mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-29 10:32:47 +00:00
873c5e7859
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8129 91177308-0d34-0410-b5e6-96231b3b80d8
830 lines
35 KiB
C++
830 lines
35 KiB
C++
//===- Linker.cpp - Module Linker Implementation --------------------------===//
|
|
//
|
|
// This file implements the LLVM module linker.
|
|
//
|
|
// Specifically, this:
|
|
// * Merges global variables between the two modules
|
|
// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
|
|
// * Merges functions between two modules
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Linker.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Constants.h"
|
|
|
|
// Error - Simple wrapper function to conditionally assign to E and return true.
|
|
// This just makes error return conditions a little bit simpler...
|
|
//
|
|
static inline bool Error(std::string *E, const std::string &Message) {
|
|
if (E) *E = Message;
|
|
return true;
|
|
}
|
|
|
|
// ResolveTypes - Attempt to link the two specified types together. Return true
|
|
// if there is an error and they cannot yet be linked.
|
|
//
|
|
static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
|
|
SymbolTable *DestST, const std::string &Name) {
|
|
if (DestTy == SrcTy) return false; // If already equal, noop
|
|
|
|
// Does the type already exist in the module?
|
|
if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists...
|
|
if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
|
|
const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
|
|
} else {
|
|
return true; // Cannot link types... neither is opaque and not-equal
|
|
}
|
|
} else { // Type not in dest module. Add it now.
|
|
if (DestTy) // Type _is_ in module, just opaque...
|
|
const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
|
|
->refineAbstractTypeTo(SrcTy);
|
|
else if (!Name.empty())
|
|
DestST->insert(Name, const_cast<Type*>(SrcTy));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const FunctionType *getFT(const PATypeHolder &TH) {
|
|
return cast<FunctionType>(TH.get());
|
|
}
|
|
static const StructType *getST(const PATypeHolder &TH) {
|
|
return cast<StructType>(TH.get());
|
|
}
|
|
|
|
// RecursiveResolveTypes - This is just like ResolveTypes, except that it
|
|
// recurses down into derived types, merging the used types if the parent types
|
|
// are compatible.
|
|
//
|
|
static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
|
|
const PATypeHolder &SrcTy,
|
|
SymbolTable *DestST, const std::string &Name,
|
|
std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
|
|
const Type *SrcTyT = SrcTy.get();
|
|
const Type *DestTyT = DestTy.get();
|
|
if (DestTyT == SrcTyT) return false; // If already equal, noop
|
|
|
|
// If we found our opaque type, resolve it now!
|
|
if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
|
|
return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
|
|
|
|
// Two types cannot be resolved together if they are of different primitive
|
|
// type. For example, we cannot resolve an int to a float.
|
|
if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true;
|
|
|
|
// Otherwise, resolve the used type used by this derived type...
|
|
switch (DestTyT->getPrimitiveID()) {
|
|
case Type::FunctionTyID: {
|
|
if (cast<FunctionType>(DestTyT)->isVarArg() !=
|
|
cast<FunctionType>(SrcTyT)->isVarArg())
|
|
return true;
|
|
for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
|
|
if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
|
|
getFT(SrcTy)->getContainedType(i), DestST, "",
|
|
Pointers))
|
|
return true;
|
|
return false;
|
|
}
|
|
case Type::StructTyID: {
|
|
if (getST(DestTy)->getNumContainedTypes() !=
|
|
getST(SrcTy)->getNumContainedTypes()) return 1;
|
|
for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
|
|
if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
|
|
getST(SrcTy)->getContainedType(i), DestST, "",
|
|
Pointers))
|
|
return true;
|
|
return false;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *DAT = cast<ArrayType>(DestTy.get());
|
|
const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
|
|
if (DAT->getNumElements() != SAT->getNumElements()) return true;
|
|
return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
|
|
DestST, "", Pointers);
|
|
}
|
|
case Type::PointerTyID: {
|
|
// If this is a pointer type, check to see if we have already seen it. If
|
|
// so, we are in a recursive branch. Cut off the search now. We cannot use
|
|
// an associative container for this search, because the type pointers (keys
|
|
// in the container) change whenever types get resolved...
|
|
//
|
|
for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
|
|
if (Pointers[i].first == DestTy)
|
|
return Pointers[i].second != SrcTy;
|
|
|
|
// Otherwise, add the current pointers to the vector to stop recursion on
|
|
// this pair.
|
|
Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
|
|
bool Result =
|
|
RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
|
|
cast<PointerType>(SrcTy.get())->getElementType(),
|
|
DestST, "", Pointers);
|
|
Pointers.pop_back();
|
|
return Result;
|
|
}
|
|
default: assert(0 && "Unexpected type!"); return true;
|
|
}
|
|
}
|
|
|
|
static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
|
|
const PATypeHolder &SrcTy,
|
|
SymbolTable *DestST, const std::string &Name){
|
|
std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
|
|
return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
|
|
}
|
|
|
|
|
|
// LinkTypes - Go through the symbol table of the Src module and see if any
|
|
// types are named in the src module that are not named in the Dst module.
|
|
// Make sure there are no type name conflicts.
|
|
//
|
|
static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
|
|
SymbolTable *DestST = &Dest->getSymbolTable();
|
|
const SymbolTable *SrcST = &Src->getSymbolTable();
|
|
|
|
// Look for a type plane for Type's...
|
|
SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy);
|
|
if (PI == SrcST->end()) return false; // No named types, do nothing.
|
|
|
|
// Some types cannot be resolved immediately becuse they depend on other types
|
|
// being resolved to each other first. This contains a list of types we are
|
|
// waiting to recheck.
|
|
std::vector<std::string> DelayedTypesToResolve;
|
|
|
|
const SymbolTable::VarMap &VM = PI->second;
|
|
for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end();
|
|
I != E; ++I) {
|
|
const std::string &Name = I->first;
|
|
Type *RHS = cast<Type>(I->second);
|
|
|
|
// Check to see if this type name is already in the dest module...
|
|
Type *Entry = cast_or_null<Type>(DestST->lookup(Type::TypeTy, Name));
|
|
|
|
if (ResolveTypes(Entry, RHS, DestST, Name)) {
|
|
// They look different, save the types 'till later to resolve.
|
|
DelayedTypesToResolve.push_back(Name);
|
|
}
|
|
}
|
|
|
|
// Iteratively resolve types while we can...
|
|
while (!DelayedTypesToResolve.empty()) {
|
|
// Loop over all of the types, attempting to resolve them if possible...
|
|
unsigned OldSize = DelayedTypesToResolve.size();
|
|
|
|
// Try direct resolution by name...
|
|
for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
|
|
const std::string &Name = DelayedTypesToResolve[i];
|
|
Type *T1 = cast<Type>(VM.find(Name)->second);
|
|
Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
|
|
if (!ResolveTypes(T2, T1, DestST, Name)) {
|
|
// We are making progress!
|
|
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Did we not eliminate any types?
|
|
if (DelayedTypesToResolve.size() == OldSize) {
|
|
// Attempt to resolve subelements of types. This allows us to merge these
|
|
// two types: { int* } and { opaque* }
|
|
for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
|
|
const std::string &Name = DelayedTypesToResolve[i];
|
|
PATypeHolder T1(cast<Type>(VM.find(Name)->second));
|
|
PATypeHolder T2(cast<Type>(DestST->lookup(Type::TypeTy, Name)));
|
|
|
|
if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
|
|
// We are making progress!
|
|
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
|
|
|
// Go back to the main loop, perhaps we can resolve directly by name
|
|
// now...
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we STILL cannot resolve the types, then there is something wrong.
|
|
// Report the error.
|
|
if (DelayedTypesToResolve.size() == OldSize) {
|
|
// Build up an error message of all of the mismatched types.
|
|
std::string ErrorMessage;
|
|
for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
|
|
const std::string &Name = DelayedTypesToResolve[i];
|
|
const Type *T1 = cast<Type>(VM.find(Name)->second);
|
|
const Type *T2 = cast<Type>(DestST->lookup(Type::TypeTy, Name));
|
|
ErrorMessage += " Type named '" + Name +
|
|
"' conflicts.\n Src='" + T1->getDescription() +
|
|
"'.\n Dest='" + T2->getDescription() + "'\n";
|
|
}
|
|
return Error(Err, "Type conflict between types in modules:\n" +
|
|
ErrorMessage);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
static void PrintMap(const std::map<const Value*, Value*> &M) {
|
|
for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
|
|
I != E; ++I) {
|
|
std::cerr << " Fr: " << (void*)I->first << " ";
|
|
I->first->dump();
|
|
std::cerr << " To: " << (void*)I->second << " ";
|
|
I->second->dump();
|
|
std::cerr << "\n";
|
|
}
|
|
}
|
|
|
|
|
|
// RemapOperand - Use LocalMap and GlobalMap to convert references from one
|
|
// module to another. This is somewhat sophisticated in that it can
|
|
// automatically handle constant references correctly as well...
|
|
//
|
|
static Value *RemapOperand(const Value *In,
|
|
std::map<const Value*, Value*> &LocalMap,
|
|
std::map<const Value*, Value*> *GlobalMap) {
|
|
std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
|
|
if (I != LocalMap.end()) return I->second;
|
|
|
|
if (GlobalMap) {
|
|
I = GlobalMap->find(In);
|
|
if (I != GlobalMap->end()) return I->second;
|
|
}
|
|
|
|
// Check to see if it's a constant that we are interesting in transforming...
|
|
if (const Constant *CPV = dyn_cast<Constant>(In)) {
|
|
if (!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV))
|
|
return const_cast<Constant*>(CPV); // Simple constants stay identical...
|
|
|
|
Constant *Result = 0;
|
|
|
|
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
|
|
const std::vector<Use> &Ops = CPA->getValues();
|
|
std::vector<Constant*> Operands(Ops.size());
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
Operands[i] =
|
|
cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
|
|
Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
|
|
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
|
|
const std::vector<Use> &Ops = CPS->getValues();
|
|
std::vector<Constant*> Operands(Ops.size());
|
|
for (unsigned i = 0; i < Ops.size(); ++i)
|
|
Operands[i] =
|
|
cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
|
|
Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
|
|
} else if (isa<ConstantPointerNull>(CPV)) {
|
|
Result = const_cast<Constant*>(CPV);
|
|
} else if (const ConstantPointerRef *CPR =
|
|
dyn_cast<ConstantPointerRef>(CPV)) {
|
|
Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
|
|
Result = ConstantPointerRef::get(cast<GlobalValue>(V));
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
|
std::vector<Constant*> Indices;
|
|
Indices.reserve(CE->getNumOperands()-1);
|
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
|
Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
|
|
LocalMap, GlobalMap)));
|
|
|
|
Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
|
|
} else if (CE->getNumOperands() == 1) {
|
|
// Cast instruction
|
|
assert(CE->getOpcode() == Instruction::Cast);
|
|
Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
|
Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
|
|
} else if (CE->getNumOperands() == 2) {
|
|
// Binary operator...
|
|
Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
|
Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
|
|
|
|
Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
|
|
cast<Constant>(V2));
|
|
} else {
|
|
assert(0 && "Unknown constant expr type!");
|
|
}
|
|
|
|
} else {
|
|
assert(0 && "Unknown type of derived type constant value!");
|
|
}
|
|
|
|
// Cache the mapping in our local map structure...
|
|
if (GlobalMap)
|
|
GlobalMap->insert(std::make_pair(In, Result));
|
|
else
|
|
LocalMap.insert(std::make_pair(In, Result));
|
|
return Result;
|
|
}
|
|
|
|
std::cerr << "XXX LocalMap: \n";
|
|
PrintMap(LocalMap);
|
|
|
|
if (GlobalMap) {
|
|
std::cerr << "XXX GlobalMap: \n";
|
|
PrintMap(*GlobalMap);
|
|
}
|
|
|
|
std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
|
|
assert(0 && "Couldn't remap value!");
|
|
return 0;
|
|
}
|
|
|
|
/// FindGlobalNamed - Look in the specified symbol table for a global with the
|
|
/// specified name and type. If an exactly matching global does not exist, see
|
|
/// if there is a global which is "type compatible" with the specified
|
|
/// name/type. This allows us to resolve things like '%x = global int*' with
|
|
/// '%x = global opaque*'.
|
|
///
|
|
static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
|
|
SymbolTable *ST) {
|
|
// See if an exact match exists in the symbol table...
|
|
if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
|
|
|
|
// It doesn't exist exactly, scan through all of the type planes in the symbol
|
|
// table, checking each of them for a type-compatible version.
|
|
//
|
|
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
|
|
if (I->first->getType() != Type::TypeTy) {
|
|
SymbolTable::VarMap &VM = I->second;
|
|
// Does this type plane contain an entry with the specified name?
|
|
SymbolTable::type_iterator TI = VM.find(Name);
|
|
if (TI != VM.end()) {
|
|
// Determine whether we can fold the two types together, resolving them.
|
|
// If so, we can use this value.
|
|
if (!RecursiveResolveTypes(Ty, I->first, ST, ""))
|
|
return cast<GlobalValue>(TI->second);
|
|
}
|
|
}
|
|
return 0; // Otherwise, nothing could be found.
|
|
}
|
|
|
|
|
|
// LinkGlobals - Loop through the global variables in the src module and merge
|
|
// them into the dest module.
|
|
//
|
|
static bool LinkGlobals(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
|
std::string *Err) {
|
|
// We will need a module level symbol table if the src module has a module
|
|
// level symbol table...
|
|
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
|
|
|
// Loop over all of the globals in the src module, mapping them over as we go
|
|
//
|
|
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
|
const GlobalVariable *SGV = I;
|
|
GlobalVariable *DGV = 0;
|
|
if (SGV->hasName()) {
|
|
// A same named thing is a global variable, because the only two things
|
|
// that may be in a module level symbol table are Global Vars and
|
|
// Functions, and they both have distinct, nonoverlapping, possible types.
|
|
//
|
|
DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
|
|
SGV->getType(), ST));
|
|
}
|
|
|
|
assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
|
|
"Global must either be external or have an initializer!");
|
|
|
|
bool SGExtern = SGV->isExternal();
|
|
bool DGExtern = DGV ? DGV->isExternal() : false;
|
|
|
|
if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
|
|
// No linking to be performed, simply create an identical version of the
|
|
// symbol over in the dest module... the initializer will be filled in
|
|
// later by LinkGlobalInits...
|
|
//
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(SGV->getType()->getElementType(),
|
|
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
|
SGV->getName(), Dest);
|
|
|
|
// If the LLVM runtime renamed the global, but it is an externally visible
|
|
// symbol, DGV must be an existing global with internal linkage. Rename
|
|
// it.
|
|
if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
|
|
assert(DGV && DGV->getName() == SGV->getName() &&
|
|
DGV->hasInternalLinkage());
|
|
DGV->setName("");
|
|
NewDGV->setName(SGV->getName()); // Force the name back
|
|
DGV->setName(SGV->getName()); // This will cause a renaming
|
|
assert(NewDGV->getName() == SGV->getName() &&
|
|
DGV->getName() != SGV->getName());
|
|
}
|
|
|
|
// Make sure to remember this mapping...
|
|
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
|
if (SGV->hasAppendingLinkage())
|
|
// Keep track that this is an appending variable...
|
|
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
|
|
|
} else if (SGV->isExternal()) {
|
|
// If SGV is external or if both SGV & DGV are external.. Just link the
|
|
// external globals, we aren't adding anything.
|
|
ValueMap.insert(std::make_pair(SGV, DGV));
|
|
|
|
} else if (DGV->isExternal()) { // If DGV is external but SGV is not...
|
|
ValueMap.insert(std::make_pair(SGV, DGV));
|
|
DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
|
|
} else if (SGV->getLinkage() != DGV->getLinkage()) {
|
|
return Error(Err, "Global variables named '" + SGV->getName() +
|
|
"' have different linkage specifiers!");
|
|
} else if (SGV->hasExternalLinkage()) {
|
|
// Allow linking two exactly identical external global variables...
|
|
if (SGV->isConstant() != DGV->isConstant() ||
|
|
SGV->getInitializer() != DGV->getInitializer())
|
|
return Error(Err, "Global Variable Collision on '" +
|
|
SGV->getType()->getDescription() + " %" + SGV->getName() +
|
|
"' - Global variables differ in const'ness");
|
|
ValueMap.insert(std::make_pair(SGV, DGV));
|
|
} else if (SGV->hasLinkOnceLinkage()) {
|
|
// If the global variable has a name, and that name is already in use in
|
|
// the Dest module, make sure that the name is a compatible global
|
|
// variable...
|
|
//
|
|
// Check to see if the two GV's have the same Const'ness...
|
|
if (SGV->isConstant() != DGV->isConstant())
|
|
return Error(Err, "Global Variable Collision on '" +
|
|
SGV->getType()->getDescription() + " %" + SGV->getName() +
|
|
"' - Global variables differ in const'ness");
|
|
|
|
// Okay, everything is cool, remember the mapping...
|
|
ValueMap.insert(std::make_pair(SGV, DGV));
|
|
} else if (SGV->hasAppendingLinkage()) {
|
|
// No linking is performed yet. Just insert a new copy of the global, and
|
|
// keep track of the fact that it is an appending variable in the
|
|
// AppendingVars map. The name is cleared out so that no linkage is
|
|
// performed.
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(SGV->getType()->getElementType(),
|
|
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
|
"", Dest);
|
|
|
|
// Make sure to remember this mapping...
|
|
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
|
|
|
// Keep track that this is an appending variable...
|
|
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
|
} else {
|
|
assert(0 && "Unknown linkage!");
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkGlobalInits - Update the initializers in the Dest module now that all
|
|
// globals that may be referenced are in Dest.
|
|
//
|
|
static bool LinkGlobalInits(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::string *Err) {
|
|
|
|
// Loop over all of the globals in the src module, mapping them over as we go
|
|
//
|
|
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
|
const GlobalVariable *SGV = I;
|
|
|
|
if (SGV->hasInitializer()) { // Only process initialized GV's
|
|
// Figure out what the initializer looks like in the dest module...
|
|
Constant *SInit =
|
|
cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
|
|
|
|
GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
|
|
if (DGV->hasInitializer()) {
|
|
assert(SGV->getLinkage() == DGV->getLinkage());
|
|
if (SGV->hasExternalLinkage()) {
|
|
if (DGV->getInitializer() != SInit)
|
|
return Error(Err, "Global Variable Collision on '" +
|
|
SGV->getType()->getDescription() +"':%"+SGV->getName()+
|
|
" - Global variables have different initializers");
|
|
} else if (DGV->hasLinkOnceLinkage()) {
|
|
// Nothing is required, mapped values will take the new global
|
|
// automatically.
|
|
} else if (DGV->hasAppendingLinkage()) {
|
|
assert(0 && "Appending linkage unimplemented!");
|
|
} else {
|
|
assert(0 && "Unknown linkage!");
|
|
}
|
|
} else {
|
|
// Copy the initializer over now...
|
|
DGV->setInitializer(SInit);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkFunctionProtos - Link the functions together between the two modules,
|
|
// without doing function bodies... this just adds external function prototypes
|
|
// to the Dest function...
|
|
//
|
|
static bool LinkFunctionProtos(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::string *Err) {
|
|
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
|
|
|
// Loop over all of the functions in the src module, mapping them over as we
|
|
// go
|
|
//
|
|
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
|
const Function *SF = I; // SrcFunction
|
|
Function *DF = 0;
|
|
if (SF->hasName())
|
|
// The same named thing is a Function, because the only two things
|
|
// that may be in a module level symbol table are Global Vars and
|
|
// Functions, and they both have distinct, nonoverlapping, possible types.
|
|
//
|
|
DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
|
|
ST));
|
|
|
|
if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
|
|
// Function does not already exist, simply insert an function signature
|
|
// identical to SF into the dest module...
|
|
Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
|
|
SF->getName(), Dest);
|
|
|
|
// If the LLVM runtime renamed the function, but it is an externally
|
|
// visible symbol, DF must be an existing function with internal linkage.
|
|
// Rename it.
|
|
if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
|
|
assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
|
|
DF->setName("");
|
|
NewDF->setName(SF->getName()); // Force the name back
|
|
DF->setName(SF->getName()); // This will cause a renaming
|
|
assert(NewDF->getName() == SF->getName() &&
|
|
DF->getName() != SF->getName());
|
|
}
|
|
|
|
// ... and remember this mapping...
|
|
ValueMap.insert(std::make_pair(SF, NewDF));
|
|
} else if (SF->isExternal()) {
|
|
// If SF is external or if both SF & DF are external.. Just link the
|
|
// external functions, we aren't adding anything.
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
} else if (DF->isExternal()) { // If DF is external but SF is not...
|
|
// Link the external functions, update linkage qualifiers
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
DF->setLinkage(SF->getLinkage());
|
|
|
|
} else if (SF->getLinkage() != DF->getLinkage()) {
|
|
return Error(Err, "Functions named '" + SF->getName() +
|
|
"' have different linkage specifiers!");
|
|
} else if (SF->hasExternalLinkage()) {
|
|
// The function is defined in both modules!!
|
|
return Error(Err, "Function '" +
|
|
SF->getFunctionType()->getDescription() + "':\"" +
|
|
SF->getName() + "\" - Function is already defined!");
|
|
} else if (SF->hasLinkOnceLinkage()) {
|
|
// Completely ignore the source function.
|
|
ValueMap.insert(std::make_pair(SF, DF));
|
|
} else {
|
|
assert(0 && "Unknown linkage configuration found!");
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkFunctionBody - Copy the source function over into the dest function and
|
|
// fix up references to values. At this point we know that Dest is an external
|
|
// function, and that Src is not.
|
|
//
|
|
static bool LinkFunctionBody(Function *Dest, const Function *Src,
|
|
std::map<const Value*, Value*> &GlobalMap,
|
|
std::string *Err) {
|
|
assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
|
|
std::map<const Value*, Value*> LocalMap; // Map for function local values
|
|
|
|
// Go through and convert function arguments over...
|
|
Function::aiterator DI = Dest->abegin();
|
|
for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
|
|
I != E; ++I, ++DI) {
|
|
DI->setName(I->getName()); // Copy the name information over...
|
|
|
|
// Add a mapping to our local map
|
|
LocalMap.insert(std::make_pair(I, DI));
|
|
}
|
|
|
|
// Loop over all of the basic blocks, copying the instructions over...
|
|
//
|
|
for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
|
// Create new basic block and add to mapping and the Dest function...
|
|
BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
|
|
LocalMap.insert(std::make_pair(I, DBB));
|
|
|
|
// Loop over all of the instructions in the src basic block, copying them
|
|
// over. Note that this is broken in a strict sense because the cloned
|
|
// instructions will still be referencing values in the Src module, not
|
|
// the remapped values. In our case, however, we will not get caught and
|
|
// so we can delay patching the values up until later...
|
|
//
|
|
for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
|
|
II != IE; ++II) {
|
|
Instruction *DI = II->clone();
|
|
DI->setName(II->getName());
|
|
DBB->getInstList().push_back(DI);
|
|
LocalMap.insert(std::make_pair(II, DI));
|
|
}
|
|
}
|
|
|
|
// At this point, all of the instructions and values of the function are now
|
|
// copied over. The only problem is that they are still referencing values in
|
|
// the Source function as operands. Loop through all of the operands of the
|
|
// functions and patch them up to point to the local versions...
|
|
//
|
|
for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
|
OI != OE; ++OI)
|
|
*OI = RemapOperand(*OI, LocalMap, &GlobalMap);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkFunctionBodies - Link in the function bodies that are defined in the
|
|
// source module into the DestModule. This consists basically of copying the
|
|
// function over and fixing up references to values.
|
|
//
|
|
static bool LinkFunctionBodies(Module *Dest, const Module *Src,
|
|
std::map<const Value*, Value*> &ValueMap,
|
|
std::string *Err) {
|
|
|
|
// Loop over all of the functions in the src module, mapping them over as we
|
|
// go
|
|
//
|
|
for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
|
|
if (!SF->isExternal()) { // No body if function is external
|
|
Function *DF = cast<Function>(ValueMap[SF]); // Destination function
|
|
|
|
// DF not external SF external?
|
|
if (!DF->isExternal()) {
|
|
if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once!
|
|
if (Err)
|
|
*Err = "Function '" + (SF->hasName() ? SF->getName() :std::string(""))
|
|
+ "' body multiply defined!";
|
|
return true;
|
|
}
|
|
|
|
if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// LinkAppendingVars - If there were any appending global variables, link them
|
|
// together now. Return true on error.
|
|
//
|
|
static bool LinkAppendingVars(Module *M,
|
|
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
|
std::string *ErrorMsg) {
|
|
if (AppendingVars.empty()) return false; // Nothing to do.
|
|
|
|
// Loop over the multimap of appending vars, processing any variables with the
|
|
// same name, forming a new appending global variable with both of the
|
|
// initializers merged together, then rewrite references to the old variables
|
|
// and delete them.
|
|
//
|
|
std::vector<Constant*> Inits;
|
|
while (AppendingVars.size() > 1) {
|
|
// Get the first two elements in the map...
|
|
std::multimap<std::string,
|
|
GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
|
|
|
|
// If the first two elements are for different names, there is no pair...
|
|
// Otherwise there is a pair, so link them together...
|
|
if (First->first == Second->first) {
|
|
GlobalVariable *G1 = First->second, *G2 = Second->second;
|
|
const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
|
|
const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
|
|
|
|
// Check to see that they two arrays agree on type...
|
|
if (T1->getElementType() != T2->getElementType())
|
|
return Error(ErrorMsg,
|
|
"Appending variables with different element types need to be linked!");
|
|
if (G1->isConstant() != G2->isConstant())
|
|
return Error(ErrorMsg,
|
|
"Appending variables linked with different const'ness!");
|
|
|
|
unsigned NewSize = T1->getNumElements() + T2->getNumElements();
|
|
ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
|
|
|
|
// Create the new global variable...
|
|
GlobalVariable *NG =
|
|
new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
|
|
/*init*/0, First->first, M);
|
|
|
|
// Merge the initializer...
|
|
Inits.reserve(NewSize);
|
|
ConstantArray *I = cast<ConstantArray>(G1->getInitializer());
|
|
for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
|
|
Inits.push_back(cast<Constant>(I->getValues()[i]));
|
|
I = cast<ConstantArray>(G2->getInitializer());
|
|
for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
|
|
Inits.push_back(cast<Constant>(I->getValues()[i]));
|
|
NG->setInitializer(ConstantArray::get(NewType, Inits));
|
|
Inits.clear();
|
|
|
|
// Replace any uses of the two global variables with uses of the new
|
|
// global...
|
|
|
|
// FIXME: This should rewrite simple/straight-forward uses such as
|
|
// getelementptr instructions to not use the Cast!
|
|
ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
|
|
G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
|
|
G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
|
|
|
|
// Remove the two globals from the module now...
|
|
M->getGlobalList().erase(G1);
|
|
M->getGlobalList().erase(G2);
|
|
|
|
// Put the new global into the AppendingVars map so that we can handle
|
|
// linking of more than two vars...
|
|
Second->second = NG;
|
|
}
|
|
AppendingVars.erase(First);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// LinkModules - This function links two modules together, with the resulting
|
|
// left module modified to be the composite of the two input modules. If an
|
|
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
|
|
// the problem. Upon failure, the Dest module could be in a modified state, and
|
|
// shouldn't be relied on to be consistent.
|
|
//
|
|
bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
|
|
if (Dest->getEndianness() == Module::AnyEndianness)
|
|
Dest->setEndianness(Src->getEndianness());
|
|
if (Dest->getPointerSize() == Module::AnyPointerSize)
|
|
Dest->setPointerSize(Src->getPointerSize());
|
|
|
|
if (Src->getEndianness() != Module::AnyEndianness &&
|
|
Dest->getEndianness() != Src->getEndianness())
|
|
std::cerr << "WARNING: Linking two modules of different endianness!\n";
|
|
if (Src->getPointerSize() != Module::AnyPointerSize &&
|
|
Dest->getPointerSize() != Src->getPointerSize())
|
|
std::cerr << "WARNING: Linking two modules of different pointer size!\n";
|
|
|
|
// LinkTypes - Go through the symbol table of the Src module and see if any
|
|
// types are named in the src module that are not named in the Dst module.
|
|
// Make sure there are no type name conflicts.
|
|
//
|
|
if (LinkTypes(Dest, Src, ErrorMsg)) return true;
|
|
|
|
// ValueMap - Mapping of values from what they used to be in Src, to what they
|
|
// are now in Dest.
|
|
//
|
|
std::map<const Value*, Value*> ValueMap;
|
|
|
|
// AppendingVars - Keep track of global variables in the destination module
|
|
// with appending linkage. After the module is linked together, they are
|
|
// appended and the module is rewritten.
|
|
//
|
|
std::multimap<std::string, GlobalVariable *> AppendingVars;
|
|
|
|
// Add all of the appending globals already in the Dest module to
|
|
// AppendingVars.
|
|
for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
|
|
if (I->hasAppendingLinkage())
|
|
AppendingVars.insert(std::make_pair(I->getName(), I));
|
|
|
|
// Insert all of the globals in src into the Dest module... without linking
|
|
// initializers (which could refer to functions not yet mapped over).
|
|
//
|
|
if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
|
|
|
|
// Link the functions together between the two modules, without doing function
|
|
// bodies... this just adds external function prototypes to the Dest
|
|
// function... We do this so that when we begin processing function bodies,
|
|
// all of the global values that may be referenced are available in our
|
|
// ValueMap.
|
|
//
|
|
if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
|
|
|
|
// Update the initializers in the Dest module now that all globals that may
|
|
// be referenced are in Dest.
|
|
//
|
|
if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
|
|
|
|
// Link in the function bodies that are defined in the source module into the
|
|
// DestModule. This consists basically of copying the function over and
|
|
// fixing up references to values.
|
|
//
|
|
if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
|
|
|
|
// If there were any appending global variables, link them together now.
|
|
//
|
|
if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
|
|
|
|
return false;
|
|
}
|
|
|