mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149229 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			578 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the DenseMap class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_DENSEMAP_H
 | 
						|
#define LLVM_ADT_DENSEMAP_H
 | 
						|
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/PointerLikeTypeTraits.h"
 | 
						|
#include "llvm/Support/type_traits.h"
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iterator>
 | 
						|
#include <new>
 | 
						|
#include <utility>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstring>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT,
 | 
						|
         typename KeyInfoT = DenseMapInfo<KeyT>,
 | 
						|
         typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
 | 
						|
class DenseMapIterator;
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT,
 | 
						|
         typename KeyInfoT = DenseMapInfo<KeyT>,
 | 
						|
         typename ValueInfoT = DenseMapInfo<ValueT> >
 | 
						|
class DenseMap {
 | 
						|
  typedef std::pair<KeyT, ValueT> BucketT;
 | 
						|
  unsigned NumBuckets;
 | 
						|
  BucketT *Buckets;
 | 
						|
 | 
						|
  unsigned NumEntries;
 | 
						|
  unsigned NumTombstones;
 | 
						|
public:
 | 
						|
  typedef KeyT key_type;
 | 
						|
  typedef ValueT mapped_type;
 | 
						|
  typedef BucketT value_type;
 | 
						|
 | 
						|
  DenseMap(const DenseMap &other) {
 | 
						|
    NumBuckets = 0;
 | 
						|
    CopyFrom(other);
 | 
						|
  }
 | 
						|
 | 
						|
  explicit DenseMap(unsigned NumInitBuckets = 0) {
 | 
						|
    init(NumInitBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename InputIt>
 | 
						|
  DenseMap(const InputIt &I, const InputIt &E) {
 | 
						|
    init(NextPowerOf2(std::distance(I, E)));
 | 
						|
    insert(I, E);
 | 
						|
  }
 | 
						|
  
 | 
						|
  ~DenseMap() {
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | 
						|
      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(P->first, TombstoneKey))
 | 
						|
        P->second.~ValueT();
 | 
						|
      P->first.~KeyT();
 | 
						|
    }
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (NumBuckets)
 | 
						|
      memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
 | 
						|
#endif
 | 
						|
    operator delete(Buckets);
 | 
						|
  }
 | 
						|
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT,
 | 
						|
                           KeyInfoT, ValueInfoT, true> const_iterator;
 | 
						|
  inline iterator begin() {
 | 
						|
    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
 | 
						|
    return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  inline iterator end() {
 | 
						|
    return iterator(Buckets+NumBuckets, Buckets+NumBuckets, true);
 | 
						|
  }
 | 
						|
  inline const_iterator begin() const {
 | 
						|
    return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  inline const_iterator end() const {
 | 
						|
    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets, true);
 | 
						|
  }
 | 
						|
 | 
						|
  bool empty() const { return NumEntries == 0; }
 | 
						|
  unsigned size() const { return NumEntries; }
 | 
						|
 | 
						|
  /// Grow the densemap so that it has at least Size buckets. Does not shrink
 | 
						|
  void resize(size_t Size) {
 | 
						|
    if (Size > NumBuckets)
 | 
						|
      grow(Size);
 | 
						|
  }
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    if (NumEntries == 0 && NumTombstones == 0) return;
 | 
						|
    
 | 
						|
    // If the capacity of the array is huge, and the # elements used is small,
 | 
						|
    // shrink the array.
 | 
						|
    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
 | 
						|
      shrink_and_clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | 
						|
      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
 | 
						|
        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
 | 
						|
          P->second.~ValueT();
 | 
						|
          --NumEntries;
 | 
						|
        }
 | 
						|
        P->first = EmptyKey;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(NumEntries == 0 && "Node count imbalance!");
 | 
						|
    NumTombstones = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// count - Return true if the specified key is in the map.
 | 
						|
  bool count(const KeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    return LookupBucketFor(Val, TheBucket);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator find(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return iterator(TheBucket, Buckets+NumBuckets, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  const_iterator find(const KeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return const_iterator(TheBucket, Buckets+NumBuckets, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Alternate version of find() which allows a different, and possibly
 | 
						|
  /// less expensive, key type.
 | 
						|
  /// The DenseMapInfo is responsible for supplying methods
 | 
						|
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
 | 
						|
  /// type used.
 | 
						|
  template<class LookupKeyT>
 | 
						|
  iterator find_as(const LookupKeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return iterator(TheBucket, Buckets+NumBuckets, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  template<class LookupKeyT>
 | 
						|
  const_iterator find_as(const LookupKeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return const_iterator(TheBucket, Buckets+NumBuckets, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// lookup - Return the entry for the specified key, or a default
 | 
						|
  /// constructed value if no such entry exists.
 | 
						|
  ValueT lookup(const KeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return TheBucket->second;
 | 
						|
    return ValueT();
 | 
						|
  }
 | 
						|
 | 
						|
  // Inserts key,value pair into the map if the key isn't already in the map.
 | 
						|
  // If the key is already in the map, it returns false and doesn't update the
 | 
						|
  // value.
 | 
						|
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(KV.first, TheBucket))
 | 
						|
      return std::make_pair(iterator(TheBucket, Buckets+NumBuckets, true),
 | 
						|
                            false); // Already in map.
 | 
						|
 | 
						|
    // Otherwise, insert the new element.
 | 
						|
    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
 | 
						|
    return std::make_pair(iterator(TheBucket, Buckets+NumBuckets, true), true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// insert - Range insertion of pairs.
 | 
						|
  template<typename InputIt>
 | 
						|
  void insert(InputIt I, InputIt E) {
 | 
						|
    for (; I != E; ++I)
 | 
						|
      insert(*I);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  bool erase(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (!LookupBucketFor(Val, TheBucket))
 | 
						|
      return false; // not in map.
 | 
						|
 | 
						|
    TheBucket->second.~ValueT();
 | 
						|
    TheBucket->first = getTombstoneKey();
 | 
						|
    --NumEntries;
 | 
						|
    ++NumTombstones;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  void erase(iterator I) {
 | 
						|
    BucketT *TheBucket = &*I;
 | 
						|
    TheBucket->second.~ValueT();
 | 
						|
    TheBucket->first = getTombstoneKey();
 | 
						|
    --NumEntries;
 | 
						|
    ++NumTombstones;
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(DenseMap& RHS) {
 | 
						|
    std::swap(NumBuckets, RHS.NumBuckets);
 | 
						|
    std::swap(Buckets, RHS.Buckets);
 | 
						|
    std::swap(NumEntries, RHS.NumEntries);
 | 
						|
    std::swap(NumTombstones, RHS.NumTombstones);
 | 
						|
  }
 | 
						|
 | 
						|
  value_type& FindAndConstruct(const KeyT &Key) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Key, TheBucket))
 | 
						|
      return *TheBucket;
 | 
						|
 | 
						|
    return *InsertIntoBucket(Key, ValueT(), TheBucket);
 | 
						|
  }
 | 
						|
 | 
						|
  ValueT &operator[](const KeyT &Key) {
 | 
						|
    return FindAndConstruct(Key).second;
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap& operator=(const DenseMap& other) {
 | 
						|
    CopyFrom(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isPointerIntoBucketsArray - Return true if the specified pointer points
 | 
						|
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
 | 
						|
  /// value in the DenseMap).
 | 
						|
  bool isPointerIntoBucketsArray(const void *Ptr) const {
 | 
						|
    return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 | 
						|
  /// array.  In conjunction with the previous method, this can be used to
 | 
						|
  /// determine whether an insertion caused the DenseMap to reallocate.
 | 
						|
  const void *getPointerIntoBucketsArray() const { return Buckets; }
 | 
						|
 | 
						|
private:
 | 
						|
  void CopyFrom(const DenseMap& other) {
 | 
						|
    if (NumBuckets != 0 &&
 | 
						|
        (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
 | 
						|
      const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
      for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | 
						|
        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | 
						|
            !KeyInfoT::isEqual(P->first, TombstoneKey))
 | 
						|
          P->second.~ValueT();
 | 
						|
        P->first.~KeyT();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NumEntries = other.NumEntries;
 | 
						|
    NumTombstones = other.NumTombstones;
 | 
						|
 | 
						|
    if (NumBuckets) {
 | 
						|
#ifndef NDEBUG
 | 
						|
      memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
 | 
						|
#endif
 | 
						|
      operator delete(Buckets);
 | 
						|
    }
 | 
						|
 | 
						|
    NumBuckets = other.NumBuckets;
 | 
						|
 | 
						|
    if (NumBuckets == 0) {
 | 
						|
      Buckets = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
 | 
						|
 | 
						|
    if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
 | 
						|
      memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT));
 | 
						|
    else
 | 
						|
      for (size_t i = 0; i < NumBuckets; ++i) {
 | 
						|
        new (&Buckets[i].first) KeyT(other.Buckets[i].first);
 | 
						|
        if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
 | 
						|
            !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
 | 
						|
          new (&Buckets[i].second) ValueT(other.Buckets[i].second);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
 | 
						|
                            BucketT *TheBucket) {
 | 
						|
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 | 
						|
    // the buckets are empty (meaning that many are filled with tombstones),
 | 
						|
    // grow the table.
 | 
						|
    //
 | 
						|
    // The later case is tricky.  For example, if we had one empty bucket with
 | 
						|
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
 | 
						|
    // probe almost the entire table until it found the empty bucket.  If the
 | 
						|
    // table completely filled with tombstones, no lookup would ever succeed,
 | 
						|
    // causing infinite loops in lookup.
 | 
						|
    ++NumEntries;
 | 
						|
    if (NumEntries*4 >= NumBuckets*3) {
 | 
						|
      this->grow(NumBuckets * 2);
 | 
						|
      LookupBucketFor(Key, TheBucket);
 | 
						|
    }
 | 
						|
    if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
 | 
						|
      this->grow(NumBuckets);
 | 
						|
      LookupBucketFor(Key, TheBucket);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are writing over a tombstone, remember this.
 | 
						|
    if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
 | 
						|
      --NumTombstones;
 | 
						|
 | 
						|
    TheBucket->first = Key;
 | 
						|
    new (&TheBucket->second) ValueT(Value);
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const KeyT &Val) {
 | 
						|
    return KeyInfoT::getHashValue(Val);
 | 
						|
  }
 | 
						|
  template<typename LookupKeyT>
 | 
						|
  static unsigned getHashValue(const LookupKeyT &Val) {
 | 
						|
    return KeyInfoT::getHashValue(Val);
 | 
						|
  }
 | 
						|
  static const KeyT getEmptyKey() {
 | 
						|
    return KeyInfoT::getEmptyKey();
 | 
						|
  }
 | 
						|
  static const KeyT getTombstoneKey() {
 | 
						|
    return KeyInfoT::getTombstoneKey();
 | 
						|
  }
 | 
						|
 | 
						|
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 | 
						|
  /// FoundBucket.  If the bucket contains the key and a value, this returns
 | 
						|
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
 | 
						|
  /// returns false.
 | 
						|
  template<typename LookupKeyT>
 | 
						|
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) const {
 | 
						|
    unsigned BucketNo = getHashValue(Val);
 | 
						|
    unsigned ProbeAmt = 1;
 | 
						|
    BucketT *BucketsPtr = Buckets;
 | 
						|
 | 
						|
    if (NumBuckets == 0) {
 | 
						|
      FoundBucket = 0;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
 | 
						|
    BucketT *FoundTombstone = 0;
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
 | 
						|
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
 | 
						|
           "Empty/Tombstone value shouldn't be inserted into map!");
 | 
						|
 | 
						|
    while (1) {
 | 
						|
      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
 | 
						|
      // Found Val's bucket?  If so, return it.
 | 
						|
      if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
 | 
						|
        FoundBucket = ThisBucket;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found an empty bucket, the key doesn't exist in the set.
 | 
						|
      // Insert it and return the default value.
 | 
						|
      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
 | 
						|
        // If we've already seen a tombstone while probing, fill it in instead
 | 
						|
        // of the empty bucket we eventually probed to.
 | 
						|
        if (FoundTombstone) ThisBucket = FoundTombstone;
 | 
						|
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
 | 
						|
      // prefer to return it than something that would require more probing.
 | 
						|
      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
 | 
						|
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 | 
						|
 | 
						|
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
 | 
						|
      // probing.
 | 
						|
      BucketNo += ProbeAmt++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void init(unsigned InitBuckets) {
 | 
						|
    NumEntries = 0;
 | 
						|
    NumTombstones = 0;
 | 
						|
    NumBuckets = InitBuckets;
 | 
						|
 | 
						|
    if (InitBuckets == 0) {
 | 
						|
      Buckets = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
 | 
						|
           "# initial buckets must be a power of two!");
 | 
						|
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
 | 
						|
    // Initialize all the keys to EmptyKey.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (unsigned i = 0; i != InitBuckets; ++i)
 | 
						|
      new (&Buckets[i].first) KeyT(EmptyKey);
 | 
						|
  }
 | 
						|
 | 
						|
  void grow(unsigned AtLeast) {
 | 
						|
    unsigned OldNumBuckets = NumBuckets;
 | 
						|
    BucketT *OldBuckets = Buckets;
 | 
						|
 | 
						|
    if (NumBuckets < 64)
 | 
						|
      NumBuckets = 64;
 | 
						|
 | 
						|
    // Double the number of buckets.
 | 
						|
    while (NumBuckets < AtLeast)
 | 
						|
      NumBuckets <<= 1;
 | 
						|
    NumTombstones = 0;
 | 
						|
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
 | 
						|
 | 
						|
    // Initialize all the keys to EmptyKey.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
 | 
						|
      new (&Buckets[i].first) KeyT(EmptyKey);
 | 
						|
 | 
						|
    // Insert all the old elements.
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
 | 
						|
      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
 | 
						|
        // Insert the key/value into the new table.
 | 
						|
        BucketT *DestBucket;
 | 
						|
        bool FoundVal = LookupBucketFor(B->first, DestBucket);
 | 
						|
        (void)FoundVal; // silence warning.
 | 
						|
        assert(!FoundVal && "Key already in new map?");
 | 
						|
        DestBucket->first = B->first;
 | 
						|
        new (&DestBucket->second) ValueT(B->second);
 | 
						|
 | 
						|
        // Free the value.
 | 
						|
        B->second.~ValueT();
 | 
						|
      }
 | 
						|
      B->first.~KeyT();
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (OldNumBuckets)
 | 
						|
      memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
 | 
						|
#endif
 | 
						|
    // Free the old table.
 | 
						|
    operator delete(OldBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  void shrink_and_clear() {
 | 
						|
    unsigned OldNumBuckets = NumBuckets;
 | 
						|
    BucketT *OldBuckets = Buckets;
 | 
						|
 | 
						|
    // Reduce the number of buckets.
 | 
						|
    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
 | 
						|
                                 : 64;
 | 
						|
    NumTombstones = 0;
 | 
						|
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
 | 
						|
 | 
						|
    // Initialize all the keys to EmptyKey.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
 | 
						|
      new (&Buckets[i].first) KeyT(EmptyKey);
 | 
						|
 | 
						|
    // Free the old buckets.
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
 | 
						|
      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
 | 
						|
        // Free the value.
 | 
						|
        B->second.~ValueT();
 | 
						|
      }
 | 
						|
      B->first.~KeyT();
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
 | 
						|
#endif
 | 
						|
    // Free the old table.
 | 
						|
    operator delete(OldBuckets);
 | 
						|
 | 
						|
    NumEntries = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
public:
 | 
						|
  /// Return the approximate size (in bytes) of the actual map.
 | 
						|
  /// This is just the raw memory used by DenseMap.
 | 
						|
  /// If entries are pointers to objects, the size of the referenced objects
 | 
						|
  /// are not included.
 | 
						|
  size_t getMemorySize() const {
 | 
						|
    return NumBuckets * sizeof(BucketT);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT,
 | 
						|
         typename KeyInfoT, typename ValueInfoT, bool IsConst>
 | 
						|
class DenseMapIterator {
 | 
						|
  typedef std::pair<KeyT, ValueT> Bucket;
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT,
 | 
						|
                           KeyInfoT, ValueInfoT, true> ConstIterator;
 | 
						|
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
 | 
						|
public:
 | 
						|
  typedef ptrdiff_t difference_type;
 | 
						|
  typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
 | 
						|
  typedef value_type *pointer;
 | 
						|
  typedef value_type &reference;
 | 
						|
  typedef std::forward_iterator_tag iterator_category;
 | 
						|
private:
 | 
						|
  pointer Ptr, End;
 | 
						|
public:
 | 
						|
  DenseMapIterator() : Ptr(0), End(0) {}
 | 
						|
 | 
						|
  DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
 | 
						|
    : Ptr(Pos), End(E) {
 | 
						|
    if (!NoAdvance) AdvancePastEmptyBuckets();
 | 
						|
  }
 | 
						|
 | 
						|
  // If IsConst is true this is a converting constructor from iterator to
 | 
						|
  // const_iterator and the default copy constructor is used.
 | 
						|
  // Otherwise this is a copy constructor for iterator.
 | 
						|
  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
 | 
						|
                                          KeyInfoT, ValueInfoT, false>& I)
 | 
						|
    : Ptr(I.Ptr), End(I.End) {}
 | 
						|
 | 
						|
  reference operator*() const {
 | 
						|
    return *Ptr;
 | 
						|
  }
 | 
						|
  pointer operator->() const {
 | 
						|
    return Ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const ConstIterator &RHS) const {
 | 
						|
    return Ptr == RHS.operator->();
 | 
						|
  }
 | 
						|
  bool operator!=(const ConstIterator &RHS) const {
 | 
						|
    return Ptr != RHS.operator->();
 | 
						|
  }
 | 
						|
 | 
						|
  inline DenseMapIterator& operator++() {  // Preincrement
 | 
						|
    ++Ptr;
 | 
						|
    AdvancePastEmptyBuckets();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  DenseMapIterator operator++(int) {  // Postincrement
 | 
						|
    DenseMapIterator tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void AdvancePastEmptyBuckets() {
 | 
						|
    const KeyT Empty = KeyInfoT::getEmptyKey();
 | 
						|
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 | 
						|
 | 
						|
    while (Ptr != End &&
 | 
						|
           (KeyInfoT::isEqual(Ptr->first, Empty) ||
 | 
						|
            KeyInfoT::isEqual(Ptr->first, Tombstone)))
 | 
						|
      ++Ptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
 | 
						|
static inline size_t
 | 
						|
capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT, ValueInfoT> &X) {
 | 
						|
  return X.getMemorySize();
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |