mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Replace the ill-defined MinLatency and ILPWindow properties with with straightforward buffer sizes: MCSchedMode::MicroOpBufferSize MCProcResourceDesc::BufferSize These can be used to more precisely model instruction execution if desired. Disabled some misched tests temporarily. They'll be reenabled in a few commits. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184032 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1317 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1317 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | |
| // of MachineInstrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "misched"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/ScheduleDFS.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
 | |
|     cl::ZeroOrMore, cl::init(false),
 | |
|     cl::desc("Enable use of AA during MI GAD construction"));
 | |
| 
 | |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | |
|                                      const MachineLoopInfo &mli,
 | |
|                                      const MachineDominatorTree &mdt,
 | |
|                                      bool IsPostRAFlag,
 | |
|                                      LiveIntervals *lis)
 | |
|   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
 | |
|     IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
 | |
|   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
 | |
|   DbgValues.clear();
 | |
|   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
 | |
|          "Virtual registers must be removed prior to PostRA scheduling");
 | |
| 
 | |
|   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
|   SchedModel.init(*ST.getSchedModel(), &ST, TII);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectFromInt - This is the function that does the work of
 | |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | |
|   do {
 | |
|     if (const Operator *U = dyn_cast<Operator>(V)) {
 | |
|       // If we find a ptrtoint, we can transfer control back to the
 | |
|       // regular getUnderlyingObjectFromInt.
 | |
|       if (U->getOpcode() == Instruction::PtrToInt)
 | |
|         return U->getOperand(0);
 | |
|       // If we find an add of a constant, a multiplied value, or a phi, it's
 | |
|       // likely that the other operand will lead us to the base
 | |
|       // object. We don't have to worry about the case where the
 | |
|       // object address is somehow being computed by the multiply,
 | |
|       // because our callers only care when the result is an
 | |
|       // identifiable object.
 | |
|       if (U->getOpcode() != Instruction::Add ||
 | |
|           (!isa<ConstantInt>(U->getOperand(1)) &&
 | |
|            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
 | |
|            !isa<PHINode>(U->getOperand(1))))
 | |
|         return V;
 | |
|       V = U->getOperand(0);
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
 | |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static void getUnderlyingObjects(const Value *V,
 | |
|                                  SmallVectorImpl<Value *> &Objects) {
 | |
|   SmallPtrSet<const Value*, 16> Visited;
 | |
|   SmallVector<const Value *, 4> Working(1, V);
 | |
|   do {
 | |
|     V = Working.pop_back_val();
 | |
| 
 | |
|     SmallVector<Value *, 4> Objs;
 | |
|     GetUnderlyingObjects(const_cast<Value *>(V), Objs);
 | |
| 
 | |
|     for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
 | |
|          I != IE; ++I) {
 | |
|       V = *I;
 | |
|       if (!Visited.insert(V))
 | |
|         continue;
 | |
|       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
 | |
|         const Value *O =
 | |
|           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | |
|         if (O->getType()->isPointerTy()) {
 | |
|           Working.push_back(O);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       Objects.push_back(const_cast<Value *>(V));
 | |
|     }
 | |
|   } while (!Working.empty());
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
 | |
| /// information and it can be tracked to a normal reference to a known
 | |
| /// object, return the Value for that object.
 | |
| static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
 | |
|               const MachineFrameInfo *MFI,
 | |
|               SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
 | |
|   if (!MI->hasOneMemOperand() ||
 | |
|       !(*MI->memoperands_begin())->getValue() ||
 | |
|       (*MI->memoperands_begin())->isVolatile())
 | |
|     return;
 | |
| 
 | |
|   const Value *V = (*MI->memoperands_begin())->getValue();
 | |
|   if (!V)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<Value *, 4> Objs;
 | |
|   getUnderlyingObjects(V, Objs);
 | |
| 
 | |
|   for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
 | |
|        I != IE; ++I) {
 | |
|     bool MayAlias = true;
 | |
|     V = *I;
 | |
| 
 | |
|     if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | |
|       // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | |
|       // because the code that uses this function has no way to cope with
 | |
|       // such aliases.
 | |
| 
 | |
|       if (PSV->isAliased(MFI)) {
 | |
|         Objects.clear();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       MayAlias = PSV->mayAlias(MFI);
 | |
|     } else if (!isIdentifiedObject(V)) {
 | |
|       Objects.clear();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Objects.push_back(std::make_pair(V, MayAlias));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
 | |
|   BB = bb;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::finishBlock() {
 | |
|   // Subclasses should no longer refer to the old block.
 | |
|   BB = 0;
 | |
| }
 | |
| 
 | |
| /// Initialize the DAG and common scheduler state for the current scheduling
 | |
| /// region. This does not actually create the DAG, only clears it. The
 | |
| /// scheduling driver may call BuildSchedGraph multiple times per scheduling
 | |
| /// region.
 | |
| void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | |
|                                     MachineBasicBlock::iterator begin,
 | |
|                                     MachineBasicBlock::iterator end,
 | |
|                                     unsigned endcount) {
 | |
|   assert(bb == BB && "startBlock should set BB");
 | |
|   RegionBegin = begin;
 | |
|   RegionEnd = end;
 | |
|   EndIndex = endcount;
 | |
|   MISUnitMap.clear();
 | |
| 
 | |
|   ScheduleDAG::clearDAG();
 | |
| }
 | |
| 
 | |
| /// Close the current scheduling region. Don't clear any state in case the
 | |
| /// driver wants to refer to the previous scheduling region.
 | |
| void ScheduleDAGInstrs::exitRegion() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| /// addSchedBarrierDeps - Add dependencies from instructions in the current
 | |
| /// list of instructions being scheduled to scheduling barrier by adding
 | |
| /// the exit SU to the register defs and use list. This is because we want to
 | |
| /// make sure instructions which define registers that are either used by
 | |
| /// the terminator or are live-out are properly scheduled. This is
 | |
| /// especially important when the definition latency of the return value(s)
 | |
| /// are too high to be hidden by the branch or when the liveout registers
 | |
| /// used by instructions in the fallthrough block.
 | |
| void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | |
|   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
 | |
|   ExitSU.setInstr(ExitMI);
 | |
|   bool AllDepKnown = ExitMI &&
 | |
|     (ExitMI->isCall() || ExitMI->isBarrier());
 | |
|   if (ExitMI && AllDepKnown) {
 | |
|     // If it's a call or a barrier, add dependencies on the defs and uses of
 | |
|     // instruction.
 | |
|     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = ExitMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isDef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | |
|       else {
 | |
|         assert(!IsPostRA && "Virtual register encountered after regalloc.");
 | |
|         if (MO.readsReg()) // ignore undef operands
 | |
|           addVRegUseDeps(&ExitSU, i);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // For others, e.g. fallthrough, conditional branch, assume the exit
 | |
|     // uses all the registers that are livein to the successor blocks.
 | |
|     assert(Uses.empty() && "Uses in set before adding deps?");
 | |
|     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|            SE = BB->succ_end(); SI != SE; ++SI)
 | |
|       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | |
|              E = (*SI)->livein_end(); I != E; ++I) {
 | |
|         unsigned Reg = *I;
 | |
|         if (!Uses.contains(Reg))
 | |
|           Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MO is an operand of SU's instruction that defines a physical register. Add
 | |
| /// data dependencies from SU to any uses of the physical register.
 | |
| void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
 | |
|   assert(MO.isDef() && "expect physreg def");
 | |
| 
 | |
|   // Ask the target if address-backscheduling is desirable, and if so how much.
 | |
|   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
| 
 | |
|   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | |
|        Alias.isValid(); ++Alias) {
 | |
|     if (!Uses.contains(*Alias))
 | |
|       continue;
 | |
|     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
 | |
|       SUnit *UseSU = I->SU;
 | |
|       if (UseSU == SU)
 | |
|         continue;
 | |
| 
 | |
|       // Adjust the dependence latency using operand def/use information,
 | |
|       // then allow the target to perform its own adjustments.
 | |
|       int UseOp = I->OpIdx;
 | |
|       MachineInstr *RegUse = 0;
 | |
|       SDep Dep;
 | |
|       if (UseOp < 0)
 | |
|         Dep = SDep(SU, SDep::Artificial);
 | |
|       else {
 | |
|         // Set the hasPhysRegDefs only for physreg defs that have a use within
 | |
|         // the scheduling region.
 | |
|         SU->hasPhysRegDefs = true;
 | |
|         Dep = SDep(SU, SDep::Data, *Alias);
 | |
|         RegUse = UseSU->getInstr();
 | |
|       }
 | |
|       Dep.setLatency(
 | |
|         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
 | |
|                                          UseOp));
 | |
| 
 | |
|       ST.adjustSchedDependency(SU, UseSU, Dep);
 | |
|       UseSU->addPred(Dep);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | |
| /// this SUnit to following instructions in the same scheduling region that
 | |
| /// depend the physical register referenced at OperIdx.
 | |
| void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   const MachineOperand &MO = MI->getOperand(OperIdx);
 | |
| 
 | |
|   // Optionally add output and anti dependencies. For anti
 | |
|   // dependencies we use a latency of 0 because for a multi-issue
 | |
|   // target we want to allow the defining instruction to issue
 | |
|   // in the same cycle as the using instruction.
 | |
|   // TODO: Using a latency of 1 here for output dependencies assumes
 | |
|   //       there's no cost for reusing registers.
 | |
|   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | |
|   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | |
|        Alias.isValid(); ++Alias) {
 | |
|     if (!Defs.contains(*Alias))
 | |
|       continue;
 | |
|     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
 | |
|       SUnit *DefSU = I->SU;
 | |
|       if (DefSU == &ExitSU)
 | |
|         continue;
 | |
|       if (DefSU != SU &&
 | |
|           (Kind != SDep::Output || !MO.isDead() ||
 | |
|            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | |
|         if (Kind == SDep::Anti)
 | |
|           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
 | |
|         else {
 | |
|           SDep Dep(SU, Kind, /*Reg=*/*Alias);
 | |
|           Dep.setLatency(
 | |
|             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | |
|           DefSU->addPred(Dep);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MO.isDef()) {
 | |
|     SU->hasPhysRegUses = true;
 | |
|     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | |
|     // retrieve the existing SUnits list for this register's uses.
 | |
|     // Push this SUnit on the use list.
 | |
|     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
 | |
|   }
 | |
|   else {
 | |
|     addPhysRegDataDeps(SU, OperIdx);
 | |
|     unsigned Reg = MO.getReg();
 | |
| 
 | |
|     // clear this register's use list
 | |
|     if (Uses.contains(Reg))
 | |
|       Uses.eraseAll(Reg);
 | |
| 
 | |
|     if (!MO.isDead()) {
 | |
|       Defs.eraseAll(Reg);
 | |
|     } else if (SU->isCall) {
 | |
|       // Calls will not be reordered because of chain dependencies (see
 | |
|       // below). Since call operands are dead, calls may continue to be added
 | |
|       // to the DefList making dependence checking quadratic in the size of
 | |
|       // the block. Instead, we leave only one call at the back of the
 | |
|       // DefList.
 | |
|       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
 | |
|       Reg2SUnitsMap::iterator B = P.first;
 | |
|       Reg2SUnitsMap::iterator I = P.second;
 | |
|       for (bool isBegin = I == B; !isBegin; /* empty */) {
 | |
|         isBegin = (--I) == B;
 | |
|         if (!I->SU->isCall)
 | |
|           break;
 | |
|         I = Defs.erase(I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Defs are pushed in the order they are visited and never reordered.
 | |
|     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | |
| /// to instructions that occur later in the same scheduling region if they read
 | |
| /// from or write to the virtual register defined at OperIdx.
 | |
| ///
 | |
| /// TODO: Hoist loop induction variable increments. This has to be
 | |
| /// reevaluated. Generally, IV scheduling should be done before coalescing.
 | |
| void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   unsigned Reg = MI->getOperand(OperIdx).getReg();
 | |
| 
 | |
|   // Singly defined vregs do not have output/anti dependencies.
 | |
|   // The current operand is a def, so we have at least one.
 | |
|   // Check here if there are any others...
 | |
|   if (MRI.hasOneDef(Reg))
 | |
|     return;
 | |
| 
 | |
|   // Add output dependence to the next nearest def of this vreg.
 | |
|   //
 | |
|   // Unless this definition is dead, the output dependence should be
 | |
|   // transitively redundant with antidependencies from this definition's
 | |
|   // uses. We're conservative for now until we have a way to guarantee the uses
 | |
|   // are not eliminated sometime during scheduling. The output dependence edge
 | |
|   // is also useful if output latency exceeds def-use latency.
 | |
|   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | |
|   if (DefI == VRegDefs.end())
 | |
|     VRegDefs.insert(VReg2SUnit(Reg, SU));
 | |
|   else {
 | |
|     SUnit *DefSU = DefI->SU;
 | |
|     if (DefSU != SU && DefSU != &ExitSU) {
 | |
|       SDep Dep(SU, SDep::Output, Reg);
 | |
|       Dep.setLatency(
 | |
|         SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | |
|       DefSU->addPred(Dep);
 | |
|     }
 | |
|     DefI->SU = SU;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addVRegUseDeps - Add a register data dependency if the instruction that
 | |
| /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
 | |
| /// register antidependency from this SUnit to instructions that occur later in
 | |
| /// the same scheduling region if they write the virtual register.
 | |
| ///
 | |
| /// TODO: Handle ExitSU "uses" properly.
 | |
| void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
|   unsigned Reg = MI->getOperand(OperIdx).getReg();
 | |
| 
 | |
|   // Lookup this operand's reaching definition.
 | |
|   assert(LIS && "vreg dependencies requires LiveIntervals");
 | |
|   LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
 | |
|   VNInfo *VNI = LRQ.valueIn();
 | |
| 
 | |
|   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
 | |
|   assert(VNI && "No value to read by operand");
 | |
|   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
 | |
|   // Phis and other noninstructions (after coalescing) have a NULL Def.
 | |
|   if (Def) {
 | |
|     SUnit *DefSU = getSUnit(Def);
 | |
|     if (DefSU) {
 | |
|       // The reaching Def lives within this scheduling region.
 | |
|       // Create a data dependence.
 | |
|       SDep dep(DefSU, SDep::Data, Reg);
 | |
|       // Adjust the dependence latency using operand def/use information, then
 | |
|       // allow the target to perform its own adjustments.
 | |
|       int DefOp = Def->findRegisterDefOperandIdx(Reg);
 | |
|       dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
 | |
| 
 | |
|       const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
|       ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
 | |
|       SU->addPred(dep);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add antidependence to the following def of the vreg it uses.
 | |
|   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | |
|   if (DefI != VRegDefs.end() && DefI->SU != SU)
 | |
|     DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
 | |
| }
 | |
| 
 | |
| /// Return true if MI is an instruction we are unable to reason about
 | |
| /// (like a call or something with unmodeled side effects).
 | |
| static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
 | |
|   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | |
|       (MI->hasOrderedMemoryRef() &&
 | |
|        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // This MI might have either incomplete info, or known to be unsafe
 | |
| // to deal with (i.e. volatile object).
 | |
| static inline bool isUnsafeMemoryObject(MachineInstr *MI,
 | |
|                                         const MachineFrameInfo *MFI) {
 | |
|   if (!MI || MI->memoperands_empty())
 | |
|     return true;
 | |
|   // We purposefully do no check for hasOneMemOperand() here
 | |
|   // in hope to trigger an assert downstream in order to
 | |
|   // finish implementation.
 | |
|   if ((*MI->memoperands_begin())->isVolatile() ||
 | |
|        MI->hasUnmodeledSideEffects())
 | |
|     return true;
 | |
|   const Value *V = (*MI->memoperands_begin())->getValue();
 | |
|   if (!V)
 | |
|     return true;
 | |
| 
 | |
|   SmallVector<Value *, 4> Objs;
 | |
|   getUnderlyingObjects(V, Objs);
 | |
|   for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
 | |
|        IE = Objs.end(); I != IE; ++I) {
 | |
|     V = *I;
 | |
| 
 | |
|     if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | |
|       // Similarly to getUnderlyingObjectForInstr:
 | |
|       // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | |
|       // because the code that uses this function has no way to cope with
 | |
|       // such aliases.
 | |
|       if (PSV->isAliased(MFI))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Does this pointer refer to a distinct and identifiable object?
 | |
|     if (!isIdentifiedObject(V))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This returns true if the two MIs need a chain edge betwee them.
 | |
| /// If these are not even memory operations, we still may need
 | |
| /// chain deps between them. The question really is - could
 | |
| /// these two MIs be reordered during scheduling from memory dependency
 | |
| /// point of view.
 | |
| static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | |
|                              MachineInstr *MIa,
 | |
|                              MachineInstr *MIb) {
 | |
|   // Cover a trivial case - no edge is need to itself.
 | |
|   if (MIa == MIb)
 | |
|     return false;
 | |
| 
 | |
|   if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
 | |
|     return true;
 | |
| 
 | |
|   // If we are dealing with two "normal" loads, we do not need an edge
 | |
|   // between them - they could be reordered.
 | |
|   if (!MIa->mayStore() && !MIb->mayStore())
 | |
|     return false;
 | |
| 
 | |
|   // To this point analysis is generic. From here on we do need AA.
 | |
|   if (!AA)
 | |
|     return true;
 | |
| 
 | |
|   MachineMemOperand *MMOa = *MIa->memoperands_begin();
 | |
|   MachineMemOperand *MMOb = *MIb->memoperands_begin();
 | |
| 
 | |
|   // FIXME: Need to handle multiple memory operands to support all targets.
 | |
|   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
 | |
|     llvm_unreachable("Multiple memory operands.");
 | |
| 
 | |
|   // The following interface to AA is fashioned after DAGCombiner::isAlias
 | |
|   // and operates with MachineMemOperand offset with some important
 | |
|   // assumptions:
 | |
|   //   - LLVM fundamentally assumes flat address spaces.
 | |
|   //   - MachineOperand offset can *only* result from legalization and
 | |
|   //     cannot affect queries other than the trivial case of overlap
 | |
|   //     checking.
 | |
|   //   - These offsets never wrap and never step outside
 | |
|   //     of allocated objects.
 | |
|   //   - There should never be any negative offsets here.
 | |
|   //
 | |
|   // FIXME: Modify API to hide this math from "user"
 | |
|   // FIXME: Even before we go to AA we can reason locally about some
 | |
|   // memory objects. It can save compile time, and possibly catch some
 | |
|   // corner cases not currently covered.
 | |
| 
 | |
|   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | |
|   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | |
| 
 | |
|   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
 | |
|   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
 | |
|   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
 | |
| 
 | |
|   AliasAnalysis::AliasResult AAResult = AA->alias(
 | |
|   AliasAnalysis::Location(MMOa->getValue(), Overlapa,
 | |
|                           MMOa->getTBAAInfo()),
 | |
|   AliasAnalysis::Location(MMOb->getValue(), Overlapb,
 | |
|                           MMOb->getTBAAInfo()));
 | |
| 
 | |
|   return (AAResult != AliasAnalysis::NoAlias);
 | |
| }
 | |
| 
 | |
| /// This recursive function iterates over chain deps of SUb looking for
 | |
| /// "latest" node that needs a chain edge to SUa.
 | |
| static unsigned
 | |
| iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | |
|                  SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
 | |
|                  SmallPtrSet<const SUnit*, 16> &Visited) {
 | |
|   if (!SUa || !SUb || SUb == ExitSU)
 | |
|     return *Depth;
 | |
| 
 | |
|   // Remember visited nodes.
 | |
|   if (!Visited.insert(SUb))
 | |
|       return *Depth;
 | |
|   // If there is _some_ dependency already in place, do not
 | |
|   // descend any further.
 | |
|   // TODO: Need to make sure that if that dependency got eliminated or ignored
 | |
|   // for any reason in the future, we would not violate DAG topology.
 | |
|   // Currently it does not happen, but makes an implicit assumption about
 | |
|   // future implementation.
 | |
|   //
 | |
|   // Independently, if we encounter node that is some sort of global
 | |
|   // object (like a call) we already have full set of dependencies to it
 | |
|   // and we can stop descending.
 | |
|   if (SUa->isSucc(SUb) ||
 | |
|       isGlobalMemoryObject(AA, SUb->getInstr()))
 | |
|     return *Depth;
 | |
| 
 | |
|   // If we do need an edge, or we have exceeded depth budget,
 | |
|   // add that edge to the predecessors chain of SUb,
 | |
|   // and stop descending.
 | |
|   if (*Depth > 200 ||
 | |
|       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
 | |
|     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
 | |
|     return *Depth;
 | |
|   }
 | |
|   // Track current depth.
 | |
|   (*Depth)++;
 | |
|   // Iterate over chain dependencies only.
 | |
|   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
 | |
|        I != E; ++I)
 | |
|     if (I->isCtrl())
 | |
|       iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
 | |
|   return *Depth;
 | |
| }
 | |
| 
 | |
| /// This function assumes that "downward" from SU there exist
 | |
| /// tail/leaf of already constructed DAG. It iterates downward and
 | |
| /// checks whether SU can be aliasing any node dominated
 | |
| /// by it.
 | |
| static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | |
|                             SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
 | |
|                             unsigned LatencyToLoad) {
 | |
|   if (!SU)
 | |
|     return;
 | |
| 
 | |
|   SmallPtrSet<const SUnit*, 16> Visited;
 | |
|   unsigned Depth = 0;
 | |
| 
 | |
|   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
 | |
|        I != IE; ++I) {
 | |
|     if (SU == *I)
 | |
|       continue;
 | |
|     if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
 | |
|       SDep Dep(SU, SDep::MayAliasMem);
 | |
|       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
 | |
|       (*I)->addPred(Dep);
 | |
|     }
 | |
|     // Now go through all the chain successors and iterate from them.
 | |
|     // Keep track of visited nodes.
 | |
|     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
 | |
|          JE = (*I)->Succs.end(); J != JE; ++J)
 | |
|       if (J->isCtrl())
 | |
|         iterateChainSucc (AA, MFI, SU, J->getSUnit(),
 | |
|                           ExitSU, &Depth, Visited);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check whether two objects need a chain edge, if so, add it
 | |
| /// otherwise remember the rejected SU.
 | |
| static inline
 | |
| void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | |
|                          SUnit *SUa, SUnit *SUb,
 | |
|                          std::set<SUnit *> &RejectList,
 | |
|                          unsigned TrueMemOrderLatency = 0,
 | |
|                          bool isNormalMemory = false) {
 | |
|   // If this is a false dependency,
 | |
|   // do not add the edge, but rememeber the rejected node.
 | |
|   if (!EnableAASchedMI ||
 | |
|       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
 | |
|     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
 | |
|     Dep.setLatency(TrueMemOrderLatency);
 | |
|     SUb->addPred(Dep);
 | |
|   }
 | |
|   else {
 | |
|     // Duplicate entries should be ignored.
 | |
|     RejectList.insert(SUb);
 | |
|     DEBUG(dbgs() << "\tReject chain dep between SU("
 | |
|           << SUa->NodeNum << ") and SU("
 | |
|           << SUb->NodeNum << ")\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create an SUnit for each real instruction, numbered in top-down toplological
 | |
| /// order. The instruction order A < B, implies that no edge exists from B to A.
 | |
| ///
 | |
| /// Map each real instruction to its SUnit.
 | |
| ///
 | |
| /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | |
| /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | |
| /// instead of pointers.
 | |
| ///
 | |
| /// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | |
| /// the original instruction list.
 | |
| void ScheduleDAGInstrs::initSUnits() {
 | |
|   // We'll be allocating one SUnit for each real instruction in the region,
 | |
|   // which is contained within a basic block.
 | |
|   SUnits.reserve(BB->size());
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
 | |
|     MachineInstr *MI = I;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     SUnit *SU = newSUnit(MI);
 | |
|     MISUnitMap[MI] = SU;
 | |
| 
 | |
|     SU->isCall = MI->isCall();
 | |
|     SU->isCommutable = MI->isCommutable();
 | |
| 
 | |
|     // Assign the Latency field of SU using target-provided information.
 | |
|     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If RegPressure is non null, compute register pressure as a side effect. The
 | |
| /// DAG builder is an efficient place to do it because it already visits
 | |
| /// operands.
 | |
| void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
 | |
|                                         RegPressureTracker *RPTracker) {
 | |
|   // Create an SUnit for each real instruction.
 | |
|   initSUnits();
 | |
| 
 | |
|   // We build scheduling units by walking a block's instruction list from bottom
 | |
|   // to top.
 | |
| 
 | |
|   // Remember where a generic side-effecting instruction is as we procede.
 | |
|   SUnit *BarrierChain = 0, *AliasChain = 0;
 | |
| 
 | |
|   // Memory references to specific known memory locations are tracked
 | |
|   // so that they can be given more precise dependencies. We track
 | |
|   // separately the known memory locations that may alias and those
 | |
|   // that are known not to alias
 | |
|   MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
 | |
|   MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | |
|   std::set<SUnit*> RejectMemNodes;
 | |
| 
 | |
|   // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | |
|   // without emitting the info from the previous call.
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = NULL;
 | |
| 
 | |
|   assert(Defs.empty() && Uses.empty() &&
 | |
|          "Only BuildGraph should update Defs/Uses");
 | |
|   Defs.setUniverse(TRI->getNumRegs());
 | |
|   Uses.setUniverse(TRI->getNumRegs());
 | |
| 
 | |
|   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
 | |
|   // FIXME: Allow SparseSet to reserve space for the creation of virtual
 | |
|   // registers during scheduling. Don't artificially inflate the Universe
 | |
|   // because we want to assert that vregs are not created during DAG building.
 | |
|   VRegDefs.setUniverse(MRI.getNumVirtRegs());
 | |
| 
 | |
|   // Model data dependencies between instructions being scheduled and the
 | |
|   // ExitSU.
 | |
|   addSchedBarrierDeps();
 | |
| 
 | |
|   // Walk the list of instructions, from bottom moving up.
 | |
|   MachineInstr *DbgMI = NULL;
 | |
|   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr *MI = prior(MII);
 | |
|     if (MI && DbgMI) {
 | |
|       DbgValues.push_back(std::make_pair(DbgMI, MI));
 | |
|       DbgMI = NULL;
 | |
|     }
 | |
| 
 | |
|     if (MI->isDebugValue()) {
 | |
|       DbgMI = MI;
 | |
|       continue;
 | |
|     }
 | |
|     if (RPTracker) {
 | |
|       RPTracker->recede();
 | |
|       assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
 | |
|     }
 | |
| 
 | |
|     assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
 | |
|            "Cannot schedule terminators or labels!");
 | |
| 
 | |
|     SUnit *SU = MISUnitMap[MI];
 | |
|     assert(SU && "No SUnit mapped to this MI");
 | |
| 
 | |
|     // Add register-based dependencies (data, anti, and output).
 | |
|     bool HasVRegDef = false;
 | |
|     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | |
|       const MachineOperand &MO = MI->getOperand(j);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         addPhysRegDeps(SU, j);
 | |
|       else {
 | |
|         assert(!IsPostRA && "Virtual register encountered!");
 | |
|         if (MO.isDef()) {
 | |
|           HasVRegDef = true;
 | |
|           addVRegDefDeps(SU, j);
 | |
|         }
 | |
|         else if (MO.readsReg()) // ignore undef operands
 | |
|           addVRegUseDeps(SU, j);
 | |
|       }
 | |
|     }
 | |
|     // If we haven't seen any uses in this scheduling region, create a
 | |
|     // dependence edge to ExitSU to model the live-out latency. This is required
 | |
|     // for vreg defs with no in-region use, and prefetches with no vreg def.
 | |
|     //
 | |
|     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
 | |
|     // check currently relies on being called before adding chain deps.
 | |
|     if (SU->NumSuccs == 0 && SU->Latency > 1
 | |
|         && (HasVRegDef || MI->mayLoad())) {
 | |
|       SDep Dep(SU, SDep::Artificial);
 | |
|       Dep.setLatency(SU->Latency - 1);
 | |
|       ExitSU.addPred(Dep);
 | |
|     }
 | |
| 
 | |
|     // Add chain dependencies.
 | |
|     // Chain dependencies used to enforce memory order should have
 | |
|     // latency of 0 (except for true dependency of Store followed by
 | |
|     // aliased Load... we estimate that with a single cycle of latency
 | |
|     // assuming the hardware will bypass)
 | |
|     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | |
|     // after stack slots are lowered to actual addresses.
 | |
|     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | |
|     // produce more precise dependence information.
 | |
|     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
 | |
|     if (isGlobalMemoryObject(AA, MI)) {
 | |
|       // Be conservative with these and add dependencies on all memory
 | |
|       // references, even those that are known to not alias.
 | |
|       for (MapVector<const Value *, SUnit *>::iterator I =
 | |
|              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Barrier));
 | |
|       }
 | |
|       for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
 | |
|           SDep Dep(SU, SDep::Barrier);
 | |
|           Dep.setLatency(TrueMemOrderLatency);
 | |
|           I->second[i]->addPred(Dep);
 | |
|         }
 | |
|       }
 | |
|       // Add SU to the barrier chain.
 | |
|       if (BarrierChain)
 | |
|         BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | |
|       BarrierChain = SU;
 | |
|       // This is a barrier event that acts as a pivotal node in the DAG,
 | |
|       // so it is safe to clear list of exposed nodes.
 | |
|       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | |
|                       TrueMemOrderLatency);
 | |
|       RejectMemNodes.clear();
 | |
|       NonAliasMemDefs.clear();
 | |
|       NonAliasMemUses.clear();
 | |
| 
 | |
|       // fall-through
 | |
|     new_alias_chain:
 | |
|       // Chain all possibly aliasing memory references though SU.
 | |
|       if (AliasChain) {
 | |
|         unsigned ChainLatency = 0;
 | |
|         if (AliasChain->getInstr()->mayLoad())
 | |
|           ChainLatency = TrueMemOrderLatency;
 | |
|         addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
 | |
|                            ChainLatency);
 | |
|       }
 | |
|       AliasChain = SU;
 | |
|       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|         addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
 | |
|                            TrueMemOrderLatency);
 | |
|       for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
 | |
|            E = AliasMemDefs.end(); I != E; ++I)
 | |
|         addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
 | |
|       for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
 | |
|                              TrueMemOrderLatency);
 | |
|       }
 | |
|       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | |
|                       TrueMemOrderLatency);
 | |
|       PendingLoads.clear();
 | |
|       AliasMemDefs.clear();
 | |
|       AliasMemUses.clear();
 | |
|     } else if (MI->mayStore()) {
 | |
|       SmallVector<std::pair<const Value *, bool>, 4> Objs;
 | |
|       getUnderlyingObjectsForInstr(MI, MFI, Objs);
 | |
| 
 | |
|       if (Objs.empty()) {
 | |
|         // Treat all other stores conservatively.
 | |
|         goto new_alias_chain;
 | |
|       }
 | |
| 
 | |
|       bool MayAlias = false;
 | |
|       for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
 | |
|            K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
 | |
|         const Value *V = K->first;
 | |
|         bool ThisMayAlias = K->second;
 | |
|         if (ThisMayAlias)
 | |
|           MayAlias = true;
 | |
| 
 | |
|         // A store to a specific PseudoSourceValue. Add precise dependencies.
 | |
|         // Record the def in MemDefs, first adding a dep if there is
 | |
|         // an existing def.
 | |
|         MapVector<const Value *, SUnit *>::iterator I =
 | |
|           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|         MapVector<const Value *, SUnit *>::iterator IE =
 | |
|           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|         if (I != IE) {
 | |
|           addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
 | |
|           I->second = SU;
 | |
|         } else {
 | |
|           if (ThisMayAlias)
 | |
|             AliasMemDefs[V] = SU;
 | |
|           else
 | |
|             NonAliasMemDefs[V] = SU;
 | |
|         }
 | |
|         // Handle the uses in MemUses, if there are any.
 | |
|         MapVector<const Value *, std::vector<SUnit *> >::iterator J =
 | |
|           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | |
|         MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
 | |
|           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | |
|         if (J != JE) {
 | |
|           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | |
|             addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
 | |
|                                TrueMemOrderLatency, true);
 | |
|           J->second.clear();
 | |
|         }
 | |
|       }
 | |
|       if (MayAlias) {
 | |
|         // Add dependencies from all the PendingLoads, i.e. loads
 | |
|         // with no underlying object.
 | |
|         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|           addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
 | |
|                              TrueMemOrderLatency);
 | |
|         // Add dependence on alias chain, if needed.
 | |
|         if (AliasChain)
 | |
|           addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
 | |
|         // But we also should check dependent instructions for the
 | |
|         // SU in question.
 | |
|         adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | |
|                         TrueMemOrderLatency);
 | |
|       }
 | |
|       // Add dependence on barrier chain, if needed.
 | |
|       // There is no point to check aliasing on barrier event. Even if
 | |
|       // SU and barrier _could_ be reordered, they should not. In addition,
 | |
|       // we have lost all RejectMemNodes below barrier.
 | |
|       if (BarrierChain)
 | |
|         BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | |
| 
 | |
|       if (!ExitSU.isPred(SU))
 | |
|         // Push store's up a bit to avoid them getting in between cmp
 | |
|         // and branches.
 | |
|         ExitSU.addPred(SDep(SU, SDep::Artificial));
 | |
|     } else if (MI->mayLoad()) {
 | |
|       bool MayAlias = true;
 | |
|       if (MI->isInvariantLoad(AA)) {
 | |
|         // Invariant load, no chain dependencies needed!
 | |
|       } else {
 | |
|         SmallVector<std::pair<const Value *, bool>, 4> Objs;
 | |
|         getUnderlyingObjectsForInstr(MI, MFI, Objs);
 | |
| 
 | |
|         if (Objs.empty()) {
 | |
|           // A load with no underlying object. Depend on all
 | |
|           // potentially aliasing stores.
 | |
|           for (MapVector<const Value *, SUnit *>::iterator I =
 | |
|                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | |
|             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
 | |
| 
 | |
|           PendingLoads.push_back(SU);
 | |
|           MayAlias = true;
 | |
|         } else {
 | |
|           MayAlias = false;
 | |
|         }
 | |
| 
 | |
|         for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
 | |
|              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
 | |
|           const Value *V = J->first;
 | |
|           bool ThisMayAlias = J->second;
 | |
| 
 | |
|           if (ThisMayAlias)
 | |
|             MayAlias = true;
 | |
| 
 | |
|           // A load from a specific PseudoSourceValue. Add precise dependencies.
 | |
|           MapVector<const Value *, SUnit *>::iterator I =
 | |
|             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|           MapVector<const Value *, SUnit *>::iterator IE =
 | |
|             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|           if (I != IE)
 | |
|             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
 | |
|           if (ThisMayAlias)
 | |
|             AliasMemUses[V].push_back(SU);
 | |
|           else
 | |
|             NonAliasMemUses[V].push_back(SU);
 | |
|         }
 | |
|         if (MayAlias)
 | |
|           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
 | |
|         // Add dependencies on alias and barrier chains, if needed.
 | |
|         if (MayAlias && AliasChain)
 | |
|           addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
 | |
|         if (BarrierChain)
 | |
|           BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (DbgMI)
 | |
|     FirstDbgValue = DbgMI;
 | |
| 
 | |
|   Defs.clear();
 | |
|   Uses.clear();
 | |
|   VRegDefs.clear();
 | |
|   PendingLoads.clear();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   SU->getInstr()->dump();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | |
|   std::string s;
 | |
|   raw_string_ostream oss(s);
 | |
|   if (SU == &EntrySU)
 | |
|     oss << "<entry>";
 | |
|   else if (SU == &ExitSU)
 | |
|     oss << "<exit>";
 | |
|   else
 | |
|     SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| /// Return the basic block label. It is not necessarilly unique because a block
 | |
| /// contains multiple scheduling regions. But it is fine for visualization.
 | |
| std::string ScheduleDAGInstrs::getDAGName() const {
 | |
|   return "dag." + BB->getFullName();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SchedDFSResult Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace llvm {
 | |
| /// \brief Internal state used to compute SchedDFSResult.
 | |
| class SchedDFSImpl {
 | |
|   SchedDFSResult &R;
 | |
| 
 | |
|   /// Join DAG nodes into equivalence classes by their subtree.
 | |
|   IntEqClasses SubtreeClasses;
 | |
|   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
 | |
|   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
 | |
| 
 | |
|   struct RootData {
 | |
|     unsigned NodeID;
 | |
|     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
 | |
|     unsigned SubInstrCount; // Instr count in this tree only, not children.
 | |
| 
 | |
|     RootData(unsigned id): NodeID(id),
 | |
|                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
 | |
|                            SubInstrCount(0) {}
 | |
| 
 | |
|     unsigned getSparseSetIndex() const { return NodeID; }
 | |
|   };
 | |
| 
 | |
|   SparseSet<RootData> RootSet;
 | |
| 
 | |
| public:
 | |
|   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
 | |
|     RootSet.setUniverse(R.DFSNodeData.size());
 | |
|   }
 | |
| 
 | |
|   /// Return true if this node been visited by the DFS traversal.
 | |
|   ///
 | |
|   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
 | |
|   /// ID. Later, SubtreeID is updated but remains valid.
 | |
|   bool isVisited(const SUnit *SU) const {
 | |
|     return R.DFSNodeData[SU->NodeNum].SubtreeID
 | |
|       != SchedDFSResult::InvalidSubtreeID;
 | |
|   }
 | |
| 
 | |
|   /// Initialize this node's instruction count. We don't need to flag the node
 | |
|   /// visited until visitPostorder because the DAG cannot have cycles.
 | |
|   void visitPreorder(const SUnit *SU) {
 | |
|     R.DFSNodeData[SU->NodeNum].InstrCount =
 | |
|       SU->getInstr()->isTransient() ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   /// Called once for each node after all predecessors are visited. Revisit this
 | |
|   /// node's predecessors and potentially join them now that we know the ILP of
 | |
|   /// the other predecessors.
 | |
|   void visitPostorderNode(const SUnit *SU) {
 | |
|     // Mark this node as the root of a subtree. It may be joined with its
 | |
|     // successors later.
 | |
|     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
 | |
|     RootData RData(SU->NodeNum);
 | |
|     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
 | |
| 
 | |
|     // If any predecessors are still in their own subtree, they either cannot be
 | |
|     // joined or are large enough to remain separate. If this parent node's
 | |
|     // total instruction count is not greater than a child subtree by at least
 | |
|     // the subtree limit, then try to join it now since splitting subtrees is
 | |
|     // only useful if multiple high-pressure paths are possible.
 | |
|     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
 | |
|     for (SUnit::const_pred_iterator
 | |
|            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | |
|       if (PI->getKind() != SDep::Data)
 | |
|         continue;
 | |
|       unsigned PredNum = PI->getSUnit()->NodeNum;
 | |
|       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
 | |
|         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
 | |
| 
 | |
|       // Either link or merge the TreeData entry from the child to the parent.
 | |
|       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
 | |
|         // If the predecessor's parent is invalid, this is a tree edge and the
 | |
|         // current node is the parent.
 | |
|         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
 | |
|           RootSet[PredNum].ParentNodeID = SU->NodeNum;
 | |
|       }
 | |
|       else if (RootSet.count(PredNum)) {
 | |
|         // The predecessor is not a root, but is still in the root set. This
 | |
|         // must be the new parent that it was just joined to. Note that
 | |
|         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
 | |
|         // set to the original parent.
 | |
|         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
 | |
|         RootSet.erase(PredNum);
 | |
|       }
 | |
|     }
 | |
|     RootSet[SU->NodeNum] = RData;
 | |
|   }
 | |
| 
 | |
|   /// Called once for each tree edge after calling visitPostOrderNode on the
 | |
|   /// predecessor. Increment the parent node's instruction count and
 | |
|   /// preemptively join this subtree to its parent's if it is small enough.
 | |
|   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
 | |
|     R.DFSNodeData[Succ->NodeNum].InstrCount
 | |
|       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
 | |
|     joinPredSubtree(PredDep, Succ);
 | |
|   }
 | |
| 
 | |
|   /// Add a connection for cross edges.
 | |
|   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
 | |
|     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
 | |
|   }
 | |
| 
 | |
|   /// Set each node's subtree ID to the representative ID and record connections
 | |
|   /// between trees.
 | |
|   void finalize() {
 | |
|     SubtreeClasses.compress();
 | |
|     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
 | |
|     assert(SubtreeClasses.getNumClasses() == RootSet.size()
 | |
|            && "number of roots should match trees");
 | |
|     for (SparseSet<RootData>::const_iterator
 | |
|            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
 | |
|       unsigned TreeID = SubtreeClasses[RI->NodeID];
 | |
|       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
 | |
|         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
 | |
|       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
 | |
|       // Note that SubInstrCount may be greater than InstrCount if we joined
 | |
|       // subtrees across a cross edge. InstrCount will be attributed to the
 | |
|       // original parent, while SubInstrCount will be attributed to the joined
 | |
|       // parent.
 | |
|     }
 | |
|     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
 | |
|     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
 | |
|     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
 | |
|     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
 | |
|       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
 | |
|       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
 | |
|             << R.DFSNodeData[Idx].SubtreeID << '\n');
 | |
|     }
 | |
|     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
 | |
|            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
 | |
|          I != E; ++I) {
 | |
|       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
 | |
|       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
 | |
|       if (PredTree == SuccTree)
 | |
|         continue;
 | |
|       unsigned Depth = I->first->getDepth();
 | |
|       addConnection(PredTree, SuccTree, Depth);
 | |
|       addConnection(SuccTree, PredTree, Depth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   /// Join the predecessor subtree with the successor that is its DFS
 | |
|   /// parent. Apply some heuristics before joining.
 | |
|   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
 | |
|                        bool CheckLimit = true) {
 | |
|     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
 | |
| 
 | |
|     // Check if the predecessor is already joined.
 | |
|     const SUnit *PredSU = PredDep.getSUnit();
 | |
|     unsigned PredNum = PredSU->NodeNum;
 | |
|     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
 | |
|       return false;
 | |
| 
 | |
|     // Four is the magic number of successors before a node is considered a
 | |
|     // pinch point.
 | |
|     unsigned NumDataSucs = 0;
 | |
|     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
 | |
|            SE = PredSU->Succs.end(); SI != SE; ++SI) {
 | |
|       if (SI->getKind() == SDep::Data) {
 | |
|         if (++NumDataSucs >= 4)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
 | |
|       return false;
 | |
|     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
 | |
|     SubtreeClasses.join(Succ->NodeNum, PredNum);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Called by finalize() to record a connection between trees.
 | |
|   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
 | |
|     if (!Depth)
 | |
|       return;
 | |
| 
 | |
|     do {
 | |
|       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
 | |
|         R.SubtreeConnections[FromTree];
 | |
|       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
 | |
|              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
 | |
|         if (I->TreeID == ToTree) {
 | |
|           I->Level = std::max(I->Level, Depth);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
 | |
|       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
 | |
|     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
 | |
|   }
 | |
| };
 | |
| } // namespace llvm
 | |
| 
 | |
| namespace {
 | |
| /// \brief Manage the stack used by a reverse depth-first search over the DAG.
 | |
| class SchedDAGReverseDFS {
 | |
|   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
 | |
| public:
 | |
|   bool isComplete() const { return DFSStack.empty(); }
 | |
| 
 | |
|   void follow(const SUnit *SU) {
 | |
|     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
 | |
|   }
 | |
|   void advance() { ++DFSStack.back().second; }
 | |
| 
 | |
|   const SDep *backtrack() {
 | |
|     DFSStack.pop_back();
 | |
|     return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
 | |
|   }
 | |
| 
 | |
|   const SUnit *getCurr() const { return DFSStack.back().first; }
 | |
| 
 | |
|   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
 | |
| 
 | |
|   SUnit::const_pred_iterator getPredEnd() const {
 | |
|     return getCurr()->Preds.end();
 | |
|   }
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| static bool hasDataSucc(const SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator
 | |
|          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
 | |
|     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
 | |
| /// search from this root.
 | |
| void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
 | |
|   if (!IsBottomUp)
 | |
|     llvm_unreachable("Top-down ILP metric is unimplemnted");
 | |
| 
 | |
|   SchedDFSImpl Impl(*this);
 | |
|   for (ArrayRef<SUnit>::const_iterator
 | |
|          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
 | |
|     const SUnit *SU = &*SI;
 | |
|     if (Impl.isVisited(SU) || hasDataSucc(SU))
 | |
|       continue;
 | |
| 
 | |
|     SchedDAGReverseDFS DFS;
 | |
|     Impl.visitPreorder(SU);
 | |
|     DFS.follow(SU);
 | |
|     for (;;) {
 | |
|       // Traverse the leftmost path as far as possible.
 | |
|       while (DFS.getPred() != DFS.getPredEnd()) {
 | |
|         const SDep &PredDep = *DFS.getPred();
 | |
|         DFS.advance();
 | |
|         // Ignore non-data edges.
 | |
|         if (PredDep.getKind() != SDep::Data
 | |
|             || PredDep.getSUnit()->isBoundaryNode()) {
 | |
|           continue;
 | |
|         }
 | |
|         // An already visited edge is a cross edge, assuming an acyclic DAG.
 | |
|         if (Impl.isVisited(PredDep.getSUnit())) {
 | |
|           Impl.visitCrossEdge(PredDep, DFS.getCurr());
 | |
|           continue;
 | |
|         }
 | |
|         Impl.visitPreorder(PredDep.getSUnit());
 | |
|         DFS.follow(PredDep.getSUnit());
 | |
|       }
 | |
|       // Visit the top of the stack in postorder and backtrack.
 | |
|       const SUnit *Child = DFS.getCurr();
 | |
|       const SDep *PredDep = DFS.backtrack();
 | |
|       Impl.visitPostorderNode(Child);
 | |
|       if (PredDep)
 | |
|         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
 | |
|       if (DFS.isComplete())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   Impl.finalize();
 | |
| }
 | |
| 
 | |
| /// The root of the given SubtreeID was just scheduled. For all subtrees
 | |
| /// connected to this tree, record the depth of the connection so that the
 | |
| /// nearest connected subtrees can be prioritized.
 | |
| void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
 | |
|   for (SmallVectorImpl<Connection>::const_iterator
 | |
|          I = SubtreeConnections[SubtreeID].begin(),
 | |
|          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
 | |
|     SubtreeConnectLevels[I->TreeID] =
 | |
|       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
 | |
|     DEBUG(dbgs() << "  Tree: " << I->TreeID
 | |
|           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ILPValue::print(raw_ostream &OS) const {
 | |
|   OS << InstrCount << " / " << Length << " = ";
 | |
|   if (!Length)
 | |
|     OS << "BADILP";
 | |
|   else
 | |
|     OS << format("%g", ((double)InstrCount / Length));
 | |
| }
 | |
| 
 | |
| void ILPValue::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
 | |
|   Val.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 | |
| #endif // !NDEBUG || LLVM_ENABLE_DUMP
 |