mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Dispatch C calling conv. to one of these conventions based on target triple and subtarget features. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73530 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1890 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1890 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Assembly/Writer.h
 | |
| //
 | |
| // Note that these routines must be extremely tolerant of various errors in the
 | |
| // LLVM code, because it can be used for debugging transformations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Assembly/PrintModulePass.h"
 | |
| #include "llvm/Assembly/AsmAnnotationWriter.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/MDNode.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ValueSymbolTable.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cctype>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Make virtual table appear in this compilation unit.
 | |
| AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const Module *getModuleFromVal(const Value *V) {
 | |
|   if (const Argument *MA = dyn_cast<Argument>(V))
 | |
|     return MA->getParent() ? MA->getParent()->getParent() : 0;
 | |
|   
 | |
|   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | |
|     return BB->getParent() ? BB->getParent()->getParent() : 0;
 | |
|   
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | |
|     return M ? M->getParent() : 0;
 | |
|   }
 | |
|   
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|     return GV->getParent();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // PrintEscapedString - Print each character of the specified string, escaping
 | |
| // it if it is not printable or if it is an escape char.
 | |
| static void PrintEscapedString(const char *Str, unsigned Length,
 | |
|                                raw_ostream &Out) {
 | |
|   for (unsigned i = 0; i != Length; ++i) {
 | |
|     unsigned char C = Str[i];
 | |
|     if (isprint(C) && C != '\\' && C != '"')
 | |
|       Out << C;
 | |
|     else
 | |
|       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // PrintEscapedString - Print each character of the specified string, escaping
 | |
| // it if it is not printable or if it is an escape char.
 | |
| static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
 | |
|   PrintEscapedString(Str.c_str(), Str.size(), Out);
 | |
| }
 | |
| 
 | |
| enum PrefixType {
 | |
|   GlobalPrefix,
 | |
|   LabelPrefix,
 | |
|   LocalPrefix,
 | |
|   NoPrefix
 | |
| };
 | |
| 
 | |
| /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | |
| /// prefixed with % (if the string only contains simple characters) or is
 | |
| /// surrounded with ""'s (if it has special chars in it).  Print it out.
 | |
| static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
 | |
|                           unsigned NameLen, PrefixType Prefix) {
 | |
|   assert(NameStr && "Cannot get empty name!");
 | |
|   switch (Prefix) {
 | |
|   default: assert(0 && "Bad prefix!");
 | |
|   case NoPrefix: break;
 | |
|   case GlobalPrefix: OS << '@'; break;
 | |
|   case LabelPrefix:  break;
 | |
|   case LocalPrefix:  OS << '%'; break;
 | |
|   }
 | |
|   
 | |
|   // Scan the name to see if it needs quotes first.
 | |
|   bool NeedsQuotes = isdigit(NameStr[0]);
 | |
|   if (!NeedsQuotes) {
 | |
|     for (unsigned i = 0; i != NameLen; ++i) {
 | |
|       char C = NameStr[i];
 | |
|       if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
 | |
|         NeedsQuotes = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we didn't need any quotes, just write out the name in one blast.
 | |
|   if (!NeedsQuotes) {
 | |
|     OS.write(NameStr, NameLen);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Okay, we need quotes.  Output the quotes and escape any scary characters as
 | |
|   // needed.
 | |
|   OS << '"';
 | |
|   PrintEscapedString(NameStr, NameLen, OS);
 | |
|   OS << '"';
 | |
| }
 | |
| 
 | |
| /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | |
| /// prefixed with % (if the string only contains simple characters) or is
 | |
| /// surrounded with ""'s (if it has special chars in it).  Print it out.
 | |
| static void PrintLLVMName(raw_ostream &OS, const Value *V) {
 | |
|   PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
 | |
|                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TypePrinting Class: Type printing machinery
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
 | |
|   return *static_cast<DenseMap<const Type *, std::string>*>(M);
 | |
| }
 | |
| 
 | |
| void TypePrinting::clear() {
 | |
|   getTypeNamesMap(TypeNames).clear();
 | |
| }
 | |
| 
 | |
| bool TypePrinting::hasTypeName(const Type *Ty) const {
 | |
|   return getTypeNamesMap(TypeNames).count(Ty);
 | |
| }
 | |
| 
 | |
| void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
 | |
|   getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
 | |
| }
 | |
| 
 | |
| 
 | |
| TypePrinting::TypePrinting() {
 | |
|   TypeNames = new DenseMap<const Type *, std::string>();
 | |
| }
 | |
| 
 | |
| TypePrinting::~TypePrinting() {
 | |
|   delete &getTypeNamesMap(TypeNames);
 | |
| }
 | |
| 
 | |
| /// CalcTypeName - Write the specified type to the specified raw_ostream, making
 | |
| /// use of type names or up references to shorten the type name where possible.
 | |
| void TypePrinting::CalcTypeName(const Type *Ty,
 | |
|                                 SmallVectorImpl<const Type *> &TypeStack,
 | |
|                                 raw_ostream &OS, bool IgnoreTopLevelName) {
 | |
|   // Check to see if the type is named.
 | |
|   if (!IgnoreTopLevelName) {
 | |
|     DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
 | |
|     DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
 | |
|     if (I != TM.end()) {
 | |
|       OS << I->second;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check to see if the Type is already on the stack...
 | |
|   unsigned Slot = 0, CurSize = TypeStack.size();
 | |
|   while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
 | |
|   
 | |
|   // This is another base case for the recursion.  In this case, we know
 | |
|   // that we have looped back to a type that we have previously visited.
 | |
|   // Generate the appropriate upreference to handle this.
 | |
|   if (Slot < CurSize) {
 | |
|     OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
 | |
|   
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::VoidTyID:      OS << "void"; break;
 | |
|   case Type::FloatTyID:     OS << "float"; break;
 | |
|   case Type::DoubleTyID:    OS << "double"; break;
 | |
|   case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
 | |
|   case Type::FP128TyID:     OS << "fp128"; break;
 | |
|   case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
 | |
|   case Type::LabelTyID:     OS << "label"; break;
 | |
|   case Type::MetadataTyID:  OS << "metadata"; break;
 | |
|   case Type::IntegerTyID:
 | |
|     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
 | |
|     break;
 | |
|       
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<FunctionType>(Ty);
 | |
|     CalcTypeName(FTy->getReturnType(), TypeStack, OS);
 | |
|     OS << " (";
 | |
|     for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|          E = FTy->param_end(); I != E; ++I) {
 | |
|       if (I != FTy->param_begin())
 | |
|         OS << ", ";
 | |
|       CalcTypeName(*I, TypeStack, OS);
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (FTy->getNumParams()) OS << ", ";
 | |
|       OS << "...";
 | |
|     }
 | |
|     OS << ')';
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     if (STy->isPacked())
 | |
|       OS << '<';
 | |
|     OS << "{ ";
 | |
|     for (StructType::element_iterator I = STy->element_begin(),
 | |
|          E = STy->element_end(); I != E; ++I) {
 | |
|       CalcTypeName(*I, TypeStack, OS);
 | |
|       if (next(I) != STy->element_end())
 | |
|         OS << ',';
 | |
|       OS << ' ';
 | |
|     }
 | |
|     OS << '}';
 | |
|     if (STy->isPacked())
 | |
|       OS << '>';
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PTy = cast<PointerType>(Ty);
 | |
|     CalcTypeName(PTy->getElementType(), TypeStack, OS);
 | |
|     if (unsigned AddressSpace = PTy->getAddressSpace())
 | |
|       OS << " addrspace(" << AddressSpace << ')';
 | |
|     OS << '*';
 | |
|     break;
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     OS << '[' << ATy->getNumElements() << " x ";
 | |
|     CalcTypeName(ATy->getElementType(), TypeStack, OS);
 | |
|     OS << ']';
 | |
|     break;
 | |
|   }
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *PTy = cast<VectorType>(Ty);
 | |
|     OS << "<" << PTy->getNumElements() << " x ";
 | |
|     CalcTypeName(PTy->getElementType(), TypeStack, OS);
 | |
|     OS << '>';
 | |
|     break;
 | |
|   }
 | |
|   case Type::OpaqueTyID:
 | |
|     OS << "opaque";
 | |
|     break;
 | |
|   default:
 | |
|     OS << "<unrecognized-type>";
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   TypeStack.pop_back();       // Remove self from stack.
 | |
| }
 | |
| 
 | |
| /// printTypeInt - The internal guts of printing out a type that has a
 | |
| /// potentially named portion.
 | |
| ///
 | |
| void TypePrinting::print(const Type *Ty, raw_ostream &OS,
 | |
|                          bool IgnoreTopLevelName) {
 | |
|   // Check to see if the type is named.
 | |
|   DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
 | |
|   if (!IgnoreTopLevelName) {
 | |
|     DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
 | |
|     if (I != TM.end()) {
 | |
|       OS << I->second;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise we have a type that has not been named but is a derived type.
 | |
|   // Carefully recurse the type hierarchy to print out any contained symbolic
 | |
|   // names.
 | |
|   SmallVector<const Type *, 16> TypeStack;
 | |
|   std::string TypeName;
 | |
|   
 | |
|   raw_string_ostream TypeOS(TypeName);
 | |
|   CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
 | |
|   OS << TypeOS.str();
 | |
| 
 | |
|   // Cache type name for later use.
 | |
|   if (!IgnoreTopLevelName)
 | |
|     TM.insert(std::make_pair(Ty, TypeOS.str()));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class TypeFinder {
 | |
|     // To avoid walking constant expressions multiple times and other IR
 | |
|     // objects, we keep several helper maps.
 | |
|     DenseSet<const Value*> VisitedConstants;
 | |
|     DenseSet<const Type*> VisitedTypes;
 | |
|     
 | |
|     TypePrinting &TP;
 | |
|     std::vector<const Type*> &NumberedTypes;
 | |
|   public:
 | |
|     TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
 | |
|       : TP(tp), NumberedTypes(numberedTypes) {}
 | |
|     
 | |
|     void Run(const Module &M) {
 | |
|       // Get types from the type symbol table.  This gets opaque types referened
 | |
|       // only through derived named types.
 | |
|       const TypeSymbolTable &ST = M.getTypeSymbolTable();
 | |
|       for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
 | |
|            TI != E; ++TI)
 | |
|         IncorporateType(TI->second);
 | |
|       
 | |
|       // Get types from global variables.
 | |
|       for (Module::const_global_iterator I = M.global_begin(),
 | |
|            E = M.global_end(); I != E; ++I) {
 | |
|         IncorporateType(I->getType());
 | |
|         if (I->hasInitializer())
 | |
|           IncorporateValue(I->getInitializer());
 | |
|       }
 | |
|       
 | |
|       // Get types from aliases.
 | |
|       for (Module::const_alias_iterator I = M.alias_begin(),
 | |
|            E = M.alias_end(); I != E; ++I) {
 | |
|         IncorporateType(I->getType());
 | |
|         IncorporateValue(I->getAliasee());
 | |
|       }
 | |
|       
 | |
|       // Get types from functions.
 | |
|       for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
 | |
|         IncorporateType(FI->getType());
 | |
|         
 | |
|         for (Function::const_iterator BB = FI->begin(), E = FI->end();
 | |
|              BB != E;++BB)
 | |
|           for (BasicBlock::const_iterator II = BB->begin(),
 | |
|                E = BB->end(); II != E; ++II) {
 | |
|             const Instruction &I = *II;
 | |
|             // Incorporate the type of the instruction and all its operands.
 | |
|             IncorporateType(I.getType());
 | |
|             for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
 | |
|                  OI != OE; ++OI)
 | |
|               IncorporateValue(*OI);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|   private:
 | |
|     void IncorporateType(const Type *Ty) {
 | |
|       // Check to see if we're already visited this type.
 | |
|       if (!VisitedTypes.insert(Ty).second)
 | |
|         return;
 | |
|       
 | |
|       // If this is a structure or opaque type, add a name for the type.
 | |
|       if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
 | |
|             || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
 | |
|         TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
 | |
|         NumberedTypes.push_back(Ty);
 | |
|       }
 | |
|       
 | |
|       // Recursively walk all contained types.
 | |
|       for (Type::subtype_iterator I = Ty->subtype_begin(),
 | |
|            E = Ty->subtype_end(); I != E; ++I)
 | |
|         IncorporateType(*I);      
 | |
|     }
 | |
|     
 | |
|     /// IncorporateValue - This method is used to walk operand lists finding
 | |
|     /// types hiding in constant expressions and other operands that won't be
 | |
|     /// walked in other ways.  GlobalValues, basic blocks, instructions, and
 | |
|     /// inst operands are all explicitly enumerated.
 | |
|     void IncorporateValue(const Value *V) {
 | |
|       if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
 | |
|       
 | |
|       // Already visited?
 | |
|       if (!VisitedConstants.insert(V).second)
 | |
|         return;
 | |
|       
 | |
|       // Check this type.
 | |
|       IncorporateType(V->getType());
 | |
|       
 | |
|       // Look in operands for types.
 | |
|       const Constant *C = cast<Constant>(V);
 | |
|       for (Constant::const_op_iterator I = C->op_begin(),
 | |
|            E = C->op_end(); I != E;++I)
 | |
|         IncorporateValue(*I);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
 | |
| /// the specified module to the TypePrinter and all numbered types to it and the
 | |
| /// NumberedTypes table.
 | |
| static void AddModuleTypesToPrinter(TypePrinting &TP, 
 | |
|                                     std::vector<const Type*> &NumberedTypes,
 | |
|                                     const Module *M) {
 | |
|   if (M == 0) return;
 | |
|   
 | |
|   // If the module has a symbol table, take all global types and stuff their
 | |
|   // names into the TypeNames map.
 | |
|   const TypeSymbolTable &ST = M->getTypeSymbolTable();
 | |
|   for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
 | |
|        TI != E; ++TI) {
 | |
|     const Type *Ty = cast<Type>(TI->second);
 | |
|     
 | |
|     // As a heuristic, don't insert pointer to primitive types, because
 | |
|     // they are used too often to have a single useful name.
 | |
|     if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|       const Type *PETy = PTy->getElementType();
 | |
|       if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
 | |
|           !isa<OpaqueType>(PETy))
 | |
|         continue;
 | |
|     }
 | |
|     
 | |
|     // Likewise don't insert primitives either.
 | |
|     if (Ty->isInteger() || Ty->isPrimitiveType())
 | |
|       continue;
 | |
|     
 | |
|     // Get the name as a string and insert it into TypeNames.
 | |
|     std::string NameStr;
 | |
|     raw_string_ostream NameOS(NameStr);
 | |
|     PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
 | |
|     TP.addTypeName(Ty, NameOS.str());
 | |
|   }
 | |
|   
 | |
|   // Walk the entire module to find references to unnamed structure and opaque
 | |
|   // types.  This is required for correctness by opaque types (because multiple
 | |
|   // uses of an unnamed opaque type needs to be referred to by the same ID) and
 | |
|   // it shrinks complex recursive structure types substantially in some cases.
 | |
|   TypeFinder(TP, NumberedTypes).Run(*M);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
 | |
| /// type, iff there is an entry in the modules symbol table for the specified
 | |
| /// type or one of it's component types.
 | |
| ///
 | |
| void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
 | |
|   TypePrinting Printer;
 | |
|   std::vector<const Type*> NumberedTypes;
 | |
|   AddModuleTypesToPrinter(Printer, NumberedTypes, M);
 | |
|   Printer.print(Ty, OS);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SlotTracker Class: Enumerate slot numbers for unnamed values
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This class provides computation of slot numbers for LLVM Assembly writing.
 | |
| ///
 | |
| class SlotTracker {
 | |
| public:
 | |
|   /// ValueMap - A mapping of Values to slot numbers
 | |
|   typedef DenseMap<const Value*, unsigned> ValueMap;
 | |
|   
 | |
| private:  
 | |
|   /// TheModule - The module for which we are holding slot numbers
 | |
|   const Module* TheModule;
 | |
|   
 | |
|   /// TheFunction - The function for which we are holding slot numbers
 | |
|   const Function* TheFunction;
 | |
|   bool FunctionProcessed;
 | |
|   
 | |
|   /// mMap - The TypePlanes map for the module level data
 | |
|   ValueMap mMap;
 | |
|   unsigned mNext;
 | |
|   
 | |
|   /// fMap - The TypePlanes map for the function level data
 | |
|   ValueMap fMap;
 | |
|   unsigned fNext;
 | |
|   
 | |
| public:
 | |
|   /// Construct from a module
 | |
|   explicit SlotTracker(const Module *M);
 | |
|   /// Construct from a function, starting out in incorp state.
 | |
|   explicit SlotTracker(const Function *F);
 | |
| 
 | |
|   /// Return the slot number of the specified value in it's type
 | |
|   /// plane.  If something is not in the SlotTracker, return -1.
 | |
|   int getLocalSlot(const Value *V);
 | |
|   int getGlobalSlot(const GlobalValue *V);
 | |
| 
 | |
|   /// If you'd like to deal with a function instead of just a module, use
 | |
|   /// this method to get its data into the SlotTracker.
 | |
|   void incorporateFunction(const Function *F) {
 | |
|     TheFunction = F;
 | |
|     FunctionProcessed = false;
 | |
|   }
 | |
| 
 | |
|   /// After calling incorporateFunction, use this method to remove the
 | |
|   /// most recently incorporated function from the SlotTracker. This
 | |
|   /// will reset the state of the machine back to just the module contents.
 | |
|   void purgeFunction();
 | |
| 
 | |
|   // Implementation Details
 | |
| private:
 | |
|   /// This function does the actual initialization.
 | |
|   inline void initialize();
 | |
| 
 | |
|   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | |
|   void CreateModuleSlot(const GlobalValue *V);
 | |
|   
 | |
|   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
 | |
|   void CreateFunctionSlot(const Value *V);
 | |
| 
 | |
|   /// Add all of the module level global variables (and their initializers)
 | |
|   /// and function declarations, but not the contents of those functions.
 | |
|   void processModule();
 | |
| 
 | |
|   /// Add all of the functions arguments, basic blocks, and instructions
 | |
|   void processFunction();
 | |
| 
 | |
|   SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
 | |
|   void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
 | |
| };
 | |
| 
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| static SlotTracker *createSlotTracker(const Value *V) {
 | |
|   if (const Argument *FA = dyn_cast<Argument>(V))
 | |
|     return new SlotTracker(FA->getParent());
 | |
|   
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return new SlotTracker(I->getParent()->getParent());
 | |
|   
 | |
|   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | |
|     return new SlotTracker(BB->getParent());
 | |
|   
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return new SlotTracker(GV->getParent());
 | |
|   
 | |
|   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return new SlotTracker(GA->getParent());    
 | |
|   
 | |
|   if (const Function *Func = dyn_cast<Function>(V))
 | |
|     return new SlotTracker(Func);
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| #define ST_DEBUG(X) cerr << X
 | |
| #else
 | |
| #define ST_DEBUG(X)
 | |
| #endif
 | |
| 
 | |
| // Module level constructor. Causes the contents of the Module (sans functions)
 | |
| // to be added to the slot table.
 | |
| SlotTracker::SlotTracker(const Module *M)
 | |
|   : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
 | |
| }
 | |
| 
 | |
| // Function level constructor. Causes the contents of the Module and the one
 | |
| // function provided to be added to the slot table.
 | |
| SlotTracker::SlotTracker(const Function *F)
 | |
|   : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
 | |
|     mNext(0), fNext(0) {
 | |
| }
 | |
| 
 | |
| inline void SlotTracker::initialize() {
 | |
|   if (TheModule) {
 | |
|     processModule();
 | |
|     TheModule = 0; ///< Prevent re-processing next time we're called.
 | |
|   }
 | |
|   
 | |
|   if (TheFunction && !FunctionProcessed)
 | |
|     processFunction();
 | |
| }
 | |
| 
 | |
| // Iterate through all the global variables, functions, and global
 | |
| // variable initializers and create slots for them.
 | |
| void SlotTracker::processModule() {
 | |
|   ST_DEBUG("begin processModule!\n");
 | |
|   
 | |
|   // Add all of the unnamed global variables to the value table.
 | |
|   for (Module::const_global_iterator I = TheModule->global_begin(),
 | |
|        E = TheModule->global_end(); I != E; ++I)
 | |
|     if (!I->hasName()) 
 | |
|       CreateModuleSlot(I);
 | |
|   
 | |
|   // Add all the unnamed functions to the table.
 | |
|   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | |
|        I != E; ++I)
 | |
|     if (!I->hasName())
 | |
|       CreateModuleSlot(I);
 | |
|   
 | |
|   ST_DEBUG("end processModule!\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| // Process the arguments, basic blocks, and instructions  of a function.
 | |
| void SlotTracker::processFunction() {
 | |
|   ST_DEBUG("begin processFunction!\n");
 | |
|   fNext = 0;
 | |
|   
 | |
|   // Add all the function arguments with no names.
 | |
|   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
 | |
|       AE = TheFunction->arg_end(); AI != AE; ++AI)
 | |
|     if (!AI->hasName())
 | |
|       CreateFunctionSlot(AI);
 | |
|   
 | |
|   ST_DEBUG("Inserting Instructions:\n");
 | |
|   
 | |
|   // Add all of the basic blocks and instructions with no names.
 | |
|   for (Function::const_iterator BB = TheFunction->begin(),
 | |
|        E = TheFunction->end(); BB != E; ++BB) {
 | |
|     if (!BB->hasName())
 | |
|       CreateFunctionSlot(BB);
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (I->getType() != Type::VoidTy && !I->hasName())
 | |
|         CreateFunctionSlot(I);
 | |
|   }
 | |
|   
 | |
|   FunctionProcessed = true;
 | |
|   
 | |
|   ST_DEBUG("end processFunction!\n");
 | |
| }
 | |
| 
 | |
| /// Clean up after incorporating a function. This is the only way to get out of
 | |
| /// the function incorporation state that affects get*Slot/Create*Slot. Function
 | |
| /// incorporation state is indicated by TheFunction != 0.
 | |
| void SlotTracker::purgeFunction() {
 | |
|   ST_DEBUG("begin purgeFunction!\n");
 | |
|   fMap.clear(); // Simply discard the function level map
 | |
|   TheFunction = 0;
 | |
|   FunctionProcessed = false;
 | |
|   ST_DEBUG("end purgeFunction!\n");
 | |
| }
 | |
| 
 | |
| /// getGlobalSlot - Get the slot number of a global value.
 | |
| int SlotTracker::getGlobalSlot(const GlobalValue *V) {
 | |
|   // Check for uninitialized state and do lazy initialization.
 | |
|   initialize();
 | |
|   
 | |
|   // Find the type plane in the module map
 | |
|   ValueMap::iterator MI = mMap.find(V);
 | |
|   return MI == mMap.end() ? -1 : (int)MI->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getLocalSlot - Get the slot number for a value that is local to a function.
 | |
| int SlotTracker::getLocalSlot(const Value *V) {
 | |
|   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
 | |
|   
 | |
|   // Check for uninitialized state and do lazy initialization.
 | |
|   initialize();
 | |
|   
 | |
|   ValueMap::iterator FI = fMap.find(V);
 | |
|   return FI == fMap.end() ? -1 : (int)FI->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | |
| void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
 | |
|   assert(V && "Can't insert a null Value into SlotTracker!");
 | |
|   assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
 | |
|   assert(!V->hasName() && "Doesn't need a slot!");
 | |
|   
 | |
|   unsigned DestSlot = mNext++;
 | |
|   mMap[V] = DestSlot;
 | |
|   
 | |
|   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | |
|            DestSlot << " [");
 | |
|   // G = Global, F = Function, A = Alias, o = other
 | |
|   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
 | |
|             (isa<Function>(V) ? 'F' :
 | |
|              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CreateSlot - Create a new slot for the specified value if it has no name.
 | |
| void SlotTracker::CreateFunctionSlot(const Value *V) {
 | |
|   assert(V->getType() != Type::VoidTy && !V->hasName() &&
 | |
|          "Doesn't need a slot!");
 | |
|   
 | |
|   unsigned DestSlot = fNext++;
 | |
|   fMap[V] = DestSlot;
 | |
|   
 | |
|   // G = Global, F = Function, o = other
 | |
|   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | |
|            DestSlot << " [o]\n");
 | |
| }  
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AsmWriter Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | |
|                                    TypePrinting &TypePrinter,
 | |
|                                    SlotTracker *Machine);
 | |
| 
 | |
| 
 | |
| 
 | |
| static const char *getPredicateText(unsigned predicate) {
 | |
|   const char * pred = "unknown";
 | |
|   switch (predicate) {
 | |
|     case FCmpInst::FCMP_FALSE: pred = "false"; break;
 | |
|     case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
 | |
|     case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
 | |
|     case FCmpInst::FCMP_OGE:   pred = "oge"; break;
 | |
|     case FCmpInst::FCMP_OLT:   pred = "olt"; break;
 | |
|     case FCmpInst::FCMP_OLE:   pred = "ole"; break;
 | |
|     case FCmpInst::FCMP_ONE:   pred = "one"; break;
 | |
|     case FCmpInst::FCMP_ORD:   pred = "ord"; break;
 | |
|     case FCmpInst::FCMP_UNO:   pred = "uno"; break;
 | |
|     case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
 | |
|     case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
 | |
|     case FCmpInst::FCMP_UGE:   pred = "uge"; break;
 | |
|     case FCmpInst::FCMP_ULT:   pred = "ult"; break;
 | |
|     case FCmpInst::FCMP_ULE:   pred = "ule"; break;
 | |
|     case FCmpInst::FCMP_UNE:   pred = "une"; break;
 | |
|     case FCmpInst::FCMP_TRUE:  pred = "true"; break;
 | |
|     case ICmpInst::ICMP_EQ:    pred = "eq"; break;
 | |
|     case ICmpInst::ICMP_NE:    pred = "ne"; break;
 | |
|     case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
 | |
|     case ICmpInst::ICMP_SGE:   pred = "sge"; break;
 | |
|     case ICmpInst::ICMP_SLT:   pred = "slt"; break;
 | |
|     case ICmpInst::ICMP_SLE:   pred = "sle"; break;
 | |
|     case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
 | |
|     case ICmpInst::ICMP_UGE:   pred = "uge"; break;
 | |
|     case ICmpInst::ICMP_ULT:   pred = "ult"; break;
 | |
|     case ICmpInst::ICMP_ULE:   pred = "ule"; break;
 | |
|   }
 | |
|   return pred;
 | |
| }
 | |
| 
 | |
| static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
 | |
|                              TypePrinting &TypePrinter, SlotTracker *Machine) {
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|     if (CI->getType() == Type::Int1Ty) {
 | |
|       Out << (CI->getZExtValue() ? "true" : "false");
 | |
|       return;
 | |
|     }
 | |
|     Out << CI->getValue();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
 | |
|         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
 | |
|       // We would like to output the FP constant value in exponential notation,
 | |
|       // but we cannot do this if doing so will lose precision.  Check here to
 | |
|       // make sure that we only output it in exponential format if we can parse
 | |
|       // the value back and get the same value.
 | |
|       //
 | |
|       bool ignored;
 | |
|       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
 | |
|       double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
 | |
|                               CFP->getValueAPF().convertToFloat();
 | |
|       std::string StrVal = ftostr(CFP->getValueAPF());
 | |
| 
 | |
|       // Check to make sure that the stringized number is not some string like
 | |
|       // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
 | |
|       // that the string matches the "[-+]?[0-9]" regex.
 | |
|       //
 | |
|       if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | |
|           ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | |
|            (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
 | |
|         // Reparse stringized version!
 | |
|         if (atof(StrVal.c_str()) == Val) {
 | |
|           Out << StrVal;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       // Otherwise we could not reparse it to exactly the same value, so we must
 | |
|       // output the string in hexadecimal format!  Note that loading and storing
 | |
|       // floating point types changes the bits of NaNs on some hosts, notably
 | |
|       // x86, so we must not use these types.
 | |
|       assert(sizeof(double) == sizeof(uint64_t) &&
 | |
|              "assuming that double is 64 bits!");
 | |
|       char Buffer[40];
 | |
|       APFloat apf = CFP->getValueAPF();
 | |
|       // Floats are represented in ASCII IR as double, convert.
 | |
|       if (!isDouble)
 | |
|         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 
 | |
|                           &ignored);
 | |
|       Out << "0x" << 
 | |
|               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), 
 | |
|                             Buffer+40);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Some form of long double.  These appear as a magic letter identifying
 | |
|     // the type, then a fixed number of hex digits.
 | |
|     Out << "0x";
 | |
|     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
 | |
|       Out << 'K';
 | |
|       // api needed to prevent premature destruction
 | |
|       APInt api = CFP->getValueAPF().bitcastToAPInt();
 | |
|       const uint64_t* p = api.getRawData();
 | |
|       uint64_t word = p[1];
 | |
|       int shiftcount=12;
 | |
|       int width = api.getBitWidth();
 | |
|       for (int j=0; j<width; j+=4, shiftcount-=4) {
 | |
|         unsigned int nibble = (word>>shiftcount) & 15;
 | |
|         if (nibble < 10)
 | |
|           Out << (unsigned char)(nibble + '0');
 | |
|         else
 | |
|           Out << (unsigned char)(nibble - 10 + 'A');
 | |
|         if (shiftcount == 0 && j+4 < width) {
 | |
|           word = *p;
 | |
|           shiftcount = 64;
 | |
|           if (width-j-4 < 64)
 | |
|             shiftcount = width-j-4;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
 | |
|       Out << 'L';
 | |
|     else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|       Out << 'M';
 | |
|     else
 | |
|       assert(0 && "Unsupported floating point type");
 | |
|     // api needed to prevent premature destruction
 | |
|     APInt api = CFP->getValueAPF().bitcastToAPInt();
 | |
|     const uint64_t* p = api.getRawData();
 | |
|     uint64_t word = *p;
 | |
|     int shiftcount=60;
 | |
|     int width = api.getBitWidth();
 | |
|     for (int j=0; j<width; j+=4, shiftcount-=4) {
 | |
|       unsigned int nibble = (word>>shiftcount) & 15;
 | |
|       if (nibble < 10)
 | |
|         Out << (unsigned char)(nibble + '0');
 | |
|       else
 | |
|         Out << (unsigned char)(nibble - 10 + 'A');
 | |
|       if (shiftcount == 0 && j+4 < width) {
 | |
|         word = *(++p);
 | |
|         shiftcount = 64;
 | |
|         if (width-j-4 < 64)
 | |
|           shiftcount = width-j-4;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<ConstantAggregateZero>(CV)) {
 | |
|     Out << "zeroinitializer";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | |
|     // As a special case, print the array as a string if it is an array of
 | |
|     // i8 with ConstantInt values.
 | |
|     //
 | |
|     const Type *ETy = CA->getType()->getElementType();
 | |
|     if (CA->isString()) {
 | |
|       Out << "c\"";
 | |
|       PrintEscapedString(CA->getAsString(), Out);
 | |
|       Out << '"';
 | |
|     } else {                // Cannot output in string format...
 | |
|       Out << '[';
 | |
|       if (CA->getNumOperands()) {
 | |
|         TypePrinter.print(ETy, Out);
 | |
|         Out << ' ';
 | |
|         WriteAsOperandInternal(Out, CA->getOperand(0),
 | |
|                                TypePrinter, Machine);
 | |
|         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           TypePrinter.print(ETy, Out);
 | |
|           Out << ' ';
 | |
|           WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
 | |
|         }
 | |
|       }
 | |
|       Out << ']';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | |
|     if (CS->getType()->isPacked())
 | |
|       Out << '<';
 | |
|     Out << '{';
 | |
|     unsigned N = CS->getNumOperands();
 | |
|     if (N) {
 | |
|       Out << ' ';
 | |
|       TypePrinter.print(CS->getOperand(0)->getType(), Out);
 | |
|       Out << ' ';
 | |
| 
 | |
|       WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
 | |
| 
 | |
|       for (unsigned i = 1; i < N; i++) {
 | |
|         Out << ", ";
 | |
|         TypePrinter.print(CS->getOperand(i)->getType(), Out);
 | |
|         Out << ' ';
 | |
| 
 | |
|         WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
 | |
|       }
 | |
|       Out << ' ';
 | |
|     }
 | |
|  
 | |
|     Out << '}';
 | |
|     if (CS->getType()->isPacked())
 | |
|       Out << '>';
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
 | |
|     const Type *ETy = CP->getType()->getElementType();
 | |
|     assert(CP->getNumOperands() > 0 &&
 | |
|            "Number of operands for a PackedConst must be > 0");
 | |
|     Out << '<';
 | |
|     TypePrinter.print(ETy, Out);
 | |
|     Out << ' ';
 | |
|     WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
 | |
|     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | |
|       Out << ", ";
 | |
|       TypePrinter.print(ETy, Out);
 | |
|       Out << ' ';
 | |
|       WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
 | |
|     }
 | |
|     Out << '>';
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<ConstantPointerNull>(CV)) {
 | |
|     Out << "null";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<UndefValue>(CV)) {
 | |
|     Out << "undef";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const MDString *S = dyn_cast<MDString>(CV)) {
 | |
|     Out << "!\"";
 | |
|     PrintEscapedString(S->begin(), S->size(), Out);
 | |
|     Out << '"';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const MDNode *N = dyn_cast<MDNode>(CV)) {
 | |
|     Out << "!{";
 | |
|     for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
 | |
|          I != E;) {
 | |
|       if (!*I) {
 | |
|         Out << "null";
 | |
|       } else {
 | |
|         TypePrinter.print((*I)->getType(), Out);
 | |
|         Out << ' ';
 | |
|         WriteAsOperandInternal(Out, *I, TypePrinter, Machine);
 | |
|       }
 | |
| 
 | |
|       if (++I != E)
 | |
|         Out << ", ";
 | |
|     }
 | |
|     Out << "}";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | |
|     Out << CE->getOpcodeName();
 | |
|     if (CE->isCompare())
 | |
|       Out << ' ' << getPredicateText(CE->getPredicate());
 | |
|     Out << " (";
 | |
| 
 | |
|     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | |
|       TypePrinter.print((*OI)->getType(), Out);
 | |
|       Out << ' ';
 | |
|       WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
 | |
|       if (OI+1 != CE->op_end())
 | |
|         Out << ", ";
 | |
|     }
 | |
| 
 | |
|     if (CE->hasIndices()) {
 | |
|       const SmallVector<unsigned, 4> &Indices = CE->getIndices();
 | |
|       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | |
|         Out << ", " << Indices[i];
 | |
|     }
 | |
| 
 | |
|     if (CE->isCast()) {
 | |
|       Out << " to ";
 | |
|       TypePrinter.print(CE->getType(), Out);
 | |
|     }
 | |
| 
 | |
|     Out << ')';
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   Out << "<placeholder or erroneous Constant>";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WriteAsOperand - Write the name of the specified value out to the specified
 | |
| /// ostream.  This can be useful when you just want to print int %reg126, not
 | |
| /// the whole instruction that generated it.
 | |
| ///
 | |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | |
|                                    TypePrinting &TypePrinter,
 | |
|                                    SlotTracker *Machine) {
 | |
|   if (V->hasName()) {
 | |
|     PrintLLVMName(Out, V);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const Constant *CV = dyn_cast<Constant>(V);
 | |
|   if (CV && !isa<GlobalValue>(CV)) {
 | |
|     WriteConstantInt(Out, CV, TypePrinter, Machine);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | |
|     Out << "asm ";
 | |
|     if (IA->hasSideEffects())
 | |
|       Out << "sideeffect ";
 | |
|     Out << '"';
 | |
|     PrintEscapedString(IA->getAsmString(), Out);
 | |
|     Out << "\", \"";
 | |
|     PrintEscapedString(IA->getConstraintString(), Out);
 | |
|     Out << '"';
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   char Prefix = '%';
 | |
|   int Slot;
 | |
|   if (Machine) {
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|       Slot = Machine->getGlobalSlot(GV);
 | |
|       Prefix = '@';
 | |
|     } else {
 | |
|       Slot = Machine->getLocalSlot(V);
 | |
|     }
 | |
|   } else {
 | |
|     Machine = createSlotTracker(V);
 | |
|     if (Machine) {
 | |
|       if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|         Slot = Machine->getGlobalSlot(GV);
 | |
|         Prefix = '@';
 | |
|       } else {
 | |
|         Slot = Machine->getLocalSlot(V);
 | |
|       }
 | |
|     } else {
 | |
|       Slot = -1;
 | |
|     }
 | |
|     delete Machine;
 | |
|   }
 | |
|   
 | |
|   if (Slot != -1)
 | |
|     Out << Prefix << Slot;
 | |
|   else
 | |
|     Out << "<badref>";
 | |
| }
 | |
| 
 | |
| /// WriteAsOperand - Write the name of the specified value out to the specified
 | |
| /// ostream.  This can be useful when you just want to print int %reg126, not
 | |
| /// the whole instruction that generated it.
 | |
| ///
 | |
| void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
 | |
|                           const Module *Context) {
 | |
|   raw_os_ostream OS(Out);
 | |
|   WriteAsOperand(OS, V, PrintType, Context);
 | |
| }
 | |
| 
 | |
| void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
 | |
|                           const Module *Context) {
 | |
|   if (Context == 0) Context = getModuleFromVal(V);
 | |
| 
 | |
|   TypePrinting TypePrinter;
 | |
|   std::vector<const Type*> NumberedTypes;
 | |
|   AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
 | |
|   if (PrintType) {
 | |
|     TypePrinter.print(V->getType(), Out);
 | |
|     Out << ' ';
 | |
|   }
 | |
| 
 | |
|   WriteAsOperandInternal(Out, V, TypePrinter, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class AssemblyWriter {
 | |
|   raw_ostream &Out;
 | |
|   SlotTracker &Machine;
 | |
|   const Module *TheModule;
 | |
|   TypePrinting TypePrinter;
 | |
|   AssemblyAnnotationWriter *AnnotationWriter;
 | |
|   std::vector<const Type*> NumberedTypes;
 | |
| public:
 | |
|   inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
 | |
|                         AssemblyAnnotationWriter *AAW)
 | |
|     : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
 | |
|     AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
 | |
|   }
 | |
| 
 | |
|   void write(const Module *M) { printModule(M); }
 | |
|   
 | |
|   void write(const GlobalValue *G) {
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
 | |
|       printGlobal(GV);
 | |
|     else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
 | |
|       printAlias(GA);
 | |
|     else if (const Function *F = dyn_cast<Function>(G))
 | |
|       printFunction(F);
 | |
|     else
 | |
|       assert(0 && "Unknown global");
 | |
|   }
 | |
|   
 | |
|   void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
 | |
|   void write(const Instruction *I)    { printInstruction(*I); }
 | |
| 
 | |
|   void writeOperand(const Value *Op, bool PrintType);
 | |
|   void writeParamOperand(const Value *Operand, Attributes Attrs);
 | |
| 
 | |
|   const Module* getModule() { return TheModule; }
 | |
| 
 | |
| private:
 | |
|   void printModule(const Module *M);
 | |
|   void printTypeSymbolTable(const TypeSymbolTable &ST);
 | |
|   void printGlobal(const GlobalVariable *GV);
 | |
|   void printAlias(const GlobalAlias *GV);
 | |
|   void printFunction(const Function *F);
 | |
|   void printArgument(const Argument *FA, Attributes Attrs);
 | |
|   void printBasicBlock(const BasicBlock *BB);
 | |
|   void printInstruction(const Instruction &I);
 | |
| 
 | |
|   // printInfoComment - Print a little comment after the instruction indicating
 | |
|   // which slot it occupies.
 | |
|   void printInfoComment(const Value &V);
 | |
| };
 | |
| }  // end of anonymous namespace
 | |
| 
 | |
| 
 | |
| void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
 | |
|   if (Operand == 0) {
 | |
|     Out << "<null operand!>";
 | |
|   } else {
 | |
|     if (PrintType) {
 | |
|       TypePrinter.print(Operand->getType(), Out);
 | |
|       Out << ' ';
 | |
|     }
 | |
|     WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::writeParamOperand(const Value *Operand, 
 | |
|                                        Attributes Attrs) {
 | |
|   if (Operand == 0) {
 | |
|     Out << "<null operand!>";
 | |
|   } else {
 | |
|     // Print the type
 | |
|     TypePrinter.print(Operand->getType(), Out);
 | |
|     // Print parameter attributes list
 | |
|     if (Attrs != Attribute::None)
 | |
|       Out << ' ' << Attribute::getAsString(Attrs);
 | |
|     Out << ' ';
 | |
|     // Print the operand
 | |
|     WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printModule(const Module *M) {
 | |
|   if (!M->getModuleIdentifier().empty() &&
 | |
|       // Don't print the ID if it will start a new line (which would
 | |
|       // require a comment char before it).
 | |
|       M->getModuleIdentifier().find('\n') == std::string::npos)
 | |
|     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
 | |
| 
 | |
|   if (!M->getDataLayout().empty())
 | |
|     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
 | |
|   if (!M->getTargetTriple().empty())
 | |
|     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
 | |
| 
 | |
|   if (!M->getModuleInlineAsm().empty()) {
 | |
|     // Split the string into lines, to make it easier to read the .ll file.
 | |
|     std::string Asm = M->getModuleInlineAsm();
 | |
|     size_t CurPos = 0;
 | |
|     size_t NewLine = Asm.find_first_of('\n', CurPos);
 | |
|     while (NewLine != std::string::npos) {
 | |
|       // We found a newline, print the portion of the asm string from the
 | |
|       // last newline up to this newline.
 | |
|       Out << "module asm \"";
 | |
|       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
 | |
|                          Out);
 | |
|       Out << "\"\n";
 | |
|       CurPos = NewLine+1;
 | |
|       NewLine = Asm.find_first_of('\n', CurPos);
 | |
|     }
 | |
|     Out << "module asm \"";
 | |
|     PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
 | |
|     Out << "\"\n";
 | |
|   }
 | |
|   
 | |
|   // Loop over the dependent libraries and emit them.
 | |
|   Module::lib_iterator LI = M->lib_begin();
 | |
|   Module::lib_iterator LE = M->lib_end();
 | |
|   if (LI != LE) {
 | |
|     Out << "deplibs = [ ";
 | |
|     while (LI != LE) {
 | |
|       Out << '"' << *LI << '"';
 | |
|       ++LI;
 | |
|       if (LI != LE)
 | |
|         Out << ", ";
 | |
|     }
 | |
|     Out << " ]\n";
 | |
|   }
 | |
| 
 | |
|   // Loop over the symbol table, emitting all id'd types.
 | |
|   printTypeSymbolTable(M->getTypeSymbolTable());
 | |
| 
 | |
|   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
 | |
|        I != E; ++I)
 | |
|     printGlobal(I);
 | |
|   
 | |
|   // Output all aliases.
 | |
|   if (!M->alias_empty()) Out << "\n";
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     printAlias(I);
 | |
| 
 | |
|   // Output all of the functions.
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|     printFunction(I);
 | |
| }
 | |
| 
 | |
| static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
 | |
|   switch (LT) {
 | |
|   case GlobalValue::PrivateLinkage:     Out << "private "; break;
 | |
|   case GlobalValue::InternalLinkage:    Out << "internal "; break;
 | |
|   case GlobalValue::AvailableExternallyLinkage:
 | |
|     Out << "available_externally ";
 | |
|     break;
 | |
|   case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
 | |
|   case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
 | |
|   case GlobalValue::WeakAnyLinkage:     Out << "weak "; break;
 | |
|   case GlobalValue::WeakODRLinkage:     Out << "weak_odr "; break;
 | |
|   case GlobalValue::CommonLinkage:      Out << "common "; break;
 | |
|   case GlobalValue::AppendingLinkage:   Out << "appending "; break;
 | |
|   case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
 | |
|   case GlobalValue::DLLExportLinkage:   Out << "dllexport "; break;
 | |
|   case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
 | |
|   case GlobalValue::ExternalLinkage: break;
 | |
|   case GlobalValue::GhostLinkage:
 | |
|     Out << "GhostLinkage not allowed in AsmWriter!\n";
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
 | |
|                             raw_ostream &Out) {
 | |
|   switch (Vis) {
 | |
|   default: assert(0 && "Invalid visibility style!");
 | |
|   case GlobalValue::DefaultVisibility: break;
 | |
|   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
 | |
|   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | |
|   if (GV->hasName()) {
 | |
|     PrintLLVMName(Out, GV);
 | |
|     Out << " = ";
 | |
|   }
 | |
| 
 | |
|   if (!GV->hasInitializer() && GV->hasExternalLinkage())
 | |
|     Out << "external ";
 | |
|   
 | |
|   PrintLinkage(GV->getLinkage(), Out);
 | |
|   PrintVisibility(GV->getVisibility(), Out);
 | |
| 
 | |
|   if (GV->isThreadLocal()) Out << "thread_local ";
 | |
|   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
 | |
|     Out << "addrspace(" << AddressSpace << ") ";
 | |
|   Out << (GV->isConstant() ? "constant " : "global ");
 | |
|   TypePrinter.print(GV->getType()->getElementType(), Out);
 | |
| 
 | |
|   if (GV->hasInitializer()) {
 | |
|     Out << ' ';
 | |
|     writeOperand(GV->getInitializer(), false);
 | |
|   }
 | |
|     
 | |
|   if (GV->hasSection())
 | |
|     Out << ", section \"" << GV->getSection() << '"';
 | |
|   if (GV->getAlignment())
 | |
|     Out << ", align " << GV->getAlignment();
 | |
| 
 | |
|   printInfoComment(*GV);
 | |
|   Out << '\n';
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printAlias(const GlobalAlias *GA) {
 | |
|   // Don't crash when dumping partially built GA
 | |
|   if (!GA->hasName())
 | |
|     Out << "<<nameless>> = ";
 | |
|   else {
 | |
|     PrintLLVMName(Out, GA);
 | |
|     Out << " = ";
 | |
|   }
 | |
|   PrintVisibility(GA->getVisibility(), Out);
 | |
| 
 | |
|   Out << "alias ";
 | |
| 
 | |
|   PrintLinkage(GA->getLinkage(), Out);
 | |
|   
 | |
|   const Constant *Aliasee = GA->getAliasee();
 | |
|     
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
 | |
|     TypePrinter.print(GV->getType(), Out);
 | |
|     Out << ' ';
 | |
|     PrintLLVMName(Out, GV);
 | |
|   } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
 | |
|     TypePrinter.print(F->getFunctionType(), Out);
 | |
|     Out << "* ";
 | |
| 
 | |
|     WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
 | |
|   } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
 | |
|     TypePrinter.print(GA->getType(), Out);
 | |
|     Out << ' ';
 | |
|     PrintLLVMName(Out, GA);
 | |
|   } else {
 | |
|     const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
 | |
|     // The only valid GEP is an all zero GEP.
 | |
|     assert((CE->getOpcode() == Instruction::BitCast ||
 | |
|             CE->getOpcode() == Instruction::GetElementPtr) &&
 | |
|            "Unsupported aliasee");
 | |
|     writeOperand(CE, false);
 | |
|   }
 | |
|   
 | |
|   printInfoComment(*GA);
 | |
|   Out << '\n';
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
 | |
|   // Emit all numbered types.
 | |
|   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
 | |
|     Out << "\ttype ";
 | |
|     
 | |
|     // Make sure we print out at least one level of the type structure, so
 | |
|     // that we do not get %2 = type %2
 | |
|     TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
 | |
|     Out << "\t\t; type %" << i << '\n';
 | |
|   }
 | |
|   
 | |
|   // Print the named types.
 | |
|   for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
 | |
|        TI != TE; ++TI) {
 | |
|     Out << '\t';
 | |
|     PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
 | |
|     Out << " = type ";
 | |
| 
 | |
|     // Make sure we print out at least one level of the type structure, so
 | |
|     // that we do not get %FILE = type %FILE
 | |
|     TypePrinter.printAtLeastOneLevel(TI->second, Out);
 | |
|     Out << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// printFunction - Print all aspects of a function.
 | |
| ///
 | |
| void AssemblyWriter::printFunction(const Function *F) {
 | |
|   // Print out the return type and name.
 | |
|   Out << '\n';
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
 | |
| 
 | |
|   if (F->isDeclaration())
 | |
|     Out << "declare ";
 | |
|   else
 | |
|     Out << "define ";
 | |
|   
 | |
|   PrintLinkage(F->getLinkage(), Out);
 | |
|   PrintVisibility(F->getVisibility(), Out);
 | |
| 
 | |
|   // Print the calling convention.
 | |
|   switch (F->getCallingConv()) {
 | |
|   case CallingConv::C: break;   // default
 | |
|   case CallingConv::Fast:         Out << "fastcc "; break;
 | |
|   case CallingConv::Cold:         Out << "coldcc "; break;
 | |
|   case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
 | |
|   case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
 | |
|   case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
 | |
|   case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
 | |
|   case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
 | |
|   default: Out << "cc" << F->getCallingConv() << " "; break;
 | |
|   }
 | |
| 
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
|   const AttrListPtr &Attrs = F->getAttributes();
 | |
|   Attributes RetAttrs = Attrs.getRetAttributes();
 | |
|   if (RetAttrs != Attribute::None)
 | |
|     Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
 | |
|   TypePrinter.print(F->getReturnType(), Out);
 | |
|   Out << ' ';
 | |
|   WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
 | |
|   Out << '(';
 | |
|   Machine.incorporateFunction(F);
 | |
| 
 | |
|   // Loop over the arguments, printing them...
 | |
| 
 | |
|   unsigned Idx = 1;
 | |
|   if (!F->isDeclaration()) {
 | |
|     // If this isn't a declaration, print the argument names as well.
 | |
|     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I) {
 | |
|       // Insert commas as we go... the first arg doesn't get a comma
 | |
|       if (I != F->arg_begin()) Out << ", ";
 | |
|       printArgument(I, Attrs.getParamAttributes(Idx));
 | |
|       Idx++;
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, print the types from the function type.
 | |
|     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | |
|       // Insert commas as we go... the first arg doesn't get a comma
 | |
|       if (i) Out << ", ";
 | |
|       
 | |
|       // Output type...
 | |
|       TypePrinter.print(FT->getParamType(i), Out);
 | |
|       
 | |
|       Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
 | |
|       if (ArgAttrs != Attribute::None)
 | |
|         Out << ' ' << Attribute::getAsString(ArgAttrs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish printing arguments...
 | |
|   if (FT->isVarArg()) {
 | |
|     if (FT->getNumParams()) Out << ", ";
 | |
|     Out << "...";  // Output varargs portion of signature!
 | |
|   }
 | |
|   Out << ')';
 | |
|   Attributes FnAttrs = Attrs.getFnAttributes();
 | |
|   if (FnAttrs != Attribute::None)
 | |
|     Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
 | |
|   if (F->hasSection())
 | |
|     Out << " section \"" << F->getSection() << '"';
 | |
|   if (F->getAlignment())
 | |
|     Out << " align " << F->getAlignment();
 | |
|   if (F->hasGC())
 | |
|     Out << " gc \"" << F->getGC() << '"';
 | |
|   if (F->isDeclaration()) {
 | |
|     Out << "\n";
 | |
|   } else {
 | |
|     Out << " {";
 | |
| 
 | |
|     // Output all of its basic blocks... for the function
 | |
|     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|       printBasicBlock(I);
 | |
| 
 | |
|     Out << "}\n";
 | |
|   }
 | |
| 
 | |
|   Machine.purgeFunction();
 | |
| }
 | |
| 
 | |
| /// printArgument - This member is called for every argument that is passed into
 | |
| /// the function.  Simply print it out
 | |
| ///
 | |
| void AssemblyWriter::printArgument(const Argument *Arg, 
 | |
|                                    Attributes Attrs) {
 | |
|   // Output type...
 | |
|   TypePrinter.print(Arg->getType(), Out);
 | |
| 
 | |
|   // Output parameter attributes list
 | |
|   if (Attrs != Attribute::None)
 | |
|     Out << ' ' << Attribute::getAsString(Attrs);
 | |
| 
 | |
|   // Output name, if available...
 | |
|   if (Arg->hasName()) {
 | |
|     Out << ' ';
 | |
|     PrintLLVMName(Out, Arg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// printBasicBlock - This member is called for each basic block in a method.
 | |
| ///
 | |
| void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | |
|   if (BB->hasName()) {              // Print out the label if it exists...
 | |
|     Out << "\n";
 | |
|     PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
 | |
|     Out << ':';
 | |
|   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | |
|     Out << "\n; <label>:";
 | |
|     int Slot = Machine.getLocalSlot(BB);
 | |
|     if (Slot != -1)
 | |
|       Out << Slot;
 | |
|     else
 | |
|       Out << "<badref>";
 | |
|   }
 | |
| 
 | |
|   if (BB->getParent() == 0)
 | |
|     Out << "\t\t; Error: Block without parent!";
 | |
|   else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
 | |
|     // Output predecessors for the block...
 | |
|     Out << "\t\t;";
 | |
|     pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|     
 | |
|     if (PI == PE) {
 | |
|       Out << " No predecessors!";
 | |
|     } else {
 | |
|       Out << " preds = ";
 | |
|       writeOperand(*PI, false);
 | |
|       for (++PI; PI != PE; ++PI) {
 | |
|         Out << ", ";
 | |
|         writeOperand(*PI, false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << "\n";
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
 | |
| 
 | |
|   // Output all of the instructions in the basic block...
 | |
|   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     printInstruction(*I);
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// printInfoComment - Print a little comment after the instruction indicating
 | |
| /// which slot it occupies.
 | |
| ///
 | |
| void AssemblyWriter::printInfoComment(const Value &V) {
 | |
|   if (V.getType() != Type::VoidTy) {
 | |
|     Out << "\t\t; <";
 | |
|     TypePrinter.print(V.getType(), Out);
 | |
|     Out << '>';
 | |
| 
 | |
|     if (!V.hasName() && !isa<Instruction>(V)) {
 | |
|       int SlotNum;
 | |
|       if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
 | |
|         SlotNum = Machine.getGlobalSlot(GV);
 | |
|       else
 | |
|         SlotNum = Machine.getLocalSlot(&V);
 | |
|       if (SlotNum == -1)
 | |
|         Out << ":<badref>";
 | |
|       else
 | |
|         Out << ':' << SlotNum; // Print out the def slot taken.
 | |
|     }
 | |
|     Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This member is called for each Instruction in a function..
 | |
| void AssemblyWriter::printInstruction(const Instruction &I) {
 | |
|   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
 | |
| 
 | |
|   Out << '\t';
 | |
| 
 | |
|   // Print out name if it exists...
 | |
|   if (I.hasName()) {
 | |
|     PrintLLVMName(Out, &I);
 | |
|     Out << " = ";
 | |
|   } else if (I.getType() != Type::VoidTy) {
 | |
|     // Print out the def slot taken.
 | |
|     int SlotNum = Machine.getLocalSlot(&I);
 | |
|     if (SlotNum == -1)
 | |
|       Out << "<badref> = ";
 | |
|     else
 | |
|       Out << '%' << SlotNum << " = ";
 | |
|   }
 | |
| 
 | |
|   // If this is a volatile load or store, print out the volatile marker.
 | |
|   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
 | |
|       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
 | |
|       Out << "volatile ";
 | |
|   } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
 | |
|     // If this is a call, check if it's a tail call.
 | |
|     Out << "tail ";
 | |
|   }
 | |
| 
 | |
|   // Print out the opcode...
 | |
|   Out << I.getOpcodeName();
 | |
| 
 | |
|   // Print out the compare instruction predicates
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
 | |
|     Out << ' ' << getPredicateText(CI->getPredicate());
 | |
| 
 | |
|   // Print out the type of the operands...
 | |
|   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | |
| 
 | |
|   // Special case conditional branches to swizzle the condition out to the front
 | |
|   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
 | |
|     BranchInst &BI(cast<BranchInst>(I));
 | |
|     Out << ' ';
 | |
|     writeOperand(BI.getCondition(), true);
 | |
|     Out << ", ";
 | |
|     writeOperand(BI.getSuccessor(0), true);
 | |
|     Out << ", ";
 | |
|     writeOperand(BI.getSuccessor(1), true);
 | |
| 
 | |
|   } else if (isa<SwitchInst>(I)) {
 | |
|     // Special case switch statement to get formatting nice and correct...
 | |
|     Out << ' ';
 | |
|     writeOperand(Operand        , true);
 | |
|     Out << ", ";
 | |
|     writeOperand(I.getOperand(1), true);
 | |
|     Out << " [";
 | |
| 
 | |
|     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       Out << "\n\t\t";
 | |
|       writeOperand(I.getOperand(op  ), true);
 | |
|       Out << ", ";
 | |
|       writeOperand(I.getOperand(op+1), true);
 | |
|     }
 | |
|     Out << "\n\t]";
 | |
|   } else if (isa<PHINode>(I)) {
 | |
|     Out << ' ';
 | |
|     TypePrinter.print(I.getType(), Out);
 | |
|     Out << ' ';
 | |
| 
 | |
|     for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       if (op) Out << ", ";
 | |
|       Out << "[ ";
 | |
|       writeOperand(I.getOperand(op  ), false); Out << ", ";
 | |
|       writeOperand(I.getOperand(op+1), false); Out << " ]";
 | |
|     }
 | |
|   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
 | |
|     Out << ' ';
 | |
|     writeOperand(I.getOperand(0), true);
 | |
|     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
 | |
|       Out << ", " << *i;
 | |
|   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
 | |
|     Out << ' ';
 | |
|     writeOperand(I.getOperand(0), true); Out << ", ";
 | |
|     writeOperand(I.getOperand(1), true);
 | |
|     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
 | |
|       Out << ", " << *i;
 | |
|   } else if (isa<ReturnInst>(I) && !Operand) {
 | |
|     Out << " void";
 | |
|   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Print the calling convention being used.
 | |
|     switch (CI->getCallingConv()) {
 | |
|     case CallingConv::C: break;   // default
 | |
|     case CallingConv::Fast:  Out << " fastcc"; break;
 | |
|     case CallingConv::Cold:  Out << " coldcc"; break;
 | |
|     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
 | |
|     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
 | |
|     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
 | |
|     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
 | |
|     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
 | |
|     default: Out << " cc" << CI->getCallingConv(); break;
 | |
|     }
 | |
| 
 | |
|     const PointerType    *PTy = cast<PointerType>(Operand->getType());
 | |
|     const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|     const Type         *RetTy = FTy->getReturnType();
 | |
|     const AttrListPtr &PAL = CI->getAttributes();
 | |
| 
 | |
|     if (PAL.getRetAttributes() != Attribute::None)
 | |
|       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
 | |
| 
 | |
|     // If possible, print out the short form of the call instruction.  We can
 | |
|     // only do this if the first argument is a pointer to a nonvararg function,
 | |
|     // and if the return type is not a pointer to a function.
 | |
|     //
 | |
|     Out << ' ';
 | |
|     if (!FTy->isVarArg() &&
 | |
|         (!isa<PointerType>(RetTy) ||
 | |
|          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | |
|       TypePrinter.print(RetTy, Out);
 | |
|       Out << ' ';
 | |
|       writeOperand(Operand, false);
 | |
|     } else {
 | |
|       writeOperand(Operand, true);
 | |
|     }
 | |
|     Out << '(';
 | |
|     for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       if (op > 1)
 | |
|         Out << ", ";
 | |
|       writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
 | |
|     }
 | |
|     Out << ')';
 | |
|     if (PAL.getFnAttributes() != Attribute::None)
 | |
|       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     const PointerType    *PTy = cast<PointerType>(Operand->getType());
 | |
|     const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|     const Type         *RetTy = FTy->getReturnType();
 | |
|     const AttrListPtr &PAL = II->getAttributes();
 | |
| 
 | |
|     // Print the calling convention being used.
 | |
|     switch (II->getCallingConv()) {
 | |
|     case CallingConv::C: break;   // default
 | |
|     case CallingConv::Fast:  Out << " fastcc"; break;
 | |
|     case CallingConv::Cold:  Out << " coldcc"; break;
 | |
|     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
 | |
|     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
 | |
|     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
 | |
|     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
 | |
|     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
 | |
|     default: Out << " cc" << II->getCallingConv(); break;
 | |
|     }
 | |
| 
 | |
|     if (PAL.getRetAttributes() != Attribute::None)
 | |
|       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
 | |
| 
 | |
|     // If possible, print out the short form of the invoke instruction. We can
 | |
|     // only do this if the first argument is a pointer to a nonvararg function,
 | |
|     // and if the return type is not a pointer to a function.
 | |
|     //
 | |
|     Out << ' ';
 | |
|     if (!FTy->isVarArg() &&
 | |
|         (!isa<PointerType>(RetTy) ||
 | |
|          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | |
|       TypePrinter.print(RetTy, Out);
 | |
|       Out << ' ';
 | |
|       writeOperand(Operand, false);
 | |
|     } else {
 | |
|       writeOperand(Operand, true);
 | |
|     }
 | |
|     Out << '(';
 | |
|     for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       if (op > 3)
 | |
|         Out << ", ";
 | |
|       writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
 | |
|     }
 | |
| 
 | |
|     Out << ')';
 | |
|     if (PAL.getFnAttributes() != Attribute::None)
 | |
|       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
 | |
| 
 | |
|     Out << "\n\t\t\tto ";
 | |
|     writeOperand(II->getNormalDest(), true);
 | |
|     Out << " unwind ";
 | |
|     writeOperand(II->getUnwindDest(), true);
 | |
| 
 | |
|   } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | |
|     Out << ' ';
 | |
|     TypePrinter.print(AI->getType()->getElementType(), Out);
 | |
|     if (AI->isArrayAllocation()) {
 | |
|       Out << ", ";
 | |
|       writeOperand(AI->getArraySize(), true);
 | |
|     }
 | |
|     if (AI->getAlignment()) {
 | |
|       Out << ", align " << AI->getAlignment();
 | |
|     }
 | |
|   } else if (isa<CastInst>(I)) {
 | |
|     if (Operand) {
 | |
|       Out << ' ';
 | |
|       writeOperand(Operand, true);   // Work with broken code
 | |
|     }
 | |
|     Out << " to ";
 | |
|     TypePrinter.print(I.getType(), Out);
 | |
|   } else if (isa<VAArgInst>(I)) {
 | |
|     if (Operand) {
 | |
|       Out << ' ';
 | |
|       writeOperand(Operand, true);   // Work with broken code
 | |
|     }
 | |
|     Out << ", ";
 | |
|     TypePrinter.print(I.getType(), Out);
 | |
|   } else if (Operand) {   // Print the normal way.
 | |
| 
 | |
|     // PrintAllTypes - Instructions who have operands of all the same type
 | |
|     // omit the type from all but the first operand.  If the instruction has
 | |
|     // different type operands (for example br), then they are all printed.
 | |
|     bool PrintAllTypes = false;
 | |
|     const Type *TheType = Operand->getType();
 | |
| 
 | |
|     // Select, Store and ShuffleVector always print all types.
 | |
|     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
 | |
|         || isa<ReturnInst>(I)) {
 | |
|       PrintAllTypes = true;
 | |
|     } else {
 | |
|       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | |
|         Operand = I.getOperand(i);
 | |
|         // note that Operand shouldn't be null, but the test helps make dump()
 | |
|         // more tolerant of malformed IR
 | |
|         if (Operand && Operand->getType() != TheType) {
 | |
|           PrintAllTypes = true;    // We have differing types!  Print them all!
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PrintAllTypes) {
 | |
|       Out << ' ';
 | |
|       TypePrinter.print(TheType, Out);
 | |
|     }
 | |
| 
 | |
|     Out << ' ';
 | |
|     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | |
|       if (i) Out << ", ";
 | |
|       writeOperand(I.getOperand(i), PrintAllTypes);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Print post operand alignment for load/store
 | |
|   if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
 | |
|     Out << ", align " << cast<LoadInst>(I).getAlignment();
 | |
|   } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
 | |
|     Out << ", align " << cast<StoreInst>(I).getAlignment();
 | |
|   }
 | |
| 
 | |
|   printInfoComment(I);
 | |
|   Out << '\n';
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       External Interface declarations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   raw_os_ostream OS(o);
 | |
|   print(OS, AAW);
 | |
| }
 | |
| void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
 | |
|   SlotTracker SlotTable(this);
 | |
|   AssemblyWriter W(OS, SlotTable, this, AAW);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Type::print(std::ostream &o) const {
 | |
|   raw_os_ostream OS(o);
 | |
|   print(OS);
 | |
| }
 | |
| 
 | |
| void Type::print(raw_ostream &OS) const {
 | |
|   if (this == 0) {
 | |
|     OS << "<null Type>";
 | |
|     return;
 | |
|   }
 | |
|   TypePrinting().print(this, OS);
 | |
| }
 | |
| 
 | |
| void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
 | |
|   if (this == 0) {
 | |
|     OS << "printing a <null> value\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(this)) {
 | |
|     const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
 | |
|     SlotTracker SlotTable(F);
 | |
|     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
 | |
|     W.write(I);
 | |
|   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
 | |
|     SlotTracker SlotTable(BB->getParent());
 | |
|     AssemblyWriter W(OS, SlotTable,
 | |
|                      BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
 | |
|     W.write(BB);
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | |
|     SlotTracker SlotTable(GV->getParent());
 | |
|     AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
 | |
|     W.write(GV);
 | |
|   } else if (const Constant *C = dyn_cast<Constant>(this)) {
 | |
|     TypePrinting TypePrinter;
 | |
|     TypePrinter.print(C->getType(), OS);
 | |
|     OS << ' ';
 | |
|     WriteConstantInt(OS, C, TypePrinter, 0);
 | |
|   } else if (const Argument *A = dyn_cast<Argument>(this)) {
 | |
|     WriteAsOperand(OS, this, true,
 | |
|                    A->getParent() ? A->getParent()->getParent() : 0);
 | |
|   } else if (isa<InlineAsm>(this)) {
 | |
|     WriteAsOperand(OS, this, true, 0);
 | |
|   } else {
 | |
|     assert(0 && "Unknown value to print out!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
 | |
|   raw_os_ostream OS(O);
 | |
|   print(OS, AAW);
 | |
| }
 | |
| 
 | |
| // Value::dump - allow easy printing of Values from the debugger.
 | |
| void Value::dump() const { print(errs()); errs() << '\n'; }
 | |
| 
 | |
| // Type::dump - allow easy printing of Types from the debugger.
 | |
| // This one uses type names from the given context module
 | |
| void Type::dump(const Module *Context) const {
 | |
|   WriteTypeSymbolic(errs(), this, Context);
 | |
|   errs() << '\n';
 | |
| }
 | |
| 
 | |
| // Type::dump - allow easy printing of Types from the debugger.
 | |
| void Type::dump() const { dump(0); }
 | |
| 
 | |
| // Module::dump() - Allow printing of Modules from the debugger.
 | |
| void Module::dump() const { print(errs(), 0); }
 |