mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	emitted or the machine code for a function is freed. Chris mentioned that we may also want a notification when a stub is emitted, but that'll be a future change. I intend to use this to tell oprofile where functions are emitted and what lines correspond to what addresses. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74157 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1470 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1470 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a MachineCodeEmitter object that is used by the JIT to
 | |
| // write machine code to memory and remember where relocatable values are.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "JIT.h"
 | |
| #include "JITDwarfEmitter.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/CodeGen/JITCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRelocation.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/ExecutionEngine/JITEventListener.h"
 | |
| #include "llvm/ExecutionEngine/JITMemoryManager.h"
 | |
| #include "llvm/CodeGen/MachineCodeInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/System/Disassembler.h"
 | |
| #include "llvm/System/Memory.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| #ifndef NDEBUG
 | |
| #include <iomanip>
 | |
| #endif
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled");
 | |
| STATISTIC(NumRelos, "Number of relocations applied");
 | |
| static JIT *TheJIT = 0;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JIT lazy compilation code.
 | |
| //
 | |
| namespace {
 | |
|   class JITResolverState {
 | |
|   public:
 | |
|     typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy;
 | |
|     typedef std::map<void*, Function*> StubToFunctionMapTy;
 | |
|     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
 | |
|   private:
 | |
|     /// FunctionToStubMap - Keep track of the stub created for a particular
 | |
|     /// function so that we can reuse them if necessary.
 | |
|     FunctionToStubMapTy FunctionToStubMap;
 | |
| 
 | |
|     /// StubToFunctionMap - Keep track of the function that each stub
 | |
|     /// corresponds to.
 | |
|     StubToFunctionMapTy StubToFunctionMap;
 | |
| 
 | |
|     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
 | |
|     /// particular GlobalVariable so that we can reuse them if necessary.
 | |
|     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
 | |
| 
 | |
|   public:
 | |
|     FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return FunctionToStubMap;
 | |
|     }
 | |
| 
 | |
|     StubToFunctionMapTy& getStubToFunctionMap(const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return StubToFunctionMap;
 | |
|     }
 | |
| 
 | |
|     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return GlobalToIndirectSymMap;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// JITResolver - Keep track of, and resolve, call sites for functions that
 | |
|   /// have not yet been compiled.
 | |
|   class JITResolver {
 | |
|     typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
 | |
|     typedef JITResolverState::StubToFunctionMapTy StubToFunctionMapTy;
 | |
|     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
 | |
| 
 | |
|     /// LazyResolverFn - The target lazy resolver function that we actually
 | |
|     /// rewrite instructions to use.
 | |
|     TargetJITInfo::LazyResolverFn LazyResolverFn;
 | |
| 
 | |
|     JITResolverState state;
 | |
| 
 | |
|     /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
 | |
|     /// external functions.
 | |
|     std::map<void*, void*> ExternalFnToStubMap;
 | |
| 
 | |
|     /// revGOTMap - map addresses to indexes in the GOT
 | |
|     std::map<void*, unsigned> revGOTMap;
 | |
|     unsigned nextGOTIndex;
 | |
| 
 | |
|     static JITResolver *TheJITResolver;
 | |
|   public:
 | |
|     explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
 | |
|       TheJIT = &jit;
 | |
| 
 | |
|       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
 | |
|       assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
 | |
|       TheJITResolver = this;
 | |
|     }
 | |
|     
 | |
|     ~JITResolver() {
 | |
|       TheJITResolver = 0;
 | |
|     }
 | |
| 
 | |
|     /// getFunctionStubIfAvailable - This returns a pointer to a function stub
 | |
|     /// if it has already been created.
 | |
|     void *getFunctionStubIfAvailable(Function *F);
 | |
| 
 | |
|     /// getFunctionStub - This returns a pointer to a function stub, creating
 | |
|     /// one on demand as needed.  If empty is true, create a function stub
 | |
|     /// pointing at address 0, to be filled in later.
 | |
|     void *getFunctionStub(Function *F);
 | |
| 
 | |
|     /// getExternalFunctionStub - Return a stub for the function at the
 | |
|     /// specified address, created lazily on demand.
 | |
|     void *getExternalFunctionStub(void *FnAddr);
 | |
| 
 | |
|     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
 | |
|     /// specified GV address.
 | |
|     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
 | |
| 
 | |
|     /// AddCallbackAtLocation - If the target is capable of rewriting an
 | |
|     /// instruction without the use of a stub, record the location of the use so
 | |
|     /// we know which function is being used at the location.
 | |
|     void *AddCallbackAtLocation(Function *F, void *Location) {
 | |
|       MutexGuard locked(TheJIT->lock);
 | |
|       /// Get the target-specific JIT resolver function.
 | |
|       state.getStubToFunctionMap(locked)[Location] = F;
 | |
|       return (void*)(intptr_t)LazyResolverFn;
 | |
|     }
 | |
|     
 | |
|     void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
 | |
|                            SmallVectorImpl<void*> &Ptrs);
 | |
|     
 | |
|     GlobalValue *invalidateStub(void *Stub);
 | |
| 
 | |
|     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
 | |
|     /// an address.  This function only manages slots, it does not manage the
 | |
|     /// contents of the slots or the memory associated with the GOT.
 | |
|     unsigned getGOTIndexForAddr(void *addr);
 | |
| 
 | |
|     /// JITCompilerFn - This function is called to resolve a stub to a compiled
 | |
|     /// address.  If the LLVM Function corresponding to the stub has not yet
 | |
|     /// been compiled, this function compiles it first.
 | |
|     static void *JITCompilerFn(void *Stub);
 | |
|   };
 | |
| }
 | |
| 
 | |
| JITResolver *JITResolver::TheJITResolver = 0;
 | |
| 
 | |
| /// getFunctionStubIfAvailable - This returns a pointer to a function stub
 | |
| /// if it has already been created.
 | |
| void *JITResolver::getFunctionStubIfAvailable(Function *F) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = state.getFunctionToStubMap(locked)[F];
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| /// getFunctionStub - This returns a pointer to a function stub, creating
 | |
| /// one on demand as needed.
 | |
| void *JITResolver::getFunctionStub(Function *F) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = state.getFunctionToStubMap(locked)[F];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   // Call the lazy resolver function unless we are JIT'ing non-lazily, in which
 | |
|   // case we must resolve the symbol now.
 | |
|   void *Actual =  TheJIT->isLazyCompilationDisabled() 
 | |
|     ? (void *)0 : (void *)(intptr_t)LazyResolverFn;
 | |
|    
 | |
|   // If this is an external declaration, attempt to resolve the address now
 | |
|   // to place in the stub.
 | |
|   if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
 | |
|     Actual = TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|     // If we resolved the symbol to a null address (eg. a weak external)
 | |
|     // don't emit a stub. Return a null pointer to the application.  If dlsym
 | |
|     // stubs are enabled, not being able to resolve the address is not
 | |
|     // meaningful.
 | |
|     if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
 | |
|   }
 | |
| 
 | |
|   // Codegen a new stub, calling the lazy resolver or the actual address of the
 | |
|   // external function, if it was resolved.
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
 | |
|                                                *TheJIT->getCodeEmitter());
 | |
| 
 | |
|   if (Actual != (void*)(intptr_t)LazyResolverFn) {
 | |
|     // If we are getting the stub for an external function, we really want the
 | |
|     // address of the stub in the GlobalAddressMap for the JIT, not the address
 | |
|     // of the external function.
 | |
|     TheJIT->updateGlobalMapping(F, Stub);
 | |
|   }
 | |
| 
 | |
|   DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
 | |
|        << F->getName() << "'\n";
 | |
| 
 | |
|   // Finally, keep track of the stub-to-Function mapping so that the
 | |
|   // JITCompilerFn knows which function to compile!
 | |
|   state.getStubToFunctionMap(locked)[Stub] = F;
 | |
|   
 | |
|   // If we are JIT'ing non-lazily but need to call a function that does not
 | |
|   // exist yet, add it to the JIT's work list so that we can fill in the stub
 | |
|   // address later.
 | |
|   if (!Actual && TheJIT->isLazyCompilationDisabled())
 | |
|     if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
 | |
|       TheJIT->addPendingFunction(F);
 | |
|   
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
 | |
| /// GV address.
 | |
| void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this global variable, recycle it.
 | |
|   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
 | |
|   if (IndirectSym) return IndirectSym;
 | |
| 
 | |
|   // Otherwise, codegen a new indirect symbol.
 | |
|   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
 | |
|                                                      *TheJIT->getCodeEmitter());
 | |
| 
 | |
|   DOUT << "JIT: Indirect symbol emitted at [" << IndirectSym << "] for GV '"
 | |
|        << GV->getName() << "'\n";
 | |
| 
 | |
|   return IndirectSym;
 | |
| }
 | |
| 
 | |
| /// getExternalFunctionStub - Return a stub for the function at the
 | |
| /// specified address, created lazily on demand.
 | |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) {
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = ExternalFnToStubMap[FnAddr];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
 | |
|                                                *TheJIT->getCodeEmitter());
 | |
| 
 | |
|   DOUT << "JIT: Stub emitted at [" << Stub
 | |
|        << "] for external function at '" << FnAddr << "'\n";
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) {
 | |
|   unsigned idx = revGOTMap[addr];
 | |
|   if (!idx) {
 | |
|     idx = ++nextGOTIndex;
 | |
|     revGOTMap[addr] = idx;
 | |
|     DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n";
 | |
|   }
 | |
|   return idx;
 | |
| }
 | |
| 
 | |
| void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
 | |
|                                     SmallVectorImpl<void*> &Ptrs) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
|   
 | |
|   FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
 | |
|   GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
 | |
|   
 | |
|   for (FunctionToStubMapTy::iterator i = FM.begin(), e = FM.end(); i != e; ++i){
 | |
|     Function *F = i->first;
 | |
|     if (F->isDeclaration() && F->hasExternalLinkage()) {
 | |
|       GVs.push_back(i->first);
 | |
|       Ptrs.push_back(i->second);
 | |
|     }
 | |
|   }
 | |
|   for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
 | |
|        i != e; ++i) {
 | |
|     GVs.push_back(i->first);
 | |
|     Ptrs.push_back(i->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| GlobalValue *JITResolver::invalidateStub(void *Stub) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
|   
 | |
|   FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
 | |
|   StubToFunctionMapTy &SM = state.getStubToFunctionMap(locked);
 | |
|   GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
 | |
|   
 | |
|   // Look up the cheap way first, to see if it's a function stub we are
 | |
|   // invalidating.  If so, remove it from both the forward and reverse maps.
 | |
|   if (SM.find(Stub) != SM.end()) {
 | |
|     Function *F = SM[Stub];
 | |
|     SM.erase(Stub);
 | |
|     FM.erase(F);
 | |
|     return F;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, it might be an indirect symbol stub.  Find it and remove it.
 | |
|   for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
 | |
|        i != e; ++i) {
 | |
|     if (i->second != Stub)
 | |
|       continue;
 | |
|     GlobalValue *GV = i->first;
 | |
|     GM.erase(i);
 | |
|     return GV;
 | |
|   }
 | |
|   
 | |
|   // Lastly, check to see if it's in the ExternalFnToStubMap.
 | |
|   for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
 | |
|        e = ExternalFnToStubMap.end(); i != e; ++i) {
 | |
|     if (i->second != Stub)
 | |
|       continue;
 | |
|     ExternalFnToStubMap.erase(i);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// JITCompilerFn - This function is called when a lazy compilation stub has
 | |
| /// been entered.  It looks up which function this stub corresponds to, compiles
 | |
| /// it if necessary, then returns the resultant function pointer.
 | |
| void *JITResolver::JITCompilerFn(void *Stub) {
 | |
|   JITResolver &JR = *TheJITResolver;
 | |
|   
 | |
|   Function* F = 0;
 | |
|   void* ActualPtr = 0;
 | |
| 
 | |
|   {
 | |
|     // Only lock for getting the Function. The call getPointerToFunction made
 | |
|     // in this function might trigger function materializing, which requires
 | |
|     // JIT lock to be unlocked.
 | |
|     MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|     // The address given to us for the stub may not be exactly right, it might be
 | |
|     // a little bit after the stub.  As such, use upper_bound to find it.
 | |
|     StubToFunctionMapTy::iterator I =
 | |
|       JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
 | |
|     assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
 | |
|            "This is not a known stub!");
 | |
|     F = (--I)->second;
 | |
|     ActualPtr = I->first;
 | |
|   }
 | |
| 
 | |
|   // If we have already code generated the function, just return the address.
 | |
|   void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
 | |
|   
 | |
|   if (!Result) {
 | |
|     // Otherwise we don't have it, do lazy compilation now.
 | |
|     
 | |
|     // If lazy compilation is disabled, emit a useful error message and abort.
 | |
|     if (TheJIT->isLazyCompilationDisabled()) {
 | |
|       cerr << "LLVM JIT requested to do lazy compilation of function '"
 | |
|       << F->getName() << "' when lazy compiles are disabled!\n";
 | |
|       abort();
 | |
|     }
 | |
|   
 | |
|     // We might like to remove the stub from the StubToFunction map.
 | |
|     // We can't do that! Multiple threads could be stuck, waiting to acquire the
 | |
|     // lock above. As soon as the 1st function finishes compiling the function,
 | |
|     // the next one will be released, and needs to be able to find the function
 | |
|     // it needs to call.
 | |
|     //JR.state.getStubToFunctionMap(locked).erase(I);
 | |
| 
 | |
|     DOUT << "JIT: Lazily resolving function '" << F->getName()
 | |
|          << "' In stub ptr = " << Stub << " actual ptr = "
 | |
|          << ActualPtr << "\n";
 | |
| 
 | |
|     Result = TheJIT->getPointerToFunction(F);
 | |
|   }
 | |
|   
 | |
|   // Reacquire the lock to erase the stub in the map.
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // We don't need to reuse this stub in the future, as F is now compiled.
 | |
|   JR.state.getFunctionToStubMap(locked).erase(F);
 | |
| 
 | |
|   // FIXME: We could rewrite all references to this stub if we knew them.
 | |
| 
 | |
|   // What we will do is set the compiled function address to map to the
 | |
|   // same GOT entry as the stub so that later clients may update the GOT
 | |
|   // if they see it still using the stub address.
 | |
|   // Note: this is done so the Resolver doesn't have to manage GOT memory
 | |
|   // Do this without allocating map space if the target isn't using a GOT
 | |
|   if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
 | |
|     JR.revGOTMap[Result] = JR.revGOTMap[Stub];
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JITEmitter code.
 | |
| //
 | |
| namespace {
 | |
|   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
 | |
|   /// used to output functions to memory for execution.
 | |
|   class JITEmitter : public JITCodeEmitter {
 | |
|     JITMemoryManager *MemMgr;
 | |
| 
 | |
|     // When outputting a function stub in the context of some other function, we
 | |
|     // save BufferBegin/BufferEnd/CurBufferPtr here.
 | |
|     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
 | |
| 
 | |
|     /// Relocations - These are the relocations that the function needs, as
 | |
|     /// emitted.
 | |
|     std::vector<MachineRelocation> Relocations;
 | |
|     
 | |
|     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
 | |
|     /// It is filled in by the StartMachineBasicBlock callback and queried by
 | |
|     /// the getMachineBasicBlockAddress callback.
 | |
|     std::vector<uintptr_t> MBBLocations;
 | |
| 
 | |
|     /// ConstantPool - The constant pool for the current function.
 | |
|     ///
 | |
|     MachineConstantPool *ConstantPool;
 | |
| 
 | |
|     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
 | |
|     ///
 | |
|     void *ConstantPoolBase;
 | |
| 
 | |
|     /// ConstPoolAddresses - Addresses of individual constant pool entries.
 | |
|     ///
 | |
|     SmallVector<uintptr_t, 8> ConstPoolAddresses;
 | |
| 
 | |
|     /// JumpTable - The jump tables for the current function.
 | |
|     ///
 | |
|     MachineJumpTableInfo *JumpTable;
 | |
|     
 | |
|     /// JumpTableBase - A pointer to the first entry in the jump table.
 | |
|     ///
 | |
|     void *JumpTableBase;
 | |
| 
 | |
|     /// Resolver - This contains info about the currently resolved functions.
 | |
|     JITResolver Resolver;
 | |
|     
 | |
|     /// DE - The dwarf emitter for the jit.
 | |
|     JITDwarfEmitter *DE;
 | |
| 
 | |
|     /// LabelLocations - This vector is a mapping from Label ID's to their 
 | |
|     /// address.
 | |
|     std::vector<uintptr_t> LabelLocations;
 | |
| 
 | |
|     /// MMI - Machine module info for exception informations
 | |
|     MachineModuleInfo* MMI;
 | |
| 
 | |
|     // GVSet - a set to keep track of which globals have been seen
 | |
|     SmallPtrSet<const GlobalVariable*, 8> GVSet;
 | |
| 
 | |
|     // CurFn - The llvm function being emitted.  Only valid during 
 | |
|     // finishFunction().
 | |
|     const Function *CurFn;
 | |
|     
 | |
|     // CurFnStubUses - For a given Function, a vector of stubs that it
 | |
|     // references.  This facilitates the JIT detecting that a stub is no
 | |
|     // longer used, so that it may be deallocated.
 | |
|     DenseMap<const Function *, SmallVector<void*, 1> > CurFnStubUses;
 | |
|     
 | |
|     // StubFnRefs - For a given pointer to a stub, a set of Functions which
 | |
|     // reference the stub.  When the count of a stub's references drops to zero,
 | |
|     // the stub is unused.
 | |
|     DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
 | |
|     
 | |
|     // ExtFnStubs - A map of external function names to stubs which have entries
 | |
|     // in the JITResolver's ExternalFnToStubMap.
 | |
|     StringMap<void *> ExtFnStubs;
 | |
| 
 | |
|   public:
 | |
|     JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit), CurFn(0) {
 | |
|       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
 | |
|       if (jit.getJITInfo().needsGOT()) {
 | |
|         MemMgr->AllocateGOT();
 | |
|         DOUT << "JIT is managing a GOT\n";
 | |
|       }
 | |
| 
 | |
|       if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
 | |
|     }
 | |
|     ~JITEmitter() { 
 | |
|       delete MemMgr;
 | |
|       if (ExceptionHandling) delete DE;
 | |
|     }
 | |
| 
 | |
|     /// classof - Methods for support type inquiry through isa, cast, and
 | |
|     /// dyn_cast:
 | |
|     ///
 | |
|     static inline bool classof(const JITEmitter*) { return true; }
 | |
|     static inline bool classof(const MachineCodeEmitter*) { return true; }
 | |
|     
 | |
|     JITResolver &getJITResolver() { return Resolver; }
 | |
| 
 | |
|     virtual void startFunction(MachineFunction &F);
 | |
|     virtual bool finishFunction(MachineFunction &F);
 | |
|     
 | |
|     void emitConstantPool(MachineConstantPool *MCP);
 | |
|     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
|     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
|     
 | |
|     virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
 | |
|                                    unsigned Alignment = 1);
 | |
|     virtual void startGVStub(const GlobalValue* GV, void *Buffer,
 | |
|                              unsigned StubSize);
 | |
|     virtual void* finishGVStub(const GlobalValue *GV);
 | |
| 
 | |
|     /// allocateSpace - Reserves space in the current block if any, or
 | |
|     /// allocate a new one of the given size.
 | |
|     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
 | |
| 
 | |
|     virtual void addRelocation(const MachineRelocation &MR) {
 | |
|       Relocations.push_back(MR);
 | |
|     }
 | |
|     
 | |
|     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
 | |
|       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
 | |
|         MBBLocations.resize((MBB->getNumber()+1)*2);
 | |
|       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
 | |
|       DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at ["
 | |
|            << (void*) getCurrentPCValue() << "]\n";
 | |
|     }
 | |
| 
 | |
|     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
 | |
|     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
 | |
| 
 | |
|     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
 | |
|       assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
 | |
|              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
 | |
|       return MBBLocations[MBB->getNumber()];
 | |
|     }
 | |
| 
 | |
|     /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
|     /// function body.
 | |
|     void deallocateMemForFunction(Function *F);
 | |
| 
 | |
|     /// AddStubToCurrentFunction - Mark the current function being JIT'd as
 | |
|     /// using the stub at the specified address. Allows
 | |
|     /// deallocateMemForFunction to also remove stubs no longer referenced.
 | |
|     void AddStubToCurrentFunction(void *Stub);
 | |
|     
 | |
|     /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
 | |
|     /// MachineRelocations that reference external functions by name.
 | |
|     const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
 | |
|     
 | |
|     virtual void emitLabel(uint64_t LabelID) {
 | |
|       if (LabelLocations.size() <= LabelID)
 | |
|         LabelLocations.resize((LabelID+1)*2);
 | |
|       LabelLocations[LabelID] = getCurrentPCValue();
 | |
|     }
 | |
| 
 | |
|     virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
 | |
|       assert(LabelLocations.size() > (unsigned)LabelID && 
 | |
|              LabelLocations[LabelID] && "Label not emitted!");
 | |
|       return LabelLocations[LabelID];
 | |
|     }
 | |
|  
 | |
|     virtual void setModuleInfo(MachineModuleInfo* Info) {
 | |
|       MMI = Info;
 | |
|       if (ExceptionHandling) DE->setModuleInfo(Info);
 | |
|     }
 | |
| 
 | |
|     void setMemoryExecutable(void) {
 | |
|       MemMgr->setMemoryExecutable();
 | |
|     }
 | |
|     
 | |
|     JITMemoryManager *getMemMgr(void) const { return MemMgr; }
 | |
| 
 | |
|   private:
 | |
|     void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
 | |
|     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
 | |
|                                     bool NoNeedStub);
 | |
|     unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
 | |
|     unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
 | |
|     unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
 | |
|     unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
 | |
|                                      bool DoesntNeedStub) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return TheJIT->getOrEmitGlobalVariable(GV);
 | |
| 
 | |
|   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
 | |
| 
 | |
|   // If we have already compiled the function, return a pointer to its body.
 | |
|   Function *F = cast<Function>(V);
 | |
|   void *ResultPtr;
 | |
|   if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) {
 | |
|     // Return the function stub if it's already created.
 | |
|     ResultPtr = Resolver.getFunctionStubIfAvailable(F);
 | |
|     if (ResultPtr)
 | |
|       AddStubToCurrentFunction(ResultPtr);
 | |
|   } else {
 | |
|     ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
 | |
|   }
 | |
|   if (ResultPtr) return ResultPtr;
 | |
| 
 | |
|   // If this is an external function pointer, we can force the JIT to
 | |
|   // 'compile' it, which really just adds it to the map.  In dlsym mode, 
 | |
|   // external functions are forced through a stub, regardless of reloc type.
 | |
|   if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
 | |
|       DoesntNeedStub && !TheJIT->areDlsymStubsEnabled())
 | |
|     return TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|   // Okay, the function has not been compiled yet, if the target callback
 | |
|   // mechanism is capable of rewriting the instruction directly, prefer to do
 | |
|   // that instead of emitting a stub.  This uses the lazy resolver, so is not
 | |
|   // legal if lazy compilation is disabled.
 | |
|   if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled())
 | |
|     return Resolver.AddCallbackAtLocation(F, Reference);
 | |
| 
 | |
|   // Otherwise, we have to emit a stub.
 | |
|   void *StubAddr = Resolver.getFunctionStub(F);
 | |
| 
 | |
|   // Add the stub to the current function's list of referenced stubs, so we can
 | |
|   // deallocate them if the current function is ever freed.  It's possible to
 | |
|   // return null from getFunctionStub in the case of a weak extern that fails
 | |
|   // to resolve.
 | |
|   if (StubAddr)
 | |
|     AddStubToCurrentFunction(StubAddr);
 | |
| 
 | |
|   return StubAddr;
 | |
| }
 | |
| 
 | |
| void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
 | |
|                                             bool NoNeedStub) {
 | |
|   // Make sure GV is emitted first, and create a stub containing the fully
 | |
|   // resolved address.
 | |
|   void *GVAddress = getPointerToGlobal(V, Reference, true);
 | |
|   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
 | |
|   
 | |
|   // Add the stub to the current function's list of referenced stubs, so we can
 | |
|   // deallocate them if the current function is ever freed.
 | |
|   AddStubToCurrentFunction(StubAddr);
 | |
|   
 | |
|   return StubAddr;
 | |
| }
 | |
| 
 | |
| void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
 | |
|   if (!TheJIT->areDlsymStubsEnabled())
 | |
|     return;
 | |
|   
 | |
|   assert(CurFn && "Stub added to current function, but current function is 0!");
 | |
|   
 | |
|   SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
 | |
|   StubsUsed.push_back(StubAddr);
 | |
| 
 | |
|   SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
 | |
|   FnRefs.insert(CurFn);
 | |
| }
 | |
| 
 | |
| static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
 | |
|                                            const TargetData *TD) {
 | |
|   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | |
|   if (Constants.empty()) return 0;
 | |
| 
 | |
|   unsigned Size = 0;
 | |
|   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | |
|     MachineConstantPoolEntry CPE = Constants[i];
 | |
|     unsigned AlignMask = CPE.getAlignment() - 1;
 | |
|     Size = (Size + AlignMask) & ~AlignMask;
 | |
|     const Type *Ty = CPE.getType();
 | |
|     Size += TD->getTypeAllocSize(Ty);
 | |
|   }
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return 0;
 | |
|   
 | |
|   unsigned NumEntries = 0;
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i)
 | |
|     NumEntries += JT[i].MBBs.size();
 | |
| 
 | |
|   unsigned EntrySize = MJTI->getEntrySize();
 | |
| 
 | |
|   return NumEntries * EntrySize;
 | |
| }
 | |
| 
 | |
| static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
 | |
|   if (Alignment == 0) Alignment = 1;
 | |
|   // Since we do not know where the buffer will be allocated, be pessimistic. 
 | |
|   return Size + Alignment;
 | |
| }
 | |
| 
 | |
| /// addSizeOfGlobal - add the size of the global (plus any alignment padding)
 | |
| /// into the running total Size.
 | |
| 
 | |
| unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
 | |
|   const Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
 | |
|   size_t GVAlign = 
 | |
|       (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
 | |
|   DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
 | |
|   DEBUG(GV->dump());
 | |
|   // Assume code section ends with worst possible alignment, so first
 | |
|   // variable needs maximal padding.
 | |
|   if (Size==0)
 | |
|     Size = 1;
 | |
|   Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
 | |
|   Size += GVSize;
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
 | |
| /// but are referenced from the constant; put them in GVSet and add their
 | |
| /// size into the running total Size.
 | |
| 
 | |
| unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, 
 | |
|                                               unsigned Size) {
 | |
|   // If its undefined, return the garbage.
 | |
|   if (isa<UndefValue>(C))
 | |
|     return Size;
 | |
| 
 | |
|   // If the value is a ConstantExpr
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     Constant *Op0 = CE->getOperand(0);
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::BitCast: {
 | |
|       Size = addSizeOfGlobalsInConstantVal(Op0, Size);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       Size = addSizeOfGlobalsInConstantVal(Op0, Size);
 | |
|       Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|        cerr << "ConstantExpr not handled: " << *CE << "\n";
 | |
|       abort();
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (C->getType()->getTypeID() == Type::PointerTyID)
 | |
|     if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
 | |
|       if (GVSet.insert(GV))
 | |
|         Size = addSizeOfGlobal(GV, Size);
 | |
| 
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
 | |
| /// but are referenced from the given initializer.
 | |
| 
 | |
| unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, 
 | |
|                                               unsigned Size) {
 | |
|   if (!isa<UndefValue>(Init) &&
 | |
|       !isa<ConstantVector>(Init) &&
 | |
|       !isa<ConstantAggregateZero>(Init) &&
 | |
|       !isa<ConstantArray>(Init) &&
 | |
|       !isa<ConstantStruct>(Init) &&
 | |
|       Init->getType()->isFirstClassType())
 | |
|     Size = addSizeOfGlobalsInConstantVal(Init, Size);
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
 | |
| /// globals; then walk the initializers of those globals looking for more.
 | |
| /// If their size has not been considered yet, add it into the running total
 | |
| /// Size.
 | |
| 
 | |
| unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
 | |
|   unsigned Size = 0;
 | |
|   GVSet.clear();
 | |
| 
 | |
|   for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | |
|        MBB != E; ++MBB) {
 | |
|     for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | |
|          I != E; ++I) {
 | |
|       const TargetInstrDesc &Desc = I->getDesc();
 | |
|       const MachineInstr &MI = *I;
 | |
|       unsigned NumOps = Desc.getNumOperands();
 | |
|       for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
 | |
|         const MachineOperand &MO = MI.getOperand(CurOp);
 | |
|         if (MO.isGlobal()) {
 | |
|           GlobalValue* V = MO.getGlobal();
 | |
|           const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
 | |
|           if (!GV)
 | |
|             continue;
 | |
|           // If seen in previous function, it will have an entry here.
 | |
|           if (TheJIT->getPointerToGlobalIfAvailable(GV))
 | |
|             continue;
 | |
|           // If seen earlier in this function, it will have an entry here.
 | |
|           // FIXME: it should be possible to combine these tables, by
 | |
|           // assuming the addresses of the new globals in this module
 | |
|           // start at 0 (or something) and adjusting them after codegen
 | |
|           // complete.  Another possibility is to grab a marker bit in GV.
 | |
|           if (GVSet.insert(GV))
 | |
|             // A variable as yet unseen.  Add in its size.
 | |
|             Size = addSizeOfGlobal(GV, Size);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   DOUT << "JIT: About to look through initializers\n";
 | |
|   // Look for more globals that are referenced only from initializers.
 | |
|   // GVSet.end is computed each time because the set can grow as we go.
 | |
|   for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin(); 
 | |
|        I != GVSet.end(); I++) {
 | |
|     const GlobalVariable* GV = *I;
 | |
|     if (GV->hasInitializer())
 | |
|       Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
 | |
|   }
 | |
| 
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| void JITEmitter::startFunction(MachineFunction &F) {
 | |
|   DOUT << "JIT: Starting CodeGen of Function "
 | |
|        << F.getFunction()->getName() << "\n";
 | |
| 
 | |
|   uintptr_t ActualSize = 0;
 | |
|   // Set the memory writable, if it's not already
 | |
|   MemMgr->setMemoryWritable();
 | |
|   if (MemMgr->NeedsExactSize()) {
 | |
|     DOUT << "JIT: ExactSize\n";
 | |
|     const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
 | |
|     MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
 | |
|     MachineConstantPool *MCP = F.getConstantPool();
 | |
|     
 | |
|     // Ensure the constant pool/jump table info is at least 4-byte aligned.
 | |
|     ActualSize = RoundUpToAlign(ActualSize, 16);
 | |
|     
 | |
|     // Add the alignment of the constant pool
 | |
|     ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
 | |
| 
 | |
|     // Add the constant pool size
 | |
|     ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
 | |
| 
 | |
|     // Add the aligment of the jump table info
 | |
|     ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
 | |
| 
 | |
|     // Add the jump table size
 | |
|     ActualSize += GetJumpTableSizeInBytes(MJTI);
 | |
|     
 | |
|     // Add the alignment for the function
 | |
|     ActualSize = RoundUpToAlign(ActualSize,
 | |
|                                 std::max(F.getFunction()->getAlignment(), 8U));
 | |
| 
 | |
|     // Add the function size
 | |
|     ActualSize += TII->GetFunctionSizeInBytes(F);
 | |
| 
 | |
|     DOUT << "JIT: ActualSize before globals " << ActualSize << "\n";
 | |
|     // Add the size of the globals that will be allocated after this function.
 | |
|     // These are all the ones referenced from this function that were not
 | |
|     // previously allocated.
 | |
|     ActualSize += GetSizeOfGlobalsInBytes(F);
 | |
|     DOUT << "JIT: ActualSize after globals " << ActualSize << "\n";
 | |
|   }
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
 | |
|                                                          ActualSize);
 | |
|   BufferEnd = BufferBegin+ActualSize;
 | |
|   
 | |
|   // Ensure the constant pool/jump table info is at least 4-byte aligned.
 | |
|   emitAlignment(16);
 | |
| 
 | |
|   emitConstantPool(F.getConstantPool());
 | |
|   initJumpTableInfo(F.getJumpTableInfo());
 | |
| 
 | |
|   // About to start emitting the machine code for the function.
 | |
|   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
 | |
|   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
 | |
| 
 | |
|   MBBLocations.clear();
 | |
| }
 | |
| 
 | |
| bool JITEmitter::finishFunction(MachineFunction &F) {
 | |
|   if (CurBufferPtr == BufferEnd) {
 | |
|     // FIXME: Allocate more space, then try again.
 | |
|     cerr << "JIT: Ran out of space for generated machine code!\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   emitJumpTableInfo(F.getJumpTableInfo());
 | |
|   
 | |
|   // FnStart is the start of the text, not the start of the constant pool and
 | |
|   // other per-function data.
 | |
|   uint8_t *FnStart =
 | |
|     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
 | |
| 
 | |
|   // FnEnd is the end of the function's machine code.
 | |
|   uint8_t *FnEnd = CurBufferPtr;
 | |
| 
 | |
|   if (!Relocations.empty()) {
 | |
|     CurFn = F.getFunction();
 | |
|     NumRelos += Relocations.size();
 | |
| 
 | |
|     // Resolve the relocations to concrete pointers.
 | |
|     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | |
|       MachineRelocation &MR = Relocations[i];
 | |
|       void *ResultPtr = 0;
 | |
|       if (!MR.letTargetResolve()) {
 | |
|         if (MR.isExternalSymbol()) {
 | |
|           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
 | |
|                                                         false);
 | |
|           DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
 | |
|                << ResultPtr << "]\n";  
 | |
| 
 | |
|           // If the target REALLY wants a stub for this function, emit it now.
 | |
|           if (!MR.doesntNeedStub()) {
 | |
|             if (!TheJIT->areDlsymStubsEnabled()) {
 | |
|               ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
 | |
|             } else {
 | |
|               void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
 | |
|               if (!Stub) {
 | |
|                 Stub = Resolver.getExternalFunctionStub((void *)&Stub);
 | |
|                 AddStubToCurrentFunction(Stub);
 | |
|               }
 | |
|               ResultPtr = Stub;
 | |
|             }
 | |
|           }
 | |
|         } else if (MR.isGlobalValue()) {
 | |
|           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
 | |
|                                          BufferBegin+MR.getMachineCodeOffset(),
 | |
|                                          MR.doesntNeedStub());
 | |
|         } else if (MR.isIndirectSymbol()) {
 | |
|           ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(),
 | |
|                                           BufferBegin+MR.getMachineCodeOffset(),
 | |
|                                           MR.doesntNeedStub());
 | |
|         } else if (MR.isBasicBlock()) {
 | |
|           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
 | |
|         } else if (MR.isConstantPoolIndex()) {
 | |
|           ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
 | |
|         } else {
 | |
|           assert(MR.isJumpTableIndex());
 | |
|           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
 | |
|         }
 | |
| 
 | |
|         MR.setResultPointer(ResultPtr);
 | |
|       }
 | |
| 
 | |
|       // if we are managing the GOT and the relocation wants an index,
 | |
|       // give it one
 | |
|       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
 | |
|         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
 | |
|         MR.setGOTIndex(idx);
 | |
|         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
 | |
|           DOUT << "JIT: GOT was out of date for " << ResultPtr
 | |
|                << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
 | |
|                << "\n";
 | |
|           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CurFn = 0;
 | |
|     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
 | |
|                                   Relocations.size(), MemMgr->getGOTBase());
 | |
|   }
 | |
| 
 | |
|   // Update the GOT entry for F to point to the new code.
 | |
|   if (MemMgr->isManagingGOT()) {
 | |
|     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
 | |
|     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
 | |
|       DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin
 | |
|            << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
 | |
|       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
 | |
|   // global variables that were referenced in the relocations.
 | |
|   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
 | |
| 
 | |
|   if (CurBufferPtr == BufferEnd) {
 | |
|     // FIXME: Allocate more space, then try again.
 | |
|     cerr << "JIT: Ran out of space for generated machine code!\n";
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = 0;
 | |
|   NumBytes += FnEnd-FnStart;
 | |
| 
 | |
|   // Invalidate the icache if necessary.
 | |
|   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
 | |
| 
 | |
|   JITEvent_EmittedFunctionDetails Details;
 | |
|   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
 | |
|                                 Details);
 | |
| 
 | |
|   DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
 | |
|        << "] Function: " << F.getFunction()->getName()
 | |
|        << ": " << (FnEnd-FnStart) << " bytes of text, "
 | |
|        << Relocations.size() << " relocations\n";
 | |
| 
 | |
|   Relocations.clear();
 | |
|   ConstPoolAddresses.clear();
 | |
| 
 | |
|   // Mark code region readable and executable if it's not so already.
 | |
|   MemMgr->setMemoryExecutable();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   {
 | |
|     if (sys::hasDisassembler()) {
 | |
|       DOUT << "JIT: Disassembled code:\n";
 | |
|       DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
 | |
|     } else {
 | |
|       DOUT << "JIT: Binary code:\n";
 | |
|       DOUT << std::hex;
 | |
|       uint8_t* q = FnStart;
 | |
|       for (int i = 0; q < FnEnd; q += 4, ++i) {
 | |
|         if (i == 4)
 | |
|           i = 0;
 | |
|         if (i == 0)
 | |
|           DOUT << "JIT: " << std::setw(8) << std::setfill('0')
 | |
|                << (long)(q - FnStart) << ": ";
 | |
|         bool Done = false;
 | |
|         for (int j = 3; j >= 0; --j) {
 | |
|           if (q + j >= FnEnd)
 | |
|             Done = true;
 | |
|           else
 | |
|             DOUT << std::setw(2) << std::setfill('0') << (unsigned short)q[j];
 | |
|         }
 | |
|         if (Done)
 | |
|           break;
 | |
|         DOUT << ' ';
 | |
|         if (i == 3)
 | |
|           DOUT << '\n';
 | |
|       }
 | |
|       DOUT << std::dec;
 | |
|       DOUT<< '\n';
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   if (ExceptionHandling) {
 | |
|     uintptr_t ActualSize = 0;
 | |
|     SavedBufferBegin = BufferBegin;
 | |
|     SavedBufferEnd = BufferEnd;
 | |
|     SavedCurBufferPtr = CurBufferPtr;
 | |
|     
 | |
|     if (MemMgr->NeedsExactSize()) {
 | |
|       ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
 | |
|     }
 | |
| 
 | |
|     BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
 | |
|                                                              ActualSize);
 | |
|     BufferEnd = BufferBegin+ActualSize;
 | |
|     uint8_t* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
 | |
|     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
 | |
|                               FrameRegister);
 | |
|     BufferBegin = SavedBufferBegin;
 | |
|     BufferEnd = SavedBufferEnd;
 | |
|     CurBufferPtr = SavedCurBufferPtr;
 | |
| 
 | |
|     TheJIT->RegisterTable(FrameRegister);
 | |
|   }
 | |
| 
 | |
|   if (MMI)
 | |
|     MMI->EndFunction();
 | |
|  
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
| /// function body.  Also drop any references the function has to stubs.
 | |
| void JITEmitter::deallocateMemForFunction(Function *F) {
 | |
|   MemMgr->deallocateMemForFunction(F);
 | |
| 
 | |
|   // If the function did not reference any stubs, return.
 | |
|   if (CurFnStubUses.find(F) == CurFnStubUses.end())
 | |
|     return;
 | |
|   
 | |
|   // For each referenced stub, erase the reference to this function, and then
 | |
|   // erase the list of referenced stubs.
 | |
|   SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
 | |
|   for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
 | |
|     void *Stub = StubList[i];
 | |
|     
 | |
|     // If we already invalidated this stub for this function, continue.
 | |
|     if (StubFnRefs.count(Stub) == 0)
 | |
|       continue;
 | |
|       
 | |
|     SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
 | |
|     FnRefs.erase(F);
 | |
|     
 | |
|     // If this function was the last reference to the stub, invalidate the stub
 | |
|     // in the JITResolver.  Were there a memory manager deallocateStub routine,
 | |
|     // we could call that at this point too.
 | |
|     if (FnRefs.empty()) {
 | |
|       DOUT << "\nJIT: Invalidated Stub at [" << Stub << "]\n";
 | |
|       StubFnRefs.erase(Stub);
 | |
| 
 | |
|       // Invalidate the stub.  If it is a GV stub, update the JIT's global
 | |
|       // mapping for that GV to zero, otherwise, search the string map of
 | |
|       // external function names to stubs and remove the entry for this stub.
 | |
|       GlobalValue *GV = Resolver.invalidateStub(Stub);
 | |
|       if (GV) {
 | |
|         TheJIT->updateGlobalMapping(GV, 0);
 | |
|       } else {
 | |
|         for (StringMapIterator<void*> i = ExtFnStubs.begin(),
 | |
|              e = ExtFnStubs.end(); i != e; ++i) {
 | |
|           if (i->second == Stub) {
 | |
|             ExtFnStubs.erase(i);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   CurFnStubUses.erase(F);
 | |
| }
 | |
| 
 | |
| 
 | |
| void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
 | |
|   if (BufferBegin)
 | |
|     return JITCodeEmitter::allocateSpace(Size, Alignment);
 | |
| 
 | |
|   // create a new memory block if there is no active one.
 | |
|   // care must be taken so that BufferBegin is invalidated when a
 | |
|   // block is trimmed
 | |
|   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
 | |
|   BufferEnd = BufferBegin+Size;
 | |
|   return CurBufferPtr;
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
 | |
|   if (TheJIT->getJITInfo().hasCustomConstantPool())
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | |
|   if (Constants.empty()) return;
 | |
| 
 | |
|   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
 | |
|   unsigned Align = MCP->getConstantPoolAlignment();
 | |
|   ConstantPoolBase = allocateSpace(Size, Align);
 | |
|   ConstantPool = MCP;
 | |
| 
 | |
|   if (ConstantPoolBase == 0) return;  // Buffer overflow.
 | |
| 
 | |
|   DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
 | |
|        << "] (size: " << Size << ", alignment: " << Align << ")\n";
 | |
| 
 | |
|   // Initialize the memory for all of the constant pool entries.
 | |
|   unsigned Offset = 0;
 | |
|   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | |
|     MachineConstantPoolEntry CPE = Constants[i];
 | |
|     unsigned AlignMask = CPE.getAlignment() - 1;
 | |
|     Offset = (Offset + AlignMask) & ~AlignMask;
 | |
| 
 | |
|     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
 | |
|     ConstPoolAddresses.push_back(CAddr);
 | |
|     if (CPE.isMachineConstantPoolEntry()) {
 | |
|       // FIXME: add support to lower machine constant pool values into bytes!
 | |
|       cerr << "Initialize memory with machine specific constant pool entry"
 | |
|            << " has not been implemented!\n";
 | |
|       abort();
 | |
|     }
 | |
|     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
 | |
|     DOUT << "JIT:   CP" << i << " at [0x"
 | |
|          << std::hex << CAddr << std::dec << "]\n";
 | |
| 
 | |
|     const Type *Ty = CPE.Val.ConstVal->getType();
 | |
|     Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   if (TheJIT->getJITInfo().hasCustomJumpTables())
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return;
 | |
|   
 | |
|   unsigned NumEntries = 0;
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i)
 | |
|     NumEntries += JT[i].MBBs.size();
 | |
| 
 | |
|   unsigned EntrySize = MJTI->getEntrySize();
 | |
| 
 | |
|   // Just allocate space for all the jump tables now.  We will fix up the actual
 | |
|   // MBB entries in the tables after we emit the code for each block, since then
 | |
|   // we will know the final locations of the MBBs in memory.
 | |
|   JumpTable = MJTI;
 | |
|   JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   if (TheJIT->getJITInfo().hasCustomJumpTables())
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty() || JumpTableBase == 0) return;
 | |
|   
 | |
|   if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
 | |
|     assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
 | |
|     // For each jump table, place the offset from the beginning of the table
 | |
|     // to the target address.
 | |
|     int *SlotPtr = (int*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the offset of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       uintptr_t Base = (uintptr_t)SlotPtr;
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
 | |
|         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
 | |
|         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
 | |
|     
 | |
|     // For each jump table, map each target in the jump table to the address of 
 | |
|     // an emitted MachineBasicBlock.
 | |
|     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the address of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
 | |
|         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
 | |
|                              unsigned Alignment) {
 | |
|   SavedBufferBegin = BufferBegin;
 | |
|   SavedBufferEnd = BufferEnd;
 | |
|   SavedCurBufferPtr = CurBufferPtr;
 | |
|   
 | |
|   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
 | |
|   BufferEnd = BufferBegin+StubSize+1;
 | |
| }
 | |
| 
 | |
| void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
 | |
|                              unsigned StubSize) {
 | |
|   SavedBufferBegin = BufferBegin;
 | |
|   SavedBufferEnd = BufferEnd;
 | |
|   SavedCurBufferPtr = CurBufferPtr;
 | |
|   
 | |
|   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
 | |
|   BufferEnd = BufferBegin+StubSize+1;
 | |
| }
 | |
| 
 | |
| void *JITEmitter::finishGVStub(const GlobalValue* GV) {
 | |
|   NumBytes += getCurrentPCOffset();
 | |
|   std::swap(SavedBufferBegin, BufferBegin);
 | |
|   BufferEnd = SavedBufferEnd;
 | |
|   CurBufferPtr = SavedCurBufferPtr;
 | |
|   return SavedBufferBegin;
 | |
| }
 | |
| 
 | |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
 | |
| // in the constant pool that was last emitted with the 'emitConstantPool'
 | |
| // method.
 | |
| //
 | |
| uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
 | |
|   assert(ConstantNum < ConstantPool->getConstants().size() &&
 | |
|          "Invalid ConstantPoolIndex!");
 | |
|   return ConstPoolAddresses[ConstantNum];
 | |
| }
 | |
| 
 | |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index
 | |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
 | |
| //
 | |
| uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
 | |
|   assert(Index < JT.size() && "Invalid jump table index!");
 | |
|   
 | |
|   unsigned Offset = 0;
 | |
|   unsigned EntrySize = JumpTable->getEntrySize();
 | |
|   
 | |
|   for (unsigned i = 0; i < Index; ++i)
 | |
|     Offset += JT[i].MBBs.size();
 | |
|   
 | |
|    Offset *= EntrySize;
 | |
|   
 | |
|   return (uintptr_t)((char *)JumpTableBase + Offset);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Public interface to this file
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
 | |
|   return new JITEmitter(jit, JMM);
 | |
| }
 | |
| 
 | |
| // getPointerToNamedFunction - This function is used as a global wrapper to
 | |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
 | |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
 | |
| // need to resolve function(s) that are being mis-codegenerated, so we need to
 | |
| // resolve their addresses at runtime, and this is the way to do it.
 | |
| extern "C" {
 | |
|   void *getPointerToNamedFunction(const char *Name) {
 | |
|     if (Function *F = TheJIT->FindFunctionNamed(Name))
 | |
|       return TheJIT->getPointerToFunction(F);
 | |
|     return TheJIT->getPointerToNamedFunction(Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getPointerToFunctionOrStub - If the specified function has been
 | |
| // code-gen'd, return a pointer to the function.  If not, compile it, or use
 | |
| // a stub to implement lazy compilation if available.
 | |
| //
 | |
| void *JIT::getPointerToFunctionOrStub(Function *F) {
 | |
|   // If we have already code generated the function, just return the address.
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;
 | |
|   
 | |
|   // Get a stub if the target supports it.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | |
|   return JE->getJITResolver().getFunctionStub(F);
 | |
| }
 | |
| 
 | |
| void JIT::updateFunctionStub(Function *F) {
 | |
|   // Get the empty stub we generated earlier.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | |
|   void *Stub = JE->getJITResolver().getFunctionStub(F);
 | |
| 
 | |
|   // Tell the target jit info to rewrite the stub at the specified address,
 | |
|   // rather than creating a new one.
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
 | |
| }
 | |
| 
 | |
| /// updateDlsymStubTable - Emit the data necessary to relocate the stubs
 | |
| /// that were emitted during code generation.
 | |
| ///
 | |
| void JIT::updateDlsymStubTable() {
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | |
|   
 | |
|   SmallVector<GlobalValue*, 8> GVs;
 | |
|   SmallVector<void*, 8> Ptrs;
 | |
|   const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
 | |
| 
 | |
|   JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
 | |
| 
 | |
|   unsigned nStubs = GVs.size() + ExtFns.size();
 | |
|   
 | |
|   // If there are no relocatable stubs, return.
 | |
|   if (nStubs == 0)
 | |
|     return;
 | |
| 
 | |
|   // If there are no new relocatable stubs, return.
 | |
|   void *CurTable = JE->getMemMgr()->getDlsymTable();
 | |
|   if (CurTable && (*(unsigned *)CurTable == nStubs))
 | |
|     return;
 | |
|   
 | |
|   // Calculate the size of the stub info
 | |
|   unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
 | |
|   
 | |
|   SmallVector<unsigned, 8> Offsets;
 | |
|   for (unsigned i = 0; i != GVs.size(); ++i) {
 | |
|     Offsets.push_back(offset);
 | |
|     offset += GVs[i]->getName().length() + 1;
 | |
|   }
 | |
|   for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); 
 | |
|        i != e; ++i) {
 | |
|     Offsets.push_back(offset);
 | |
|     offset += strlen(i->first()) + 1;
 | |
|   }
 | |
|   
 | |
|   // Allocate space for the new "stub", which contains the dlsym table.
 | |
|   JE->startGVStub(0, offset, 4);
 | |
|   
 | |
|   // Emit the number of records
 | |
|   JE->emitInt32(nStubs);
 | |
|   
 | |
|   // Emit the string offsets
 | |
|   for (unsigned i = 0; i != nStubs; ++i)
 | |
|     JE->emitInt32(Offsets[i]);
 | |
|   
 | |
|   // Emit the pointers.  Verify that they are at least 2-byte aligned, and set
 | |
|   // the low bit to 0 == GV, 1 == Function, so that the client code doing the
 | |
|   // relocation can write the relocated pointer at the appropriate place in
 | |
|   // the stub.
 | |
|   for (unsigned i = 0; i != GVs.size(); ++i) {
 | |
|     intptr_t Ptr = (intptr_t)Ptrs[i];
 | |
|     assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
 | |
|     
 | |
|     if (isa<Function>(GVs[i]))
 | |
|       Ptr |= (intptr_t)1;
 | |
|            
 | |
|     if (sizeof(Ptr) == 8)
 | |
|       JE->emitInt64(Ptr);
 | |
|     else
 | |
|       JE->emitInt32(Ptr);
 | |
|   }
 | |
|   for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); 
 | |
|        i != e; ++i) {
 | |
|     intptr_t Ptr = (intptr_t)i->second | 1;
 | |
| 
 | |
|     if (sizeof(Ptr) == 8)
 | |
|       JE->emitInt64(Ptr);
 | |
|     else
 | |
|       JE->emitInt32(Ptr);
 | |
|   }
 | |
|   
 | |
|   // Emit the strings.
 | |
|   for (unsigned i = 0; i != GVs.size(); ++i)
 | |
|     JE->emitString(GVs[i]->getName());
 | |
|   for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); 
 | |
|        i != e; ++i)
 | |
|     JE->emitString(i->first());
 | |
|   
 | |
|   // Tell the JIT memory manager where it is.  The JIT Memory Manager will
 | |
|   // deallocate space for the old one, if one existed.
 | |
|   JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
 | |
| }
 | |
| 
 | |
| /// freeMachineCodeForFunction - release machine code memory for given Function.
 | |
| ///
 | |
| void JIT::freeMachineCodeForFunction(Function *F) {
 | |
| 
 | |
|   // Delete translation for this from the ExecutionEngine, so it will get
 | |
|   // retranslated next time it is used.
 | |
|   void *OldPtr = updateGlobalMapping(F, 0);
 | |
| 
 | |
|   if (OldPtr)
 | |
|     TheJIT->NotifyFreeingMachineCode(*F, OldPtr);
 | |
| 
 | |
|   // Free the actual memory for the function body and related stuff.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
 | |
| }
 |