return true;
if (Func > TFI.Func) return false;
if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
return ArgInfo < TFI.ArgInfo;
}
void finalizeConstruction() {
// Sort the vector so that the return value is first, followed by the
// argument records, in order. Note that this must be a stable sort so
// that the entries with the same sorting criteria (ie they are multiple
// pool entries for the same argument) are kept in depth first order.
stable_sort(ArgInfo.begin(), ArgInfo.end());
}
};
// Define the pass class that we implement...
class PoolAllocate : public Pass {
// PoolTy - The type of a scalar value that contains a pool pointer.
PointerType *PoolTy;
public:
PoolAllocate() {
// Initialize the PoolTy instance variable, since the type never changes.
vector<const Type*> PoolElements;
PoolElements.push_back(PointerType::get(Type::SByteTy));
PoolElements.push_back(Type::UIntTy);
PoolTy = PointerType::get(StructType::get(PoolElements));
// PoolTy = { sbyte*, uint }*
CurModule = 0; DS = 0;
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
}
bool run(Module *M);
// getAnalysisUsageInfo - This function requires data structure information
// to be able to see what is pool allocatable.
//
virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
Pass::AnalysisSet &,Pass::AnalysisSet &) {
Required.push_back(DataStructure::ID);
}
public:
// CurModule - The module being processed.
Module *CurModule;
// DS - The data structure graph for the module being processed.
DataStructure *DS;
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
// The map of already transformed functions... note that the keys of this
// map do not have meaningful values for 'Call' or the 'PoolHandle' elements
// of the ArgInfo elements.
//
map<TransformFunctionInfo, Function*> TransformedFunctions;
// getTransformedFunction - Get a transformed function, or return null if
// the function specified hasn't been transformed yet.
//
Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
map<TransformFunctionInfo, Function*>::const_iterator I =
TransformedFunctions.find(TFI);
if (I != TransformedFunctions.end()) return I->second;
return 0;
}
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void addPoolPrototypes(Module *M);
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
// PoolDescriptors map.
//
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
map<DSNode*, Value*> &PoolDescriptors);
// processFunction - Convert a function to use pool allocation where
// available.
//
bool processFunction(Function *F);
// transformFunctionBody - This transforms the instruction in 'F' to use the
// pools specified in PoolDescriptors when modifying data structure nodes
// specified in the PoolDescriptors map. IPFGraph is the closed data
// structure graph for F, of which the PoolDescriptor nodes come from.
//
void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
map<DSNode*, Value*> &PoolDescriptors);
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
// The nodes in the TransformFunctionInfo come out of callers data structure
// graph.
//
void transformFunction(TransformFunctionInfo &TFI,
FunctionDSGraph &CallerIPGraph);
};
}
// isNotPoolableAlloc - This is a predicate that returns true if the specified
// allocation node in a data structure graph is eligable for pool allocation.
//
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
MallocInst *MI = cast<MallocInst>(DS->getAllocation());
if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
return true; // Do not allow variable size allocations...
return false;
}
// processFunction - Convert a function to use pool allocation where
// available.
//
bool PoolAllocate::processFunction(Function *F) {
// Get the closed datastructure graph for the current function... if there are
// any allocations in this graph that are not escaping, we need to pool
// allocate them here!
//
FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
// Get all of the allocations that do not escape the current function. Since
// they are still live (they exist in the graph at all), this means we must
// have scalar references to these nodes, but the scalars are never returned.
//
vector<AllocDSNode*> Allocs;
IPGraph.getNonEscapingAllocations(Allocs);
// Filter out allocations that we cannot handle. Currently, this includes
// variable sized array allocations and alloca's (which we do not want to
// pool allocate)
//
Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
Allocs.end());
if (Allocs.empty()) return false; // Nothing to do.
// Insert instructions into the function we are processing to create all of
// the memory pool objects themselves. This also inserts destruction code.
// This fills in the PoolDescriptors map to associate the alloc node with the
// allocation of the memory pool corresponding to it.
//
map<DSNode*, Value*> PoolDescriptors;
CreatePools(F, Allocs, PoolDescriptors);
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
transformFunctionBody(F, IPGraph, PoolDescriptors);
return true;
}
class FunctionBodyTransformer : public InstVisitor<FunctionBodyTransformer> {
PoolAllocate &PoolAllocator;
vector<ScalarInfo> &Scalars;
map<CallInst*, TransformFunctionInfo> &CallMap;
const ScalarInfo &getScalar(const Value *V) {
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
if (Scalars[i].Val == V) return Scalars[i];
assert(0 && "Scalar not found in getScalar!");
abort();
return Scalars[0];
}
// updateScalars - Map the scalars array entries that look like 'From' to look
// like 'To'.
//
void updateScalars(Value *From, Value *To) {
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
if (Scalars[i].Val == From) Scalars[i].Val = To;
}
public:
FunctionBodyTransformer(PoolAllocate &PA, vector<ScalarInfo> &S,
map<CallInst*, TransformFunctionInfo> &C)
: PoolAllocator(PA), Scalars(S), CallMap(C) {}
void visitMemAccessInst(MemAccessInst *MAI) {
// Don't do anything to load, store, or GEP yet...
}
// Convert a malloc instruction into a call to poolalloc
void visitMallocInst(MallocInst *I) {
const ScalarInfo &SC = getScalar(I);
BasicBlock *BB = I->getParent();
BasicBlock::iterator MI = find(BB->begin(), BB->end(), I);
BB->getInstList().remove(MI); // Remove the Malloc instruction from the BB
// Create a new call to poolalloc before the malloc instruction
vector<Value*> Args;
Args.push_back(SC.PoolHandle);
CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
MI = BB->getInstList().insert(MI, Call)+1;
// If the type desired is not void*, cast it now...
Value *Ptr = Call;
if (Call->getType() != I->getType()) {
CastInst *CI = new CastInst(Ptr, I->getType(), I->getName());
BB->getInstList().insert(MI, CI);
Ptr = CI;
}
// Change everything that used the malloc to now use the pool alloc...
I->replaceAllUsesWith(Ptr);
// Update the scalars array...
updateScalars(I, Ptr);
// Delete the instruction now.
delete I;
}
// Convert the free instruction into a call to poolfree
void visitFreeInst(FreeInst *I) {
Value *Ptr = I->getOperand(0);
const ScalarInfo &SC = getScalar(Ptr);
BasicBlock *BB = I->getParent();
BasicBlock::iterator FI = find(BB->begin(), BB->end(), I);
// If the value is not an sbyte*, convert it now!
if (Ptr->getType() != PointerType::get(Type::SByteTy)) {
CastInst *CI = new CastInst(Ptr, PointerType::get(Type::SByteTy),
Ptr->getName());
FI = BB->getInstList().insert(FI, CI)+1;
Ptr = CI;
}
// Create a new call to poolfree before the free instruction
vector<Value*> Args;
Args.push_back(SC.PoolHandle);
Args.push_back(Ptr);
CallInst *Call = new CallInst(PoolAllocator.PoolFree, Args);
FI = BB->getInstList().insert(FI, Call)+1;
// Remove the old free instruction...
delete BB->getInstList().remove(FI);
}
// visitCallInst - Create a new call instruction with the extra arguments for
// all of the memory pools that the call needs.
//
void visitCallInst(CallInst *I) {
TransformFunctionInfo &TI = CallMap[I];
BasicBlock *BB = I->getParent();
BasicBlock::iterator CI = find(BB->begin(), BB->end(), I);
BB->getInstList().remove(CI); // Remove the old call instruction
// Start with all of the old arguments...
vector<Value*> Args(I->op_begin()+1, I->op_end());
// Add all of the pool arguments...
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
Args.push_back(TI.ArgInfo[i].PoolHandle);
Function *NF = PoolAllocator.getTransformedFunction(TI);
CallInst *NewCall = new CallInst(NF, Args, I->getName());
BB->getInstList().insert(CI, NewCall);
// Change everything that used the malloc to now use the pool alloc...
if (I->getType() != Type::VoidTy) {
I->replaceAllUsesWith(NewCall);
// Update the scalars array...
updateScalars(I, NewCall);
}
delete I; // Delete the old call instruction now...
}
void visitPHINode(PHINode *PN) {
// Handle PHI Node
}
void visitReturnInst(ReturnInst *I) {
// Nothing of interest
}
void visitSetCondInst(SetCondInst *SCI) {
// hrm, notice a pattern?
}
void visitInstruction(Instruction *I) {
cerr << "Unknown instruction to FunctionBodyTransformer:\n";
I->dump();
}
};
static void addCallInfo(DataStructure *DS,
TransformFunctionInfo &TFI, CallInst *CI, int Arg,
DSNode *GraphNode,
map<DSNode*, Value*> &PoolDescriptors) {
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
"Function call record should always call the same function!");
assert(TFI.Call == 0 || TFI.Call == CI &&
"Call element already filled in with different value!");
TFI.Func = CI->getCalledFunction();
TFI.Call = CI;
//FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(TFI.Func);
// For now, add the entire graph that is pointed to by the call argument.
// This graph can and should be pruned to only what the function itself will
// use, because often this will be a dramatically smaller subset of what we
// are providing.
//
for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
I != E; ++I) {
TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
}
}
// transformFunctionBody - This transforms the instruction in 'F' to use the
// pools specified in PoolDescriptors when modifying data structure nodes
// specified in the PoolDescriptors map. Specifically, scalar values specified
// in the Scalars vector must be remapped. IPFGraph is the closed data
// structure graph for F, of which the PoolDescriptor nodes come from.
//
void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
map<DSNode*, Value*> &PoolDescriptors) {
// Loop through the value map looking for scalars that refer to nonescaping
// allocations. Add them to the Scalars vector. Note that we may have
// multiple entries in the Scalars vector for each value if it points to more
// than one object.
//
map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
vector<ScalarInfo> Scalars;
cerr << "Building scalar map:\n";
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
cerr << "Scalar Mapping from:"; I->first->dump();
cerr << "\nScalar Mapping to: "; PVS.print(cerr);
// Check to see if the scalar points to a data structure node...
for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
if (AI != PoolDescriptors.end()) // Add it to the list of scalars
Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
}
}
cerr << "\nIn '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Scalars[i].Val->dump();
// CallMap - Contain an entry for every call instruction that needs to be
// transformed. Each entry in the map contains information about what we need
// to do to each call site to change it to work.
//
map<CallInst*, TransformFunctionInfo> CallMap;
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
Value *ScalarVal = Scalars[i].Val;
// Check to see if the scalar _IS_ a call...
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
// If so, add information about the pool it will be returning...
addCallInfo(DS, CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
// Check to see if the scalar is an operand to a call...
for (Value::use_iterator UI = ScalarVal->use_begin(),
UE = ScalarVal->use_end(); UI != UE; ++UI) {
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
// Find out which operand this is to the call instruction...
User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
assert(OI != CI->op_end() && "Call on use list but not an operand!?");
assert(OI != CI->op_begin() && "Pointer operand is call destination?");
// FIXME: This is broken if the same pointer is passed to a call more
// than once! It will get multiple entries for the first pointer.
// Add the operand number and pool handle to the call table...
addCallInfo(DS, CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
PoolDescriptors);
}
}
}
// Print out call map...
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
I != CallMap.end(); ++I) {
cerr << "\nFor call: ";
I->first->dump();
I->second.finalizeConstruction();
cerr << I->second.Func->getName() << " must pass pool pointer for args #";
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
cerr << I->second.ArgInfo[i].ArgNo << ", ";
cerr << "\n";
}
// Loop through all of the call nodes, recursively creating the new functions
// that we want to call... This uses a map to prevent infinite recursion and
// to avoid duplicating functions unneccesarily.
//
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
E = CallMap.end(); I != E; ++I) {
// Make sure the entries are sorted.
I->second.finalizeConstruction();
// Transform all of the functions we need, or at least ensure there is a
// cached version available.
transformFunction(I->second, IPFGraph);
}
// Now that all of the functions that we want to call are available, transform
// the local method so that it uses the pools locally and passes them to the
// functions that we just hacked up.
//
// First step, find the instructions to be modified.
vector<Instruction*> InstToFix;
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
Value *ScalarVal = Scalars[i].Val;
// Check to see if the scalar _IS_ an instruction. If so, it is involved.
if (Instruction *Inst = dyn_cast<Instruction>(ScalarVal))
InstToFix.push_back(Inst);
// All all of the instructions that use the scalar as an operand...
for (Value::use_iterator UI = ScalarVal->use_begin(),
UE = ScalarVal->use_end(); UI != UE; ++UI)
InstToFix.push_back(dyn_cast<Instruction>(*UI));
}
// Eliminate duplicates by sorting, then removing equal neighbors.
sort(InstToFix.begin(), InstToFix.end());
InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end());
// Use a FunctionBodyTransformer to transform all of the involved instructions
FunctionBodyTransformer FBT(*this, Scalars, CallMap);
for (unsigned i = 0, e = InstToFix.size(); i != e; ++i)
FBT.visit(InstToFix[i]);
// Since we have liberally hacked the function to pieces, we want to inform
// the datastructure pass that its internal representation is out of date.
//
DS->invalidateFunction(F);
}
static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
map<DSNode*, PointerValSet> &NodeMapping) {
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
DSNode *DestNode = PVS[i].Node;
// Loop over all of the outgoing links in the mapped graph
for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
// Add all of the node mappings now!
for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
}
}
}
}
// CalculateNodeMapping - There is a partial isomorphism between the graph
// passed in and the graph that is actually used by the function. We need to
// figure out what this mapping is so that we can transformFunctionBody the
// instructions in the function itself. Note that every node in the graph that
// we are interested in must be both in the local graph of the called function,
// and in the local graph of the calling function. Because of this, we only
// define the mapping for these nodes [conveniently these are the only nodes we
// CAN define a mapping for...]
//
// The roots of the graph that we are transforming is rooted in the arguments
// passed into the function from the caller. This is where we start our
// mapping calculation.
//
// The NodeMapping calculated maps from the callers graph to the called graph.
//
static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
FunctionDSGraph &CallerGraph,
FunctionDSGraph &CalledGraph,
map<DSNode*, PointerValSet> &NodeMapping) {
int LastArgNo = -2;
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
// Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
// corresponds to...
//
// Only consider first node of sequence. Extra nodes may may be added
// to the TFI if the data structure requires more nodes than just the
// one the argument points to. We are only interested in the one the
// argument points to though.
//
if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
if (TFI.ArgInfo[i].ArgNo == -1) {
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
NodeMapping);
} else {
// Figure out which node argument # ArgNo points to in the called graph.
Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
NodeMapping);
}
LastArgNo = TFI.ArgInfo[i].ArgNo;
}
}
}
// transformFunction - Transform the specified function the specified way. It
// we have already transformed that function that way, don't do anything. The
// nodes in the TransformFunctionInfo come out of callers data structure graph.
//
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
FunctionDSGraph &CallerIPGraph) {
if (getTransformedFunction(TFI)) return; // Function xformation already done?
cerr << "**********\nEntering transformFunction for "
<< TFI.Func->getName() << ":\n";
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n";
cerr << "\n";
const FunctionType *OldFuncType = TFI.Func->getFunctionType();
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
// Build the type for the new function that we are transforming
vector<const Type*> ArgTys;
for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
ArgTys.push_back(OldFuncType->getParamType(i));
// Add one pool pointer for every argument that needs to be supplemented.
ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy);
// Build the new function type...
const // FIXME when types are not const
FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(),
ArgTys,OldFuncType->isVarArg());
// The new function is internal, because we know that only we can call it.
// This also helps subsequent IP transformations to eliminate duplicated pool
// pointers. [in the future when they are implemented].
//
Function *NewFunc = new Function(NewFuncType, true,
TFI.Func->getName()+".poolxform");
CurModule->getFunctionList().push_back(NewFunc);
// Add the newly formed function to the TransformedFunctions table so that
// infinite recursion does not occur!
//
TransformedFunctions[TFI] = NewFunc;
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
const FunctionArgument *OFA = TFI.Func->getArgumentList()[i];
FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
}
// Now add all of the arguments corresponding to pools passed in...
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
string Name;
if (TFI.ArgInfo[i].ArgNo == -1)
Name = "retpool";
else
Name = ArgMap[TFI.ArgInfo[i].ArgNo]->getName(); // Get the arg name
FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool");
NewFunc->getArgumentList().push_back(NFA);
}
// Now clone the body of the old function into the new function...
CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
// Okay, now we have a function that is identical to the old one, except that
// it has extra arguments for the pools coming in. Now we have to get the
// data structure graph for the function we are replacing, and figure out how
// our graph nodes map to the graph nodes in the dest function.
//
FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc);
// NodeMapping - Multimap from callers graph to called graph.
//
map<DSNode*, PointerValSet> NodeMapping;
CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph,
NodeMapping);
// Print out the node mapping...
cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n";
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
I != NodeMapping.end(); ++I) {
cerr << "Map: "; I->first->print(cerr);
cerr << "To: "; I->second.print(cerr);
cerr << "\n";
}
// Fill in the PoolDescriptor information for the transformed function so that
// it can determine which value holds the pool descriptor for each data
// structure node that it accesses.
//
map<DSNode*, Value*> PoolDescriptors;
cerr << "\nCalculating the pool descriptor map:\n";
// All of the pool descriptors must be passed in as arguments...
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
DSNode *CallerNode = TFI.ArgInfo[i].Node;
Value *CallerPool = TFI.ArgInfo[i].PoolHandle;
cerr << "Mapped caller node: "; CallerNode->print(cerr);
cerr << "Mapped caller pool: "; CallerPool->dump();
// Calculate the argument number that the pool is to the function call...
// The call instruction should not have the pool operands added yet.
unsigned ArgNo = TFI.Call->getNumOperands()-1+i;
cerr << "Should be argument #: " << ArgNo << "[i = " << i << "]\n";
assert(ArgNo < NewFunc->getArgumentList().size() &&
"Call already has pool arguments added??");
// Map the pool argument into the called function...
Value *CalleePool = NewFunc->getArgumentList()[ArgNo];
// Map the DSNode into the callee's DSGraph
const PointerValSet &CalleeNodes = NodeMapping[CallerNode];
for (unsigned n = 0, ne = CalleeNodes.size(); n != ne; ++n) {
assert(CalleeNodes[n].Index == 0 && "Indexed node not handled yet!");
DSNode *CalleeNode = CalleeNodes[n].Node;
cerr << "*** to callee node: "; CalleeNode->print(cerr);
cerr << "*** to callee pool: "; CalleePool->dump();
cerr << "\n";
assert(CalleeNode && CalleePool && "Invalid nodes!");
Value *&PV = PoolDescriptors[CalleeNode];
//assert((PV == 0 || PV == CalleePool) && "Invalid node remapping!");
PV = CalleePool; // Update the pool descriptor map!
}
}
// We must destroy the node mapping so that we don't have latent references
// into the data structure graph for the new function. Otherwise we get
// assertion failures when transformFunctionBody tries to invalidate the
// graph.
//
NodeMapping.clear();
// Now that we know everything we need about the function, transform the body
// now!
//
transformFunctionBody(NewFunc, DSGraph, PoolDescriptors);
cerr << "Function after transformation:\n";
NewFunc->dump();
}
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
// PoolDescriptors vector.
//
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
map<DSNode*, Value*> &PoolDescriptors) {
// FIXME: This should use an IP version of the UnifyAllExits pass!
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (isa<ReturnInst>((*I)->getTerminator()))
ReturnNodes.push_back(*I);
// Create the code that goes in the entry and exit nodes for the method...
vector<Instruction*> EntryNodeInsts;
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
// Add an allocation and a free for each pool...
AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
EntryNodeInsts.push_back(PoolAlloc);
PoolDescriptors[Allocs[i]] = PoolAlloc; // Keep track of pool allocas
AllocationInst *AI = Allocs[i]->getAllocation();
// Initialize the pool. We need to know how big each allocation is. For
// our purposes here, we assume we are allocating a scalar, or array of
// constant size.
//
unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType());
ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
vector<Value*> Args;
Args.push_back(PoolAlloc); // Pool to initialize
Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
// Destroy the pool...
Args.pop_back();
for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
Instruction *Destroy = new CallInst(PoolDestroy, Args);
// Insert it before the return instruction...
BasicBlock *RetNode = ReturnNodes[EN];
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
}
}
// Insert the entry node code into the entry block...
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
EntryNodeInsts.begin(),
EntryNodeInsts.end());
}
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
// Get PoolInit function...
vector<const Type*> Args;
Args.push_back(PoolTy); // Pool to initialize
Args.push_back(Type::UIntTy); // Num bytes per element
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
// Get pooldestroy function...
Args.pop_back(); // Only takes a pool...
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
const Type *PtrVoid = PointerType::get(Type::SByteTy);
// Get the poolalloc function...
FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
// Get the poolfree function...
Args.push_back(PtrVoid);
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
// Add the %PoolTy type to the symbol table of the module...
M->addTypeName("PoolTy", PoolTy->getElementType());
}
bool PoolAllocate::run(Module *M) {
addPoolPrototypes(M);
CurModule = M;
DS = &getAnalysis<DataStructure>();
bool Changed = false;
// We cannot use an iterator here because it will get invalidated when we add
// functions to the module later...
for (unsigned i = 0; i != M->size(); ++i)
if (!M->getFunctionList()[i]->isExternal()) {
Changed |= processFunction(M->getFunctionList()[i]);
if (Changed) {
cerr << "Only processing one function\n";
break;
}
}
CurModule = 0;
DS = 0;
return false;
}
// createPoolAllocatePass - Global function to access the functionality of this
// pass...
//
Pass *createPoolAllocatePass() { return new PoolAllocate(); }