mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Thanks to Jakob for isolating the underlying problem from the test case in r177423. The original commit had introduced asymmetric copy operations, but these turned out to be a work-around to the real problem (the use of == instead of hasSubClassEq in PPCCTRLoops). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177679 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			776 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			776 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass identifies loops where we can generate the PPC branch instructions
 | 
						|
// that decrement and test the count register (CTR) (bdnz and friends).
 | 
						|
// This pass is based on the HexagonHardwareLoops pass.
 | 
						|
//
 | 
						|
// The pattern that defines the induction variable can changed depending on
 | 
						|
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
 | 
						|
// normalizes induction variables, and the Loop Strength Reduction pass
 | 
						|
// run by 'llc' may also make changes to the induction variable.
 | 
						|
// The pattern detected by this phase is due to running Strength Reduction.
 | 
						|
//
 | 
						|
// Criteria for CTR loops:
 | 
						|
//  - Countable loops (w/ ind. var for a trip count)
 | 
						|
//  - Assumes loops are normalized by IndVarSimplify
 | 
						|
//  - Try inner-most loops first
 | 
						|
//  - No nested CTR loops.
 | 
						|
//  - No function calls in loops.
 | 
						|
//
 | 
						|
//  Note: As with unconverted loops, PPCBranchSelector must be run after this
 | 
						|
//  pass in order to convert long-displacement jumps into jump pairs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ctrloops"
 | 
						|
#include "PPC.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterScavenging.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/PassSupport.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializePPCCTRLoopsPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class CountValue;
 | 
						|
  struct PPCCTRLoops : public MachineFunctionPass {
 | 
						|
    MachineLoopInfo       *MLI;
 | 
						|
    MachineRegisterInfo   *MRI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;   // Pass identification, replacement for typeid
 | 
						|
 | 
						|
    PPCCTRLoops() : MachineFunctionPass(ID) {
 | 
						|
      initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    const char *getPassName() const { return "PPC CTR Loops"; }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | 
						|
    /// induction variable.
 | 
						|
    /// Should be defined in MachineLoop. Based upon version in class Loop.
 | 
						|
    void getCanonicalInductionVariable(MachineLoop *L,
 | 
						|
                              SmallVector<MachineInstr *, 4> &IVars,
 | 
						|
                              SmallVector<MachineInstr *, 4> &IOps) const;
 | 
						|
 | 
						|
    /// getTripCount - Return a loop-invariant LLVM register indicating the
 | 
						|
    /// number of times the loop will be executed.  If the trip-count cannot
 | 
						|
    /// be determined, this return null.
 | 
						|
    CountValue *getTripCount(MachineLoop *L,
 | 
						|
                             SmallVector<MachineInstr *, 2> &OldInsts) const;
 | 
						|
 | 
						|
    /// isInductionOperation - Return true if the instruction matches the
 | 
						|
    /// pattern for an opertion that defines an induction variable.
 | 
						|
    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
 | 
						|
 | 
						|
    /// isInvalidOperation - Return true if the instruction is not valid within
 | 
						|
    /// a CTR loop.
 | 
						|
    bool isInvalidLoopOperation(const MachineInstr *MI) const;
 | 
						|
 | 
						|
    /// containsInavlidInstruction - Return true if the loop contains an
 | 
						|
    /// instruction that inhibits using the CTR loop.
 | 
						|
    bool containsInvalidInstruction(MachineLoop *L) const;
 | 
						|
 | 
						|
    /// converToCTRLoop - Given a loop, check if we can convert it to a
 | 
						|
    /// CTR loop.  If so, then perform the conversion and return true.
 | 
						|
    bool convertToCTRLoop(MachineLoop *L);
 | 
						|
 | 
						|
    /// isDead - Return true if the instruction is now dead.
 | 
						|
    bool isDead(const MachineInstr *MI,
 | 
						|
                SmallVector<MachineInstr *, 1> &DeadPhis) const;
 | 
						|
 | 
						|
    /// removeIfDead - Remove the instruction if it is now dead.
 | 
						|
    void removeIfDead(MachineInstr *MI);
 | 
						|
  };
 | 
						|
 | 
						|
  char PPCCTRLoops::ID = 0;
 | 
						|
 | 
						|
 | 
						|
  // CountValue class - Abstraction for a trip count of a loop. A
 | 
						|
  // smaller vesrsion of the MachineOperand class without the concerns
 | 
						|
  // of changing the operand representation.
 | 
						|
  class CountValue {
 | 
						|
  public:
 | 
						|
    enum CountValueType {
 | 
						|
      CV_Register,
 | 
						|
      CV_Immediate
 | 
						|
    };
 | 
						|
  private:
 | 
						|
    CountValueType Kind;
 | 
						|
    union Values {
 | 
						|
      unsigned RegNum;
 | 
						|
      int64_t ImmVal;
 | 
						|
      Values(unsigned r) : RegNum(r) {}
 | 
						|
      Values(int64_t i) : ImmVal(i) {}
 | 
						|
    } Contents;
 | 
						|
    bool isNegative;
 | 
						|
 | 
						|
  public:
 | 
						|
    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
 | 
						|
                                       isNegative(neg) {}
 | 
						|
    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
 | 
						|
                                     isNegative(i < 0) {}
 | 
						|
    CountValueType getType() const { return Kind; }
 | 
						|
    bool isReg() const { return Kind == CV_Register; }
 | 
						|
    bool isImm() const { return Kind == CV_Immediate; }
 | 
						|
    bool isNeg() const { return isNegative; }
 | 
						|
 | 
						|
    unsigned getReg() const {
 | 
						|
      assert(isReg() && "Wrong CountValue accessor");
 | 
						|
      return Contents.RegNum;
 | 
						|
    }
 | 
						|
    void setReg(unsigned Val) {
 | 
						|
      Contents.RegNum = Val;
 | 
						|
    }
 | 
						|
    int64_t getImm() const {
 | 
						|
      assert(isImm() && "Wrong CountValue accessor");
 | 
						|
      if (isNegative) {
 | 
						|
        return -Contents.ImmVal;
 | 
						|
      }
 | 
						|
      return Contents.ImmVal;
 | 
						|
    }
 | 
						|
    void setImm(int64_t Val) {
 | 
						|
      Contents.ImmVal = Val;
 | 
						|
    }
 | 
						|
 | 
						|
    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
 | 
						|
      if (isReg()) { OS << PrintReg(getReg()); }
 | 
						|
      if (isImm()) { OS << getImm(); }
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
/// isCompareEquals - Returns true if the instruction is a compare equals
 | 
						|
/// instruction with an immediate operand.
 | 
						|
static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp,
 | 
						|
                               bool &Int64Cmp) {
 | 
						|
  if (MI->getOpcode() == PPC::CMPWI) {
 | 
						|
    SignedCmp = true;
 | 
						|
    Int64Cmp = false;
 | 
						|
    return true;
 | 
						|
  } else if (MI->getOpcode() == PPC::CMPDI) {
 | 
						|
    SignedCmp = true;
 | 
						|
    Int64Cmp = true;
 | 
						|
    return true;
 | 
						|
  } else if (MI->getOpcode() == PPC::CMPLWI) {
 | 
						|
    SignedCmp = false;
 | 
						|
    Int64Cmp = false;
 | 
						|
    return true;
 | 
						|
  } else if (MI->getOpcode() == PPC::CMPLDI) {
 | 
						|
    SignedCmp = false;
 | 
						|
    Int64Cmp = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createPPCCTRLoops - Factory for creating
 | 
						|
/// the CTR loop phase.
 | 
						|
FunctionPass *llvm::createPPCCTRLoops() {
 | 
						|
  return new PPCCTRLoops();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // get the loop information
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  // get the register information
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  // the target specific instructio info.
 | 
						|
  TII = MF.getTarget().getInstrInfo();
 | 
						|
 | 
						|
  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    MachineLoop *L = *I;
 | 
						|
    if (!L->getParentLoop()) {
 | 
						|
      Changed |= convertToCTRLoop(L);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | 
						|
/// induction variable. We check for a simple recurrence pattern - an
 | 
						|
/// integer recurrence that decrements by one each time through the loop and
 | 
						|
/// ends at zero.  If so, return the phi node that corresponds to it.
 | 
						|
///
 | 
						|
/// Based upon the similar code in LoopInfo except this code is specific to
 | 
						|
/// the machine.
 | 
						|
/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
 | 
						|
///
 | 
						|
void
 | 
						|
PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
 | 
						|
                                  SmallVector<MachineInstr *, 4> &IVars,
 | 
						|
                                  SmallVector<MachineInstr *, 4> &IOps) const {
 | 
						|
  MachineBasicBlock *TopMBB = L->getTopBlock();
 | 
						|
  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
 | 
						|
  assert(PI != TopMBB->pred_end() &&
 | 
						|
         "Loop must have more than one incoming edge!");
 | 
						|
  MachineBasicBlock *Backedge = *PI++;
 | 
						|
  if (PI == TopMBB->pred_end()) return;  // dead loop
 | 
						|
  MachineBasicBlock *Incoming = *PI++;
 | 
						|
  if (PI != TopMBB->pred_end()) return;  // multiple backedges?
 | 
						|
 | 
						|
  // make sure there is one incoming and one backedge and determine which
 | 
						|
  // is which.
 | 
						|
  if (L->contains(Incoming)) {
 | 
						|
    if (L->contains(Backedge))
 | 
						|
      return;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!L->contains(Backedge))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a canonical induction variable:
 | 
						|
  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
 | 
						|
  //   - The recurrence comes from the backedge.
 | 
						|
  //   - the definition is an induction operatio.n
 | 
						|
  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
 | 
						|
       I != E && I->isPHI(); ++I) {
 | 
						|
    MachineInstr *MPhi = &*I;
 | 
						|
    unsigned DefReg = MPhi->getOperand(0).getReg();
 | 
						|
    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
 | 
						|
      // Check each operand for the value from the backedge.
 | 
						|
      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
 | 
						|
      if (L->contains(MBB)) { // operands comes from the backedge
 | 
						|
        // Check if the definition is an induction operation.
 | 
						|
        MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
 | 
						|
        if (isInductionOperation(DI, DefReg)) {
 | 
						|
          IOps.push_back(DI);
 | 
						|
          IVars.push_back(MPhi);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// getTripCount - Return a loop-invariant LLVM value indicating the
 | 
						|
/// number of times the loop will be executed.  The trip count can
 | 
						|
/// be either a register or a constant value.  If the trip-count
 | 
						|
/// cannot be determined, this returns null.
 | 
						|
///
 | 
						|
/// We find the trip count from the phi instruction that defines the
 | 
						|
/// induction variable.  We follow the links to the CMP instruction
 | 
						|
/// to get the trip count.
 | 
						|
///
 | 
						|
/// Based upon getTripCount in LoopInfo.
 | 
						|
///
 | 
						|
CountValue *PPCCTRLoops::getTripCount(MachineLoop *L,
 | 
						|
                           SmallVector<MachineInstr *, 2> &OldInsts) const {
 | 
						|
  MachineBasicBlock *LastMBB = L->getExitingBlock();
 | 
						|
  // Don't generate a CTR loop if the loop has more than one exit.
 | 
						|
  if (LastMBB == 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
 | 
						|
  if (LastI->getOpcode() != PPC::BCC)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // We need to make sure that this compare is defining the condition
 | 
						|
  // register actually used by the terminating branch.
 | 
						|
 | 
						|
  unsigned PredReg = LastI->getOperand(1).getReg();
 | 
						|
  DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI);
 | 
						|
 | 
						|
  unsigned PredCond = LastI->getOperand(0).getImm();
 | 
						|
  if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Check that the loop has a induction variable.
 | 
						|
  SmallVector<MachineInstr *, 4> IVars, IOps;
 | 
						|
  getCanonicalInductionVariable(L, IVars, IOps);
 | 
						|
  for (unsigned i = 0; i < IVars.size(); ++i) {
 | 
						|
    MachineInstr *IOp = IOps[i];
 | 
						|
    MachineInstr *IV_Inst = IVars[i];
 | 
						|
 | 
						|
    // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
 | 
						|
    //  if Imm is 0, get the count from the PHI opnd
 | 
						|
    //  if Imm is -M, than M is the count
 | 
						|
    //  Otherwise, Imm is the count
 | 
						|
    MachineOperand *IV_Opnd;
 | 
						|
    const MachineOperand *InitialValue;
 | 
						|
    if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
 | 
						|
      InitialValue = &IV_Inst->getOperand(1);
 | 
						|
      IV_Opnd = &IV_Inst->getOperand(3);
 | 
						|
    } else {
 | 
						|
      InitialValue = &IV_Inst->getOperand(3);
 | 
						|
      IV_Opnd = &IV_Inst->getOperand(1);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Considering:\n");
 | 
						|
    DEBUG(dbgs() << "  induction operation: " << *IOp);
 | 
						|
    DEBUG(dbgs() << "  induction variable: " << *IV_Inst);
 | 
						|
    DEBUG(dbgs() << "  initial value: " << *InitialValue << "\n");
 | 
						|
  
 | 
						|
    // Look for the cmp instruction to determine if we
 | 
						|
    // can get a useful trip count.  The trip count can
 | 
						|
    // be either a register or an immediate.  The location
 | 
						|
    // of the value depends upon the type (reg or imm).
 | 
						|
    for (MachineRegisterInfo::reg_iterator
 | 
						|
         RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
 | 
						|
         RI != RE; ++RI) {
 | 
						|
      IV_Opnd = &RI.getOperand();
 | 
						|
      bool SignedCmp, Int64Cmp;
 | 
						|
      MachineInstr *MI = IV_Opnd->getParent();
 | 
						|
      if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp, Int64Cmp) &&
 | 
						|
          MI->getOperand(0).getReg() == PredReg) {
 | 
						|
 | 
						|
        OldInsts.push_back(MI);
 | 
						|
        OldInsts.push_back(IOp);
 | 
						|
 
 | 
						|
        DEBUG(dbgs() << "  compare: " << *MI);
 | 
						|
 
 | 
						|
        const MachineOperand &MO = MI->getOperand(2);
 | 
						|
        assert(MO.isImm() && "IV Cmp Operand should be an immediate");
 | 
						|
 | 
						|
        int64_t ImmVal;
 | 
						|
        if (SignedCmp)
 | 
						|
          ImmVal = (short) MO.getImm();
 | 
						|
        else
 | 
						|
          ImmVal = MO.getImm();
 | 
						|
  
 | 
						|
        const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
 | 
						|
        assert(L->contains(IV_DefInstr->getParent()) &&
 | 
						|
               "IV definition should occurs in loop");
 | 
						|
        int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm();
 | 
						|
  
 | 
						|
        assert(InitialValue->isReg() && "Expecting register for init value");
 | 
						|
        unsigned InitialValueReg = InitialValue->getReg();
 | 
						|
  
 | 
						|
        MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg);
 | 
						|
  
 | 
						|
        // Here we need to look for an immediate load (an li or lis/ori pair).
 | 
						|
        if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
 | 
						|
                         DefInstr->getOpcode() == PPC::ORI)) {
 | 
						|
          int64_t start = DefInstr->getOperand(2).getImm();
 | 
						|
          MachineInstr *DefInstr2 =
 | 
						|
            MRI->getVRegDef(DefInstr->getOperand(1).getReg());
 | 
						|
          if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
 | 
						|
                            DefInstr2->getOpcode() == PPC::LIS)) {
 | 
						|
            DEBUG(dbgs() << "  initial constant: " << *DefInstr);
 | 
						|
            DEBUG(dbgs() << "  initial constant: " << *DefInstr2);
 | 
						|
 | 
						|
            start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16;
 | 
						|
  
 | 
						|
            int64_t count = ImmVal - start;
 | 
						|
            if ((count % iv_value) != 0) {
 | 
						|
              return 0;
 | 
						|
            }
 | 
						|
 | 
						|
            OldInsts.push_back(DefInstr);
 | 
						|
            OldInsts.push_back(DefInstr2);
 | 
						|
 | 
						|
            // count/iv_value, the trip count, should be positive here. If it
 | 
						|
            // is negative, that indicates that the counter will wrap.
 | 
						|
            if (Int64Cmp)
 | 
						|
              return new CountValue(count/iv_value);
 | 
						|
            else
 | 
						|
              return new CountValue(uint32_t(count/iv_value));
 | 
						|
          }
 | 
						|
        } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
 | 
						|
                                DefInstr->getOpcode() == PPC::LI)) {
 | 
						|
          DEBUG(dbgs() << "  initial constant: " << *DefInstr);
 | 
						|
 | 
						|
          int64_t count = ImmVal -
 | 
						|
            int64_t(short(DefInstr->getOperand(1).getImm()));
 | 
						|
          if ((count % iv_value) != 0) {
 | 
						|
            return 0;
 | 
						|
          }
 | 
						|
 | 
						|
          OldInsts.push_back(DefInstr);
 | 
						|
 | 
						|
          if (Int64Cmp)
 | 
						|
            return new CountValue(count/iv_value);
 | 
						|
          else
 | 
						|
            return new CountValue(uint32_t(count/iv_value));
 | 
						|
        } else if (iv_value == 1 || iv_value == -1) {
 | 
						|
          // We can't determine a constant starting value.
 | 
						|
          if (ImmVal == 0) {
 | 
						|
            return new CountValue(InitialValueReg, iv_value > 0);
 | 
						|
          }
 | 
						|
          // FIXME: handle non-zero end value.
 | 
						|
        }
 | 
						|
        // FIXME: handle non-unit increments (we might not want to introduce
 | 
						|
        // division but we can handle some 2^n cases with shifts).
 | 
						|
  
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isInductionOperation - return true if the operation is matches the
 | 
						|
/// pattern that defines an induction variable:
 | 
						|
///    addi iv, c
 | 
						|
///
 | 
						|
bool
 | 
						|
PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
 | 
						|
                                           unsigned IVReg) const {
 | 
						|
  return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
 | 
						|
          MI->getOperand(1).isReg() && // could be a frame index instead
 | 
						|
          MI->getOperand(1).getReg() == IVReg);
 | 
						|
}
 | 
						|
 | 
						|
/// isInvalidOperation - Return true if the operation is invalid within
 | 
						|
/// CTR loop.
 | 
						|
bool
 | 
						|
PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
 | 
						|
 | 
						|
  // call is not allowed because the callee may use a CTR loop
 | 
						|
  if (MI->getDesc().isCall()) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // check if the instruction defines a CTR loop register
 | 
						|
  // (this will also catch nested CTR loops)
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isDef() &&
 | 
						|
        (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// containsInvalidInstruction - Return true if the loop contains
 | 
						|
/// an instruction that inhibits the use of the CTR loop function.
 | 
						|
///
 | 
						|
bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
 | 
						|
  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *MBB = Blocks[i];
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
 | 
						|
      const MachineInstr *MI = &*MII;
 | 
						|
      if (isInvalidLoopOperation(MI)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isDead returns true if the instruction is dead
 | 
						|
/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
 | 
						|
/// with special cases for inline asm, physical registers and instructions with
 | 
						|
/// side effects removed)
 | 
						|
bool PPCCTRLoops::isDead(const MachineInstr *MI,
 | 
						|
                         SmallVector<MachineInstr *, 1> &DeadPhis) const {
 | 
						|
  // Examine each operand.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isDef()) {
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!MRI->use_nodbg_empty(Reg)) {
 | 
						|
        // This instruction has users, but if the only user is the phi node for
 | 
						|
        // the parent block, and the only use of that phi node is this
 | 
						|
        // instruction, then this instruction is dead: both it (and the phi
 | 
						|
        // node) can be removed.
 | 
						|
        MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
 | 
						|
        if (llvm::next(I) == MRI->use_end() &&
 | 
						|
            I.getOperand().getParent()->isPHI()) {
 | 
						|
          MachineInstr *OnePhi = I.getOperand().getParent();
 | 
						|
 | 
						|
          for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
 | 
						|
            const MachineOperand &OPO = OnePhi->getOperand(j);
 | 
						|
            if (OPO.isReg() && OPO.isDef()) {
 | 
						|
              unsigned OPReg = OPO.getReg();
 | 
						|
 | 
						|
              MachineRegisterInfo::use_iterator nextJ;
 | 
						|
              for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
 | 
						|
                   E = MRI->use_end(); J!=E; J=nextJ) {
 | 
						|
                nextJ = llvm::next(J);
 | 
						|
                MachineOperand& Use = J.getOperand();
 | 
						|
                MachineInstr *UseMI = Use.getParent();
 | 
						|
 | 
						|
                if (MI != UseMI) {
 | 
						|
                  // The phi node has a user that is not MI, bail...
 | 
						|
                  return false;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          DeadPhis.push_back(OnePhi);
 | 
						|
        } else {
 | 
						|
          // This def has a non-debug use. Don't delete the instruction!
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no defs with uses, the instruction is dead.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
 | 
						|
  // This procedure was essentially copied from DeadMachineInstructionElim
 | 
						|
 | 
						|
  SmallVector<MachineInstr *, 1> DeadPhis;
 | 
						|
  if (isDead(MI, DeadPhis)) {
 | 
						|
    DEBUG(dbgs() << "CTR looping will remove: " << *MI);
 | 
						|
 | 
						|
    // It is possible that some DBG_VALUE instructions refer to this
 | 
						|
    // instruction.  Examine each def operand for such references;
 | 
						|
    // if found, mark the DBG_VALUE as undef (but don't delete it).
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      MachineRegisterInfo::use_iterator nextI;
 | 
						|
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
 | 
						|
           E = MRI->use_end(); I!=E; I=nextI) {
 | 
						|
        nextI = llvm::next(I);  // I is invalidated by the setReg
 | 
						|
        MachineOperand& Use = I.getOperand();
 | 
						|
        MachineInstr *UseMI = Use.getParent();
 | 
						|
        if (UseMI==MI)
 | 
						|
          continue;
 | 
						|
        if (Use.isDebug()) // this might also be a instr -> phi -> instr case
 | 
						|
                           // which can also be removed.
 | 
						|
          UseMI->getOperand(0).setReg(0U);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MI->eraseFromParent();
 | 
						|
    for (unsigned i = 0; i < DeadPhis.size(); ++i) {
 | 
						|
      DeadPhis[i]->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// converToCTRLoop - check if the loop is a candidate for
 | 
						|
/// converting to a CTR loop.  If so, then perform the
 | 
						|
/// transformation.
 | 
						|
///
 | 
						|
/// This function works on innermost loops first.  A loop can
 | 
						|
/// be converted if it is a counting loop; either a register
 | 
						|
/// value or an immediate.
 | 
						|
///
 | 
						|
/// The code makes several assumptions about the representation
 | 
						|
/// of the loop in llvm.
 | 
						|
bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
 | 
						|
  bool Changed = false;
 | 
						|
  // Process nested loops first.
 | 
						|
  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | 
						|
    Changed |= convertToCTRLoop(*I);
 | 
						|
  }
 | 
						|
  // If a nested loop has been converted, then we can't convert this loop.
 | 
						|
  if (Changed) {
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MachineInstr *, 2> OldInsts;
 | 
						|
  // Are we able to determine the trip count for the loop?
 | 
						|
  CountValue *TripCount = getTripCount(L, OldInsts);
 | 
						|
  if (TripCount == 0) {
 | 
						|
    DEBUG(dbgs() << "failed to get trip count!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TripCount->isImm()) {
 | 
						|
    DEBUG(dbgs() << "constant trip count: " << TripCount->getImm() << "\n");
 | 
						|
 | 
						|
    // FIXME: We currently can't form 64-bit constants
 | 
						|
    // (including 32-bit unsigned constants)
 | 
						|
    if (!isInt<32>(TripCount->getImm()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Does the loop contain any invalid instructions?
 | 
						|
  if (containsInvalidInstruction(L)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  // No preheader means there's not place for the loop instr.
 | 
						|
  if (Preheader == 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
 | 
						|
 | 
						|
  DebugLoc dl;
 | 
						|
  if (InsertPos != Preheader->end())
 | 
						|
    dl = InsertPos->getDebugLoc();
 | 
						|
 | 
						|
  MachineBasicBlock *LastMBB = L->getExitingBlock();
 | 
						|
  // Don't generate CTR loop if the loop has more than one exit.
 | 
						|
  if (LastMBB == 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
 | 
						|
 | 
						|
  // Determine the loop start.
 | 
						|
  MachineBasicBlock *LoopStart = L->getTopBlock();
 | 
						|
  if (L->getLoopLatch() != LastMBB) {
 | 
						|
    // When the exit and latch are not the same, use the latch block as the
 | 
						|
    // start.
 | 
						|
    // The loop start address is used only after the 1st iteration, and the loop
 | 
						|
    // latch may contains instrs. that need to be executed after the 1st iter.
 | 
						|
    LoopStart = L->getLoopLatch();
 | 
						|
    // Make sure the latch is a successor of the exit, otherwise it won't work.
 | 
						|
    if (!LastMBB->isSuccessor(LoopStart)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the loop to a CTR loop
 | 
						|
  DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
 | 
						|
 | 
						|
  MachineFunction *MF = LastMBB->getParent();
 | 
						|
  const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
 | 
						|
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
 | 
						|
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
 | 
						|
  const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
 | 
						|
 | 
						|
  unsigned CountReg;
 | 
						|
  if (TripCount->isReg()) {
 | 
						|
    // Create a copy of the loop count register.
 | 
						|
    const TargetRegisterClass *SrcRC =
 | 
						|
      MF->getRegInfo().getRegClass(TripCount->getReg());
 | 
						|
    CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
    unsigned CopyOp = (isPPC64 && GPRC->hasSubClassEq(SrcRC)) ?
 | 
						|
                        (unsigned) PPC::EXTSW_32_64 :
 | 
						|
                        (unsigned) TargetOpcode::COPY;
 | 
						|
    BuildMI(*Preheader, InsertPos, dl,
 | 
						|
            TII->get(CopyOp), CountReg).addReg(TripCount->getReg());
 | 
						|
    if (TripCount->isNeg()) {
 | 
						|
      unsigned CountReg1 = CountReg;
 | 
						|
      CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
      BuildMI(*Preheader, InsertPos, dl,
 | 
						|
              TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
 | 
						|
                       CountReg).addReg(CountReg1);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
 | 
						|
    // Put the trip count in a register for transfer into the count register.
 | 
						|
 | 
						|
    int64_t CountImm = TripCount->getImm();
 | 
						|
    if (TripCount->isNeg())
 | 
						|
      CountImm = -CountImm;
 | 
						|
 | 
						|
    CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
    if (abs64(CountImm) > 0x7FFF) {
 | 
						|
      BuildMI(*Preheader, InsertPos, dl,
 | 
						|
              TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
 | 
						|
              CountReg).addImm((CountImm >> 16) & 0xFFFF);
 | 
						|
      unsigned CountReg1 = CountReg;
 | 
						|
      CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
      BuildMI(*Preheader, InsertPos, dl,
 | 
						|
              TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
 | 
						|
              CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
 | 
						|
    } else {
 | 
						|
      BuildMI(*Preheader, InsertPos, dl,
 | 
						|
              TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
 | 
						|
              CountReg).addImm(CountImm);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the mtctr instruction to the beginning of the loop.
 | 
						|
  BuildMI(*Preheader, InsertPos, dl,
 | 
						|
          TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
 | 
						|
            TripCount->isImm() ? RegState::Kill : 0);
 | 
						|
 | 
						|
  // Make sure the loop start always has a reference in the CFG.  We need to
 | 
						|
  // create a BlockAddress operand to get this mechanism to work both the
 | 
						|
  // MachineBasicBlock and BasicBlock objects need the flag set.
 | 
						|
  LoopStart->setHasAddressTaken();
 | 
						|
  // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | 
						|
  // object
 | 
						|
  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
 | 
						|
 | 
						|
  // Replace the loop branch with a bdnz instruction.
 | 
						|
  dl = LastI->getDebugLoc();
 | 
						|
  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *MBB = Blocks[i];
 | 
						|
    if (MBB != Preheader)
 | 
						|
      MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
 | 
						|
  }
 | 
						|
 | 
						|
  // The loop ends with either:
 | 
						|
  //  - a conditional branch followed by an unconditional branch, or
 | 
						|
  //  - a conditional branch to the loop start.
 | 
						|
  assert(LastI->getOpcode() == PPC::BCC &&
 | 
						|
         "loop end must start with a BCC instruction");
 | 
						|
  // Either the BCC branches to the beginning of the loop, or it
 | 
						|
  // branches out of the loop and there is an unconditional branch
 | 
						|
  // to the start of the loop.
 | 
						|
  MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
 | 
						|
  BuildMI(*LastMBB, LastI, dl,
 | 
						|
        TII->get((BranchTarget == LoopStart) ?
 | 
						|
                 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | 
						|
                 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
 | 
						|
 | 
						|
  // Conditional branch; just delete it.
 | 
						|
  DEBUG(dbgs() << "Removing old branch: " << *LastI);
 | 
						|
  LastMBB->erase(LastI);
 | 
						|
 | 
						|
  delete TripCount;
 | 
						|
 | 
						|
  // The induction operation (add) and the comparison (cmpwi) may now be
 | 
						|
  // unneeded. If these are unneeded, then remove them.
 | 
						|
  for (unsigned i = 0; i < OldInsts.size(); ++i)
 | 
						|
    removeIfDead(OldInsts[i]);
 | 
						|
 | 
						|
  ++NumCTRLoops;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 |