mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	* Accept 'llvc' as signature for compressed bytecode git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17579 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2307 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2307 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Bytecode/Reader.h
 | 
						|
//
 | 
						|
// Note that this library should be as fast as possible, reentrant, and 
 | 
						|
// threadsafe!!
 | 
						|
//
 | 
						|
// TODO: Allow passing in an option to ignore the symbol table
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Reader.h"
 | 
						|
#include "llvm/Bytecode/BytecodeHandler.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Bytecode/Format.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/Compressor.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include <sstream>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// @brief A class for maintaining the slot number definition
 | 
						|
/// as a placeholder for the actual definition for forward constants defs.
 | 
						|
class ConstantPlaceHolder : public ConstantExpr {
 | 
						|
  unsigned ID;
 | 
						|
  ConstantPlaceHolder();                       // DO NOT IMPLEMENT
 | 
						|
  void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  ConstantPlaceHolder(const Type *Ty, unsigned id) 
 | 
						|
    : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty),
 | 
						|
    ID(id) {}
 | 
						|
  unsigned getID() { return ID; }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// Provide some details on error
 | 
						|
inline void BytecodeReader::error(std::string err) {
 | 
						|
  err +=  " (Vers=" ;
 | 
						|
  err += itostr(RevisionNum) ;
 | 
						|
  err += ", Pos=" ;
 | 
						|
  err += itostr(At-MemStart);
 | 
						|
  err += ")";
 | 
						|
  throw err;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bytecode Reading Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Determine if the current block being read contains any more data.
 | 
						|
inline bool BytecodeReader::moreInBlock() {
 | 
						|
  return At < BlockEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// Throw an error if we've read past the end of the current block
 | 
						|
inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
 | 
						|
  if (At > BlockEnd)
 | 
						|
    error(std::string("Attempt to read past the end of ") + block_name +
 | 
						|
          " block.");
 | 
						|
}
 | 
						|
 | 
						|
/// Align the buffer position to a 32 bit boundary
 | 
						|
inline void BytecodeReader::align32() {
 | 
						|
  if (hasAlignment) {
 | 
						|
    BufPtr Save = At;
 | 
						|
    At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
 | 
						|
    if (At > Save) 
 | 
						|
      if (Handler) Handler->handleAlignment(At - Save);
 | 
						|
    if (At > BlockEnd) 
 | 
						|
      error("Ran out of data while aligning!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Read a whole unsigned integer
 | 
						|
inline unsigned BytecodeReader::read_uint() {
 | 
						|
  if (At+4 > BlockEnd) 
 | 
						|
    error("Ran out of data reading uint!");
 | 
						|
  At += 4;
 | 
						|
  return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
 | 
						|
}
 | 
						|
 | 
						|
/// Read a variable-bit-rate encoded unsigned integer
 | 
						|
inline unsigned BytecodeReader::read_vbr_uint() {
 | 
						|
  unsigned Shift = 0;
 | 
						|
  unsigned Result = 0;
 | 
						|
  BufPtr Save = At;
 | 
						|
  
 | 
						|
  do {
 | 
						|
    if (At == BlockEnd) 
 | 
						|
      error("Ran out of data reading vbr_uint!");
 | 
						|
    Result |= (unsigned)((*At++) & 0x7F) << Shift;
 | 
						|
    Shift += 7;
 | 
						|
  } while (At[-1] & 0x80);
 | 
						|
  if (Handler) Handler->handleVBR32(At-Save);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Read a variable-bit-rate encoded unsigned 64-bit integer.
 | 
						|
inline uint64_t BytecodeReader::read_vbr_uint64() {
 | 
						|
  unsigned Shift = 0;
 | 
						|
  uint64_t Result = 0;
 | 
						|
  BufPtr Save = At;
 | 
						|
  
 | 
						|
  do {
 | 
						|
    if (At == BlockEnd) 
 | 
						|
      error("Ran out of data reading vbr_uint64!");
 | 
						|
    Result |= (uint64_t)((*At++) & 0x7F) << Shift;
 | 
						|
    Shift += 7;
 | 
						|
  } while (At[-1] & 0x80);
 | 
						|
  if (Handler) Handler->handleVBR64(At-Save);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Read a variable-bit-rate encoded signed 64-bit integer.
 | 
						|
inline int64_t BytecodeReader::read_vbr_int64() {
 | 
						|
  uint64_t R = read_vbr_uint64();
 | 
						|
  if (R & 1) {
 | 
						|
    if (R != 1)
 | 
						|
      return -(int64_t)(R >> 1);
 | 
						|
    else   // There is no such thing as -0 with integers.  "-0" really means
 | 
						|
           // 0x8000000000000000.
 | 
						|
      return 1LL << 63;
 | 
						|
  } else
 | 
						|
    return  (int64_t)(R >> 1);
 | 
						|
}
 | 
						|
 | 
						|
/// Read a pascal-style string (length followed by text)
 | 
						|
inline std::string BytecodeReader::read_str() {
 | 
						|
  unsigned Size = read_vbr_uint();
 | 
						|
  const unsigned char *OldAt = At;
 | 
						|
  At += Size;
 | 
						|
  if (At > BlockEnd)             // Size invalid?
 | 
						|
    error("Ran out of data reading a string!");
 | 
						|
  return std::string((char*)OldAt, Size);
 | 
						|
}
 | 
						|
 | 
						|
/// Read an arbitrary block of data
 | 
						|
inline void BytecodeReader::read_data(void *Ptr, void *End) {
 | 
						|
  unsigned char *Start = (unsigned char *)Ptr;
 | 
						|
  unsigned Amount = (unsigned char *)End - Start;
 | 
						|
  if (At+Amount > BlockEnd) 
 | 
						|
    error("Ran out of data!");
 | 
						|
  std::copy(At, At+Amount, Start);
 | 
						|
  At += Amount;
 | 
						|
}
 | 
						|
 | 
						|
/// Read a float value in little-endian order
 | 
						|
inline void BytecodeReader::read_float(float& FloatVal) {
 | 
						|
  /// FIXME: This isn't optimal, it has size problems on some platforms
 | 
						|
  /// where FP is not IEEE.
 | 
						|
  union {
 | 
						|
    float f;
 | 
						|
    uint32_t i;
 | 
						|
  } FloatUnion;
 | 
						|
  FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
 | 
						|
  At+=sizeof(uint32_t);
 | 
						|
  FloatVal = FloatUnion.f;
 | 
						|
}
 | 
						|
 | 
						|
/// Read a double value in little-endian order
 | 
						|
inline void BytecodeReader::read_double(double& DoubleVal) {
 | 
						|
  /// FIXME: This isn't optimal, it has size problems on some platforms
 | 
						|
  /// where FP is not IEEE.
 | 
						|
  union {
 | 
						|
    double d;
 | 
						|
    uint64_t i;
 | 
						|
  } DoubleUnion;
 | 
						|
  DoubleUnion.i = (uint64_t(At[0]) <<  0) | (uint64_t(At[1]) << 8) | 
 | 
						|
                  (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
 | 
						|
                  (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) | 
 | 
						|
                  (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
 | 
						|
  At+=sizeof(uint64_t);
 | 
						|
  DoubleVal = DoubleUnion.d;
 | 
						|
}
 | 
						|
 | 
						|
/// Read a block header and obtain its type and size
 | 
						|
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
 | 
						|
  if ( hasLongBlockHeaders ) {
 | 
						|
    Type = read_uint();
 | 
						|
    Size = read_uint();
 | 
						|
    switch (Type) {
 | 
						|
    case BytecodeFormat::Reserved_DoNotUse : 
 | 
						|
      error("Reserved_DoNotUse used as Module Type?");
 | 
						|
      Type = BytecodeFormat::ModuleBlockID; break;
 | 
						|
    case BytecodeFormat::Module: 
 | 
						|
      Type = BytecodeFormat::ModuleBlockID; break;
 | 
						|
    case BytecodeFormat::Function:
 | 
						|
      Type = BytecodeFormat::FunctionBlockID; break;
 | 
						|
    case BytecodeFormat::ConstantPool:
 | 
						|
      Type = BytecodeFormat::ConstantPoolBlockID; break;
 | 
						|
    case BytecodeFormat::SymbolTable:
 | 
						|
      Type = BytecodeFormat::SymbolTableBlockID; break;
 | 
						|
    case BytecodeFormat::ModuleGlobalInfo:
 | 
						|
      Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
 | 
						|
    case BytecodeFormat::GlobalTypePlane:
 | 
						|
      Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
 | 
						|
    case BytecodeFormat::InstructionList:
 | 
						|
      Type = BytecodeFormat::InstructionListBlockID; break;
 | 
						|
    case BytecodeFormat::CompactionTable:
 | 
						|
      Type = BytecodeFormat::CompactionTableBlockID; break;
 | 
						|
    case BytecodeFormat::BasicBlock:
 | 
						|
      /// This block type isn't used after version 1.1. However, we have to
 | 
						|
      /// still allow the value in case this is an old bc format file.
 | 
						|
      /// We just let its value creep thru.
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      error("Invalid block id found: " + utostr(Type));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Size = read_uint();
 | 
						|
    Type = Size & 0x1F; // mask low order five bits
 | 
						|
    Size >>= 5; // get rid of five low order bits, leaving high 27
 | 
						|
  }
 | 
						|
  BlockStart = At;
 | 
						|
  if (At + Size > BlockEnd)
 | 
						|
    error("Attempt to size a block past end of memory");
 | 
						|
  BlockEnd = At + Size;
 | 
						|
  if (Handler) Handler->handleBlock(Type, BlockStart, Size);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// In LLVM 1.2 and before, Types were derived from Value and so they were
 | 
						|
/// written as part of the type planes along with any other Value. In LLVM
 | 
						|
/// 1.3 this changed so that Type does not derive from Value. Consequently,
 | 
						|
/// the BytecodeReader's containers for Values can't contain Types because
 | 
						|
/// there's no inheritance relationship. This means that the "Type Type"
 | 
						|
/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3 
 | 
						|
/// whenever a bytecode construct must have both types and values together, 
 | 
						|
/// the types are always read/written first and then the Values. Furthermore
 | 
						|
/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
 | 
						|
/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
 | 
						|
/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
 | 
						|
/// For LLVM 1.2 and before, this function will decrement the type id by
 | 
						|
/// one to account for the missing Type::TypeTyID enumerator if the value is
 | 
						|
/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
 | 
						|
/// function returns true, otherwise false. This helps detect situations
 | 
						|
/// where the pre 1.3 bytecode is indicating that what follows is a type.
 | 
						|
/// @returns true iff type id corresponds to pre 1.3 "type type" 
 | 
						|
inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
 | 
						|
  if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
 | 
						|
    if (TypeId == Type::LabelTyID) {
 | 
						|
      TypeId = Type::VoidTyID; // sanitize it
 | 
						|
      return true; // indicate we got TypeTyID in pre 1.3 bytecode
 | 
						|
    } else if (TypeId > Type::LabelTyID)
 | 
						|
      --TypeId; // shift all planes down because type type plane is missing
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Reads a vbr uint to read in a type id and does the necessary
 | 
						|
/// conversion on it by calling sanitizeTypeId.
 | 
						|
/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
 | 
						|
/// @see sanitizeTypeId
 | 
						|
inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
 | 
						|
  TypeId = read_vbr_uint();
 | 
						|
  if ( !has32BitTypes )
 | 
						|
    if ( TypeId == 0x00FFFFFF )
 | 
						|
      TypeId = read_vbr_uint();
 | 
						|
  return sanitizeTypeId(TypeId);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// IR Lookup Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Determine if a type id has an implicit null value
 | 
						|
inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
 | 
						|
  if (!hasExplicitPrimitiveZeros)
 | 
						|
    return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
 | 
						|
  return TyID >= Type::FirstDerivedTyID;
 | 
						|
}
 | 
						|
 | 
						|
/// Obtain a type given a typeid and account for things like compaction tables,
 | 
						|
/// function level vs module level, and the offsetting for the primitive types.
 | 
						|
const Type *BytecodeReader::getType(unsigned ID) {
 | 
						|
  if (ID < Type::FirstDerivedTyID)
 | 
						|
    if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
 | 
						|
      return T;   // Asked for a primitive type...
 | 
						|
 | 
						|
  // Otherwise, derived types need offset...
 | 
						|
  ID -= Type::FirstDerivedTyID;
 | 
						|
 | 
						|
  if (!CompactionTypes.empty()) {
 | 
						|
    if (ID >= CompactionTypes.size())
 | 
						|
      error("Type ID out of range for compaction table!");
 | 
						|
    return CompactionTypes[ID].first;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is it a module-level type?
 | 
						|
  if (ID < ModuleTypes.size())
 | 
						|
    return ModuleTypes[ID].get();
 | 
						|
 | 
						|
  // Nope, is it a function-level type?
 | 
						|
  ID -= ModuleTypes.size();
 | 
						|
  if (ID < FunctionTypes.size())
 | 
						|
    return FunctionTypes[ID].get();
 | 
						|
 | 
						|
  error("Illegal type reference!");
 | 
						|
  return Type::VoidTy;
 | 
						|
}
 | 
						|
 | 
						|
/// Get a sanitized type id. This just makes sure that the \p ID
 | 
						|
/// is both sanitized and not the "type type" of pre-1.3 bytecode.
 | 
						|
/// @see sanitizeTypeId
 | 
						|
inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
 | 
						|
  if (sanitizeTypeId(ID))
 | 
						|
    error("Invalid type id encountered");
 | 
						|
  return getType(ID);
 | 
						|
}
 | 
						|
 | 
						|
/// This method just saves some coding. It uses read_typeid to read
 | 
						|
/// in a sanitized type id, errors that its not the type type, and
 | 
						|
/// then calls getType to return the type value.
 | 
						|
inline const Type* BytecodeReader::readSanitizedType() {
 | 
						|
  unsigned ID;
 | 
						|
  if (read_typeid(ID))
 | 
						|
    error("Invalid type id encountered");
 | 
						|
  return getType(ID);
 | 
						|
}
 | 
						|
 | 
						|
/// Get the slot number associated with a type accounting for primitive
 | 
						|
/// types, compaction tables, and function level vs module level.
 | 
						|
unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
 | 
						|
  if (Ty->isPrimitiveType())
 | 
						|
    return Ty->getTypeID();
 | 
						|
 | 
						|
  // Scan the compaction table for the type if needed.
 | 
						|
  if (!CompactionTypes.empty()) {
 | 
						|
    for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
 | 
						|
      if (CompactionTypes[i].first == Ty)
 | 
						|
        return Type::FirstDerivedTyID + i; 
 | 
						|
 | 
						|
    error("Couldn't find type specified in compaction table!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the function level types first...
 | 
						|
  TypeListTy::iterator I = std::find(FunctionTypes.begin(),
 | 
						|
                                     FunctionTypes.end(), Ty);
 | 
						|
 | 
						|
  if (I != FunctionTypes.end())
 | 
						|
    return Type::FirstDerivedTyID + ModuleTypes.size() + 
 | 
						|
           (&*I - &FunctionTypes[0]);
 | 
						|
 | 
						|
  // Check the module level types now...
 | 
						|
  I = std::find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
 | 
						|
  if (I == ModuleTypes.end())
 | 
						|
    error("Didn't find type in ModuleTypes.");
 | 
						|
  return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
 | 
						|
}
 | 
						|
 | 
						|
/// This is just like getType, but when a compaction table is in use, it is
 | 
						|
/// ignored.  It also ignores function level types.
 | 
						|
/// @see getType
 | 
						|
const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
 | 
						|
  if (Slot < Type::FirstDerivedTyID) {
 | 
						|
    const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
 | 
						|
    if (!Ty)
 | 
						|
      error("Not a primitive type ID?");
 | 
						|
    return Ty;
 | 
						|
  }
 | 
						|
  Slot -= Type::FirstDerivedTyID;
 | 
						|
  if (Slot >= ModuleTypes.size())
 | 
						|
    error("Illegal compaction table type reference!");
 | 
						|
  return ModuleTypes[Slot];
 | 
						|
}
 | 
						|
 | 
						|
/// This is just like getTypeSlot, but when a compaction table is in use, it
 | 
						|
/// is ignored. It also ignores function level types.
 | 
						|
unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
 | 
						|
  if (Ty->isPrimitiveType())
 | 
						|
    return Ty->getTypeID();
 | 
						|
  TypeListTy::iterator I = std::find(ModuleTypes.begin(),
 | 
						|
                                      ModuleTypes.end(), Ty);
 | 
						|
  if (I == ModuleTypes.end())
 | 
						|
    error("Didn't find type in ModuleTypes.");
 | 
						|
  return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
 | 
						|
}
 | 
						|
 | 
						|
/// Retrieve a value of a given type and slot number, possibly creating 
 | 
						|
/// it if it doesn't already exist. 
 | 
						|
Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
 | 
						|
  assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
 | 
						|
  unsigned Num = oNum;
 | 
						|
 | 
						|
  // If there is a compaction table active, it defines the low-level numbers.
 | 
						|
  // If not, the module values define the low-level numbers.
 | 
						|
  if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
 | 
						|
    if (Num < CompactionValues[type].size())
 | 
						|
      return CompactionValues[type][Num];
 | 
						|
    Num -= CompactionValues[type].size();
 | 
						|
  } else {
 | 
						|
    // By default, the global type id is the type id passed in
 | 
						|
    unsigned GlobalTyID = type;
 | 
						|
 | 
						|
    // If the type plane was compactified, figure out the global type ID by
 | 
						|
    // adding the derived type ids and the distance.
 | 
						|
    if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
 | 
						|
      GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
 | 
						|
 | 
						|
    if (hasImplicitNull(GlobalTyID)) {
 | 
						|
      if (Num == 0)
 | 
						|
        return Constant::getNullValue(getType(type));
 | 
						|
      --Num;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
 | 
						|
      if (Num < ModuleValues[GlobalTyID]->size())
 | 
						|
        return ModuleValues[GlobalTyID]->getOperand(Num);
 | 
						|
      Num -= ModuleValues[GlobalTyID]->size();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FunctionValues.size() > type && 
 | 
						|
      FunctionValues[type] && 
 | 
						|
      Num < FunctionValues[type]->size())
 | 
						|
    return FunctionValues[type]->getOperand(Num);
 | 
						|
 | 
						|
  if (!Create) return 0;  // Do not create a placeholder?
 | 
						|
 | 
						|
  // Did we already create a place holder?
 | 
						|
  std::pair<unsigned,unsigned> KeyValue(type, oNum);
 | 
						|
  ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
 | 
						|
  if (I != ForwardReferences.end() && I->first == KeyValue)
 | 
						|
    return I->second;   // We have already created this placeholder
 | 
						|
 | 
						|
  // If the type exists (it should)
 | 
						|
  if (const Type* Ty = getType(type)) {
 | 
						|
    // Create the place holder
 | 
						|
    Value *Val = new Argument(Ty);
 | 
						|
    ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
  throw "Can't create placeholder for value of type slot #" + utostr(type);
 | 
						|
}
 | 
						|
 | 
						|
/// This is just like getValue, but when a compaction table is in use, it 
 | 
						|
/// is ignored.  Also, no forward references or other fancy features are 
 | 
						|
/// supported.
 | 
						|
Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
 | 
						|
  if (SlotNo == 0)
 | 
						|
    return Constant::getNullValue(getType(TyID));
 | 
						|
 | 
						|
  if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
 | 
						|
    TyID -= Type::FirstDerivedTyID;
 | 
						|
    if (TyID >= CompactionTypes.size())
 | 
						|
      error("Type ID out of range for compaction table!");
 | 
						|
    TyID = CompactionTypes[TyID].second;
 | 
						|
  }
 | 
						|
 | 
						|
  --SlotNo;
 | 
						|
 | 
						|
  if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
 | 
						|
      SlotNo >= ModuleValues[TyID]->size()) {
 | 
						|
    if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
 | 
						|
      error("Corrupt compaction table entry!"
 | 
						|
            + utostr(TyID) + ", " + utostr(SlotNo) + ": " 
 | 
						|
            + utostr(ModuleValues.size()));
 | 
						|
    else 
 | 
						|
      error("Corrupt compaction table entry!"
 | 
						|
            + utostr(TyID) + ", " + utostr(SlotNo) + ": " 
 | 
						|
            + utostr(ModuleValues.size()) + ", "
 | 
						|
            + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
 | 
						|
            + ", "
 | 
						|
            + utostr(ModuleValues[TyID]->size()));
 | 
						|
  }
 | 
						|
  return ModuleValues[TyID]->getOperand(SlotNo);
 | 
						|
}
 | 
						|
 | 
						|
/// Just like getValue, except that it returns a null pointer
 | 
						|
/// only on error.  It always returns a constant (meaning that if the value is
 | 
						|
/// defined, but is not a constant, that is an error).  If the specified
 | 
						|
/// constant hasn't been parsed yet, a placeholder is defined and used.  
 | 
						|
/// Later, after the real value is parsed, the placeholder is eliminated.
 | 
						|
Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
 | 
						|
  if (Value *V = getValue(TypeSlot, Slot, false))
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
      return C;   // If we already have the value parsed, just return it
 | 
						|
    else
 | 
						|
      error("Value for slot " + utostr(Slot) + 
 | 
						|
            " is expected to be a constant!");
 | 
						|
 | 
						|
  const Type *Ty = getType(TypeSlot);
 | 
						|
  std::pair<const Type*, unsigned> Key(Ty, Slot);
 | 
						|
  ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
 | 
						|
 | 
						|
  if (I != ConstantFwdRefs.end() && I->first == Key) {
 | 
						|
    return I->second;
 | 
						|
  } else {
 | 
						|
    // Create a placeholder for the constant reference and
 | 
						|
    // keep track of the fact that we have a forward ref to recycle it
 | 
						|
    Constant *C = new ConstantPlaceHolder(Ty, Slot);
 | 
						|
    
 | 
						|
    // Keep track of the fact that we have a forward ref to recycle it
 | 
						|
    ConstantFwdRefs.insert(I, std::make_pair(Key, C));
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// IR Construction Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// As values are created, they are inserted into the appropriate place
 | 
						|
/// with this method. The ValueTable argument must be one of ModuleValues
 | 
						|
/// or FunctionValues data members of this class.
 | 
						|
unsigned BytecodeReader::insertValue(Value *Val, unsigned type, 
 | 
						|
                                      ValueTable &ValueTab) {
 | 
						|
  assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
 | 
						|
          !hasImplicitNull(type) &&
 | 
						|
         "Cannot read null values from bytecode!");
 | 
						|
 | 
						|
  if (ValueTab.size() <= type)
 | 
						|
    ValueTab.resize(type+1);
 | 
						|
 | 
						|
  if (!ValueTab[type]) ValueTab[type] = new ValueList();
 | 
						|
 | 
						|
  ValueTab[type]->push_back(Val);
 | 
						|
 | 
						|
  bool HasOffset = hasImplicitNull(type);
 | 
						|
  return ValueTab[type]->size()-1 + HasOffset;
 | 
						|
}
 | 
						|
 | 
						|
/// Insert the arguments of a function as new values in the reader.
 | 
						|
void BytecodeReader::insertArguments(Function* F) {
 | 
						|
  const FunctionType *FT = F->getFunctionType();
 | 
						|
  Function::aiterator AI = F->abegin();
 | 
						|
  for (FunctionType::param_iterator It = FT->param_begin();
 | 
						|
       It != FT->param_end(); ++It, ++AI)
 | 
						|
    insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bytecode Parsing Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// This method parses a single instruction. The instruction is
 | 
						|
/// inserted at the end of the \p BB provided. The arguments of
 | 
						|
/// the instruction are provided in the \p Oprnds vector.
 | 
						|
void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
 | 
						|
                                      BasicBlock* BB) {
 | 
						|
  BufPtr SaveAt = At;
 | 
						|
 | 
						|
  // Clear instruction data
 | 
						|
  Oprnds.clear();
 | 
						|
  unsigned iType = 0;
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  unsigned Op = read_uint();
 | 
						|
 | 
						|
  // bits   Instruction format:        Common to all formats
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 1.
 | 
						|
  // 07-02: Opcode
 | 
						|
  Opcode    = (Op >> 2) & 63;
 | 
						|
  Oprnds.resize((Op >> 0) & 03);
 | 
						|
 | 
						|
  // Extract the operands
 | 
						|
  switch (Oprnds.size()) {
 | 
						|
  case 1:
 | 
						|
    // bits   Instruction format:
 | 
						|
    // --------------------------
 | 
						|
    // 19-08: Resulting type plane
 | 
						|
    // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | 
						|
    //
 | 
						|
    iType   = (Op >>  8) & 4095;
 | 
						|
    Oprnds[0] = (Op >> 20) & 4095;
 | 
						|
    if (Oprnds[0] == 4095)    // Handle special encoding for 0 operands...
 | 
						|
      Oprnds.resize(0);
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    // bits   Instruction format:
 | 
						|
    // --------------------------
 | 
						|
    // 15-08: Resulting type plane
 | 
						|
    // 23-16: Operand #1
 | 
						|
    // 31-24: Operand #2  
 | 
						|
    //
 | 
						|
    iType   = (Op >>  8) & 255;
 | 
						|
    Oprnds[0] = (Op >> 16) & 255;
 | 
						|
    Oprnds[1] = (Op >> 24) & 255;
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    // bits   Instruction format:
 | 
						|
    // --------------------------
 | 
						|
    // 13-08: Resulting type plane
 | 
						|
    // 19-14: Operand #1
 | 
						|
    // 25-20: Operand #2
 | 
						|
    // 31-26: Operand #3
 | 
						|
    //
 | 
						|
    iType   = (Op >>  8) & 63;
 | 
						|
    Oprnds[0] = (Op >> 14) & 63;
 | 
						|
    Oprnds[1] = (Op >> 20) & 63;
 | 
						|
    Oprnds[2] = (Op >> 26) & 63;
 | 
						|
    break;
 | 
						|
  case 0:
 | 
						|
    At -= 4;  // Hrm, try this again...
 | 
						|
    Opcode = read_vbr_uint();
 | 
						|
    Opcode >>= 2;
 | 
						|
    iType = read_vbr_uint();
 | 
						|
 | 
						|
    unsigned NumOprnds = read_vbr_uint();
 | 
						|
    Oprnds.resize(NumOprnds);
 | 
						|
 | 
						|
    if (NumOprnds == 0)
 | 
						|
      error("Zero-argument instruction found; this is invalid.");
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumOprnds; ++i)
 | 
						|
      Oprnds[i] = read_vbr_uint();
 | 
						|
    align32();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  const Type *InstTy = getSanitizedType(iType);
 | 
						|
 | 
						|
  // We have enough info to inform the handler now.
 | 
						|
  if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
 | 
						|
 | 
						|
  // Declare the resulting instruction we'll build.
 | 
						|
  Instruction *Result = 0;
 | 
						|
 | 
						|
  // If this is a bytecode format that did not include the unreachable
 | 
						|
  // instruction, bump up all opcodes numbers to make space.
 | 
						|
  if (hasNoUnreachableInst) {
 | 
						|
    if (Opcode >= Instruction::Unreachable &&
 | 
						|
        Opcode < 62) {
 | 
						|
      ++Opcode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle binary operators
 | 
						|
  if (Opcode >= Instruction::BinaryOpsBegin &&
 | 
						|
      Opcode <  Instruction::BinaryOpsEnd  && Oprnds.size() == 2)
 | 
						|
    Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
 | 
						|
                                    getValue(iType, Oprnds[0]),
 | 
						|
                                    getValue(iType, Oprnds[1]));
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: 
 | 
						|
    if (Result == 0) 
 | 
						|
      error("Illegal instruction read!");
 | 
						|
    break;
 | 
						|
  case Instruction::VAArg:
 | 
						|
    Result = new VAArgInst(getValue(iType, Oprnds[0]), 
 | 
						|
                           getSanitizedType(Oprnds[1]));
 | 
						|
    break;
 | 
						|
  case Instruction::VANext:
 | 
						|
    Result = new VANextInst(getValue(iType, Oprnds[0]), 
 | 
						|
                            getSanitizedType(Oprnds[1]));
 | 
						|
    break;
 | 
						|
  case Instruction::Cast:
 | 
						|
    Result = new CastInst(getValue(iType, Oprnds[0]), 
 | 
						|
                          getSanitizedType(Oprnds[1]));
 | 
						|
    break;
 | 
						|
  case Instruction::Select:
 | 
						|
    Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
 | 
						|
                            getValue(iType, Oprnds[1]),
 | 
						|
                            getValue(iType, Oprnds[2]));
 | 
						|
    break;
 | 
						|
  case Instruction::PHI: {
 | 
						|
    if (Oprnds.size() == 0 || (Oprnds.size() & 1))
 | 
						|
      error("Invalid phi node encountered!");
 | 
						|
 | 
						|
    PHINode *PN = new PHINode(InstTy);
 | 
						|
    PN->op_reserve(Oprnds.size());
 | 
						|
    for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
 | 
						|
      PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
 | 
						|
    Result = PN;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::Shr:
 | 
						|
    Result = new ShiftInst((Instruction::OtherOps)Opcode,
 | 
						|
                           getValue(iType, Oprnds[0]),
 | 
						|
                           getValue(Type::UByteTyID, Oprnds[1]));
 | 
						|
    break;
 | 
						|
  case Instruction::Ret:
 | 
						|
    if (Oprnds.size() == 0)
 | 
						|
      Result = new ReturnInst();
 | 
						|
    else if (Oprnds.size() == 1)
 | 
						|
      Result = new ReturnInst(getValue(iType, Oprnds[0]));
 | 
						|
    else
 | 
						|
      error("Unrecognized instruction!");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Br:
 | 
						|
    if (Oprnds.size() == 1)
 | 
						|
      Result = new BranchInst(getBasicBlock(Oprnds[0]));
 | 
						|
    else if (Oprnds.size() == 3)
 | 
						|
      Result = new BranchInst(getBasicBlock(Oprnds[0]), 
 | 
						|
          getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
 | 
						|
    else
 | 
						|
      error("Invalid number of operands for a 'br' instruction!");
 | 
						|
    break;
 | 
						|
  case Instruction::Switch: {
 | 
						|
    if (Oprnds.size() & 1)
 | 
						|
      error("Switch statement with odd number of arguments!");
 | 
						|
 | 
						|
    SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
 | 
						|
                                   getBasicBlock(Oprnds[1]));
 | 
						|
    for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
 | 
						|
      I->addCase(cast<Constant>(getValue(iType, Oprnds[i])),
 | 
						|
                 getBasicBlock(Oprnds[i+1]));
 | 
						|
    Result = I;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Call: {
 | 
						|
    if (Oprnds.size() == 0)
 | 
						|
      error("Invalid call instruction encountered!");
 | 
						|
 | 
						|
    Value *F = getValue(iType, Oprnds[0]);
 | 
						|
 | 
						|
    // Check to make sure we have a pointer to function type
 | 
						|
    const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | 
						|
    if (PTy == 0) error("Call to non function pointer value!");
 | 
						|
    const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | 
						|
    if (FTy == 0) error("Call to non function pointer value!");
 | 
						|
 | 
						|
    std::vector<Value *> Params;
 | 
						|
    if (!FTy->isVarArg()) {
 | 
						|
      FunctionType::param_iterator It = FTy->param_begin();
 | 
						|
 | 
						|
      for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | 
						|
        if (It == FTy->param_end())
 | 
						|
          error("Invalid call instruction!");
 | 
						|
        Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | 
						|
      }
 | 
						|
      if (It != FTy->param_end())
 | 
						|
        error("Invalid call instruction!");
 | 
						|
    } else {
 | 
						|
      Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | 
						|
 | 
						|
      unsigned FirstVariableOperand;
 | 
						|
      if (Oprnds.size() < FTy->getNumParams())
 | 
						|
        error("Call instruction missing operands!");
 | 
						|
 | 
						|
      // Read all of the fixed arguments
 | 
						|
      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
        Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
 | 
						|
      
 | 
						|
      FirstVariableOperand = FTy->getNumParams();
 | 
						|
 | 
						|
      if ((Oprnds.size()-FirstVariableOperand) & 1) 
 | 
						|
        error("Invalid call instruction!");   // Must be pairs of type/value
 | 
						|
        
 | 
						|
      for (unsigned i = FirstVariableOperand, e = Oprnds.size(); 
 | 
						|
           i != e; i += 2)
 | 
						|
        Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | 
						|
    }
 | 
						|
 | 
						|
    Result = new CallInst(F, Params);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Invoke: {
 | 
						|
    if (Oprnds.size() < 3) 
 | 
						|
      error("Invalid invoke instruction!");
 | 
						|
    Value *F = getValue(iType, Oprnds[0]);
 | 
						|
 | 
						|
    // Check to make sure we have a pointer to function type
 | 
						|
    const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | 
						|
    if (PTy == 0) 
 | 
						|
      error("Invoke to non function pointer value!");
 | 
						|
    const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | 
						|
    if (FTy == 0) 
 | 
						|
      error("Invoke to non function pointer value!");
 | 
						|
 | 
						|
    std::vector<Value *> Params;
 | 
						|
    BasicBlock *Normal, *Except;
 | 
						|
 | 
						|
    if (!FTy->isVarArg()) {
 | 
						|
      Normal = getBasicBlock(Oprnds[1]);
 | 
						|
      Except = getBasicBlock(Oprnds[2]);
 | 
						|
 | 
						|
      FunctionType::param_iterator It = FTy->param_begin();
 | 
						|
      for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
 | 
						|
        if (It == FTy->param_end())
 | 
						|
          error("Invalid invoke instruction!");
 | 
						|
        Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | 
						|
      }
 | 
						|
      if (It != FTy->param_end())
 | 
						|
        error("Invalid invoke instruction!");
 | 
						|
    } else {
 | 
						|
      Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | 
						|
 | 
						|
      Normal = getBasicBlock(Oprnds[0]);
 | 
						|
      Except = getBasicBlock(Oprnds[1]);
 | 
						|
      
 | 
						|
      unsigned FirstVariableArgument = FTy->getNumParams()+2;
 | 
						|
      for (unsigned i = 2; i != FirstVariableArgument; ++i)
 | 
						|
        Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
 | 
						|
                                  Oprnds[i]));
 | 
						|
      
 | 
						|
      if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
 | 
						|
        error("Invalid invoke instruction!");
 | 
						|
 | 
						|
      for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
 | 
						|
        Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | 
						|
    }
 | 
						|
 | 
						|
    Result = new InvokeInst(F, Normal, Except, Params);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Malloc:
 | 
						|
    if (Oprnds.size() > 2) 
 | 
						|
      error("Invalid malloc instruction!");
 | 
						|
    if (!isa<PointerType>(InstTy))
 | 
						|
      error("Invalid malloc instruction!");
 | 
						|
 | 
						|
    Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
 | 
						|
                            Oprnds.size() ? getValue(Type::UIntTyID,
 | 
						|
                                                   Oprnds[0]) : 0);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Alloca:
 | 
						|
    if (Oprnds.size() > 2) 
 | 
						|
      error("Invalid alloca instruction!");
 | 
						|
    if (!isa<PointerType>(InstTy))
 | 
						|
      error("Invalid alloca instruction!");
 | 
						|
 | 
						|
    Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
 | 
						|
                            Oprnds.size() ? getValue(Type::UIntTyID, 
 | 
						|
                            Oprnds[0]) :0);
 | 
						|
    break;
 | 
						|
  case Instruction::Free:
 | 
						|
    if (!isa<PointerType>(InstTy))
 | 
						|
      error("Invalid free instruction!");
 | 
						|
    Result = new FreeInst(getValue(iType, Oprnds[0]));
 | 
						|
    break;
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
 | 
						|
      error("Invalid getelementptr instruction!");
 | 
						|
 | 
						|
    std::vector<Value*> Idx;
 | 
						|
 | 
						|
    const Type *NextTy = InstTy;
 | 
						|
    for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | 
						|
      const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
 | 
						|
      if (!TopTy) 
 | 
						|
        error("Invalid getelementptr instruction!"); 
 | 
						|
 | 
						|
      unsigned ValIdx = Oprnds[i];
 | 
						|
      unsigned IdxTy = 0;
 | 
						|
      if (!hasRestrictedGEPTypes) {
 | 
						|
        // Struct indices are always uints, sequential type indices can be any
 | 
						|
        // of the 32 or 64-bit integer types.  The actual choice of type is
 | 
						|
        // encoded in the low two bits of the slot number.
 | 
						|
        if (isa<StructType>(TopTy))
 | 
						|
          IdxTy = Type::UIntTyID;
 | 
						|
        else {
 | 
						|
          switch (ValIdx & 3) {
 | 
						|
          default:
 | 
						|
          case 0: IdxTy = Type::UIntTyID; break;
 | 
						|
          case 1: IdxTy = Type::IntTyID; break;
 | 
						|
          case 2: IdxTy = Type::ULongTyID; break;
 | 
						|
          case 3: IdxTy = Type::LongTyID; break;
 | 
						|
          }
 | 
						|
          ValIdx >>= 2;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
 | 
						|
      }
 | 
						|
 | 
						|
      Idx.push_back(getValue(IdxTy, ValIdx));
 | 
						|
 | 
						|
      // Convert ubyte struct indices into uint struct indices.
 | 
						|
      if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
 | 
						|
        if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
 | 
						|
          Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
 | 
						|
 | 
						|
      NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
 | 
						|
    }
 | 
						|
 | 
						|
    Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case 62:   // volatile load
 | 
						|
  case Instruction::Load:
 | 
						|
    if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
 | 
						|
      error("Invalid load instruction!");
 | 
						|
    Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
 | 
						|
    break;
 | 
						|
 | 
						|
  case 63:   // volatile store 
 | 
						|
  case Instruction::Store: {
 | 
						|
    if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
 | 
						|
      error("Invalid store instruction!");
 | 
						|
 | 
						|
    Value *Ptr = getValue(iType, Oprnds[1]);
 | 
						|
    const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
 | 
						|
    Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
 | 
						|
                           Opcode == 63);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Unwind:
 | 
						|
    if (Oprnds.size() != 0) error("Invalid unwind instruction!");
 | 
						|
    Result = new UnwindInst();
 | 
						|
    break;
 | 
						|
  case Instruction::Unreachable:
 | 
						|
    if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
 | 
						|
    Result = new UnreachableInst();
 | 
						|
    break;
 | 
						|
  }  // end switch(Opcode) 
 | 
						|
 | 
						|
  unsigned TypeSlot;
 | 
						|
  if (Result->getType() == InstTy)
 | 
						|
    TypeSlot = iType;
 | 
						|
  else
 | 
						|
    TypeSlot = getTypeSlot(Result->getType());
 | 
						|
 | 
						|
  insertValue(Result, TypeSlot, FunctionValues);
 | 
						|
  BB->getInstList().push_back(Result);
 | 
						|
}
 | 
						|
 | 
						|
/// Get a particular numbered basic block, which might be a forward reference.
 | 
						|
/// This works together with ParseBasicBlock to handle these forward references
 | 
						|
/// in a clean manner.  This function is used when constructing phi, br, switch,
 | 
						|
/// and other instructions that reference basic blocks. Blocks are numbered
 | 
						|
/// sequentially as they appear in the function.
 | 
						|
BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
 | 
						|
  // Make sure there is room in the table...
 | 
						|
  if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
 | 
						|
 | 
						|
  // First check to see if this is a backwards reference, i.e., ParseBasicBlock
 | 
						|
  // has already created this block, or if the forward reference has already
 | 
						|
  // been created.
 | 
						|
  if (ParsedBasicBlocks[ID])
 | 
						|
    return ParsedBasicBlocks[ID];
 | 
						|
 | 
						|
  // Otherwise, the basic block has not yet been created.  Do so and add it to
 | 
						|
  // the ParsedBasicBlocks list.
 | 
						|
  return ParsedBasicBlocks[ID] = new BasicBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.  
 | 
						|
/// This method reads in one of the basicblock packets. This method is not used
 | 
						|
/// for bytecode files after LLVM 1.0
 | 
						|
/// @returns The basic block constructed.
 | 
						|
BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
 | 
						|
  if (Handler) Handler->handleBasicBlockBegin(BlockNo);
 | 
						|
 | 
						|
  BasicBlock *BB = 0;
 | 
						|
 | 
						|
  if (ParsedBasicBlocks.size() == BlockNo)
 | 
						|
    ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | 
						|
  else if (ParsedBasicBlocks[BlockNo] == 0)
 | 
						|
    BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | 
						|
  else
 | 
						|
    BB = ParsedBasicBlocks[BlockNo];
 | 
						|
 | 
						|
  std::vector<unsigned> Operands;
 | 
						|
  while (moreInBlock())
 | 
						|
    ParseInstruction(Operands, BB);
 | 
						|
 | 
						|
  if (Handler) Handler->handleBasicBlockEnd(BlockNo);
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// Parse all of the BasicBlock's & Instruction's in the body of a function.
 | 
						|
/// In post 1.0 bytecode files, we no longer emit basic block individually, 
 | 
						|
/// in order to avoid per-basic-block overhead.
 | 
						|
/// @returns Rhe number of basic blocks encountered.
 | 
						|
unsigned BytecodeReader::ParseInstructionList(Function* F) {
 | 
						|
  unsigned BlockNo = 0;
 | 
						|
  std::vector<unsigned> Args;
 | 
						|
 | 
						|
  while (moreInBlock()) {
 | 
						|
    if (Handler) Handler->handleBasicBlockBegin(BlockNo);
 | 
						|
    BasicBlock *BB;
 | 
						|
    if (ParsedBasicBlocks.size() == BlockNo)
 | 
						|
      ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | 
						|
    else if (ParsedBasicBlocks[BlockNo] == 0)
 | 
						|
      BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | 
						|
    else
 | 
						|
      BB = ParsedBasicBlocks[BlockNo];
 | 
						|
    ++BlockNo;
 | 
						|
    F->getBasicBlockList().push_back(BB);
 | 
						|
 | 
						|
    // Read instructions into this basic block until we get to a terminator
 | 
						|
    while (moreInBlock() && !BB->getTerminator())
 | 
						|
      ParseInstruction(Args, BB);
 | 
						|
 | 
						|
    if (!BB->getTerminator())
 | 
						|
      error("Non-terminated basic block found!");
 | 
						|
 | 
						|
    if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
 | 
						|
  }
 | 
						|
 | 
						|
  return BlockNo;
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a symbol table. This works for both module level and function
 | 
						|
/// level symbol tables.  For function level symbol tables, the CurrentFunction
 | 
						|
/// parameter must be non-zero and the ST parameter must correspond to
 | 
						|
/// CurrentFunction's symbol table. For Module level symbol tables, the
 | 
						|
/// CurrentFunction argument must be zero.
 | 
						|
void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
 | 
						|
                                      SymbolTable *ST) {
 | 
						|
  if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
 | 
						|
 | 
						|
  // Allow efficient basic block lookup by number.
 | 
						|
  std::vector<BasicBlock*> BBMap;
 | 
						|
  if (CurrentFunction)
 | 
						|
    for (Function::iterator I = CurrentFunction->begin(),
 | 
						|
           E = CurrentFunction->end(); I != E; ++I)
 | 
						|
      BBMap.push_back(I);
 | 
						|
 | 
						|
  /// In LLVM 1.3 we write types separately from values so
 | 
						|
  /// The types are always first in the symbol table. This is
 | 
						|
  /// because Type no longer derives from Value.
 | 
						|
  if (!hasTypeDerivedFromValue) {
 | 
						|
    // Symtab block header: [num entries]
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
      // Symtab entry: [def slot #][name]
 | 
						|
      unsigned slot = read_vbr_uint();
 | 
						|
      std::string Name = read_str();
 | 
						|
      const Type* T = getType(slot);
 | 
						|
      ST->insert(Name, T);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  while (moreInBlock()) {
 | 
						|
    // Symtab block header: [num entries][type id number]
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    unsigned Typ = 0;
 | 
						|
    bool isTypeType = read_typeid(Typ);
 | 
						|
    const Type *Ty = getType(Typ);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
      // Symtab entry: [def slot #][name]
 | 
						|
      unsigned slot = read_vbr_uint();
 | 
						|
      std::string Name = read_str();
 | 
						|
 | 
						|
      // if we're reading a pre 1.3 bytecode file and the type plane
 | 
						|
      // is the "type type", handle it here
 | 
						|
      if (isTypeType) {
 | 
						|
        const Type* T = getType(slot);
 | 
						|
        if (T == 0)
 | 
						|
          error("Failed type look-up for name '" + Name + "'");
 | 
						|
        ST->insert(Name, T);
 | 
						|
        continue; // code below must be short circuited
 | 
						|
      } else {
 | 
						|
        Value *V = 0;
 | 
						|
        if (Typ == Type::LabelTyID) {
 | 
						|
          if (slot < BBMap.size())
 | 
						|
            V = BBMap[slot];
 | 
						|
        } else {
 | 
						|
          V = getValue(Typ, slot, false); // Find mapping...
 | 
						|
        }
 | 
						|
        if (V == 0)
 | 
						|
          error("Failed value look-up for name '" + Name + "'");
 | 
						|
        V->setName(Name, ST);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  checkPastBlockEnd("Symbol Table");
 | 
						|
  if (Handler) Handler->handleSymbolTableEnd();
 | 
						|
}
 | 
						|
 | 
						|
/// Read in the types portion of a compaction table. 
 | 
						|
void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
 | 
						|
  for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
    unsigned TypeSlot = 0;
 | 
						|
    if (read_typeid(TypeSlot))
 | 
						|
      error("Invalid type in compaction table: type type");
 | 
						|
    const Type *Typ = getGlobalTableType(TypeSlot);
 | 
						|
    CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
 | 
						|
    if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a compaction table.
 | 
						|
void BytecodeReader::ParseCompactionTable() {
 | 
						|
 | 
						|
  // Notify handler that we're beginning a compaction table.
 | 
						|
  if (Handler) Handler->handleCompactionTableBegin();
 | 
						|
 | 
						|
  // In LLVM 1.3 Type no longer derives from Value. So, 
 | 
						|
  // we always write them first in the compaction table
 | 
						|
  // because they can't occupy a "type plane" where the
 | 
						|
  // Values reside.
 | 
						|
  if (! hasTypeDerivedFromValue) {
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    ParseCompactionTypes(NumEntries);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compaction tables live in separate blocks so we have to loop
 | 
						|
  // until we've read the whole thing.
 | 
						|
  while (moreInBlock()) {
 | 
						|
    // Read the number of Value* entries in the compaction table
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    unsigned Ty = 0;
 | 
						|
    unsigned isTypeType = false;
 | 
						|
 | 
						|
    // Decode the type from value read in. Most compaction table
 | 
						|
    // planes will have one or two entries in them. If that's the
 | 
						|
    // case then the length is encoded in the bottom two bits and
 | 
						|
    // the higher bits encode the type. This saves another VBR value.
 | 
						|
    if ((NumEntries & 3) == 3) {
 | 
						|
      // In this case, both low-order bits are set (value 3). This
 | 
						|
      // is a signal that the typeid follows.
 | 
						|
      NumEntries >>= 2;
 | 
						|
      isTypeType = read_typeid(Ty);
 | 
						|
    } else {
 | 
						|
      // In this case, the low-order bits specify the number of entries
 | 
						|
      // and the high order bits specify the type.
 | 
						|
      Ty = NumEntries >> 2;
 | 
						|
      isTypeType = sanitizeTypeId(Ty);
 | 
						|
      NumEntries &= 3;
 | 
						|
    }
 | 
						|
 | 
						|
    // if we're reading a pre 1.3 bytecode file and the type plane
 | 
						|
    // is the "type type", handle it here
 | 
						|
    if (isTypeType) {
 | 
						|
      ParseCompactionTypes(NumEntries);
 | 
						|
    } else {
 | 
						|
      // Make sure we have enough room for the plane.
 | 
						|
      if (Ty >= CompactionValues.size())
 | 
						|
        CompactionValues.resize(Ty+1);
 | 
						|
 | 
						|
      // Make sure the plane is empty or we have some kind of error.
 | 
						|
      if (!CompactionValues[Ty].empty())
 | 
						|
        error("Compaction table plane contains multiple entries!");
 | 
						|
 | 
						|
      // Notify handler about the plane.
 | 
						|
      if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
 | 
						|
 | 
						|
      // Push the implicit zero.
 | 
						|
      CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
 | 
						|
 | 
						|
      // Read in each of the entries, put them in the compaction table
 | 
						|
      // and notify the handler that we have a new compaction table value.
 | 
						|
      for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
        unsigned ValSlot = read_vbr_uint();
 | 
						|
        Value *V = getGlobalTableValue(Ty, ValSlot);
 | 
						|
        CompactionValues[Ty].push_back(V);
 | 
						|
        if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Notify handler that the compaction table is done.
 | 
						|
  if (Handler) Handler->handleCompactionTableEnd();
 | 
						|
}
 | 
						|
    
 | 
						|
// Parse a single type. The typeid is read in first. If its a primitive type
 | 
						|
// then nothing else needs to be read, we know how to instantiate it. If its
 | 
						|
// a derived type, then additional data is read to fill out the type 
 | 
						|
// definition.
 | 
						|
const Type *BytecodeReader::ParseType() {
 | 
						|
  unsigned PrimType = 0;
 | 
						|
  if (read_typeid(PrimType))
 | 
						|
    error("Invalid type (type type) in type constants!");
 | 
						|
 | 
						|
  const Type *Result = 0;
 | 
						|
  if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
 | 
						|
    return Result;
 | 
						|
  
 | 
						|
  switch (PrimType) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const Type *RetType = readSanitizedType();
 | 
						|
 | 
						|
    unsigned NumParams = read_vbr_uint();
 | 
						|
 | 
						|
    std::vector<const Type*> Params;
 | 
						|
    while (NumParams--) 
 | 
						|
      Params.push_back(readSanitizedType());
 | 
						|
 | 
						|
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | 
						|
    if (isVarArg) Params.pop_back();
 | 
						|
 | 
						|
    Result = FunctionType::get(RetType, Params, isVarArg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const Type *ElementType = readSanitizedType();
 | 
						|
    unsigned NumElements = read_vbr_uint();
 | 
						|
    Result =  ArrayType::get(ElementType, NumElements);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::PackedTyID: {
 | 
						|
    const Type *ElementType = readSanitizedType();
 | 
						|
    unsigned NumElements = read_vbr_uint();
 | 
						|
    Result =  PackedType::get(ElementType, NumElements);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    std::vector<const Type*> Elements;
 | 
						|
    unsigned Typ = 0;
 | 
						|
    if (read_typeid(Typ))
 | 
						|
      error("Invalid element type (type type) for structure!");
 | 
						|
 | 
						|
    while (Typ) {         // List is terminated by void/0 typeid
 | 
						|
      Elements.push_back(getType(Typ));
 | 
						|
      if (read_typeid(Typ))
 | 
						|
        error("Invalid element type (type type) for structure!");
 | 
						|
    }
 | 
						|
 | 
						|
    Result = StructType::get(Elements);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    Result = PointerType::get(readSanitizedType());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::OpaqueTyID: {
 | 
						|
    Result = OpaqueType::get();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    error("Don't know how to deserialize primitive type " + utostr(PrimType));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (Handler) Handler->handleType(Result);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// ParseTypes - We have to use this weird code to handle recursive
 | 
						|
// types.  We know that recursive types will only reference the current slab of
 | 
						|
// values in the type plane, but they can forward reference types before they
 | 
						|
// have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | 
						|
// be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | 
						|
// this ugly problem, we pessimistically insert an opaque type for each type we
 | 
						|
// are about to read.  This means that forward references will resolve to
 | 
						|
// something and when we reread the type later, we can replace the opaque type
 | 
						|
// with a new resolved concrete type.
 | 
						|
//
 | 
						|
void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
 | 
						|
  assert(Tab.size() == 0 && "should not have read type constants in before!");
 | 
						|
 | 
						|
  // Insert a bunch of opaque types to be resolved later...
 | 
						|
  Tab.reserve(NumEntries);
 | 
						|
  for (unsigned i = 0; i != NumEntries; ++i)
 | 
						|
    Tab.push_back(OpaqueType::get());
 | 
						|
 | 
						|
  if (Handler) 
 | 
						|
    Handler->handleTypeList(NumEntries);
 | 
						|
 | 
						|
  // Loop through reading all of the types.  Forward types will make use of the
 | 
						|
  // opaque types just inserted.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
    const Type* NewTy = ParseType();
 | 
						|
    const Type* OldTy = Tab[i].get();
 | 
						|
    if (NewTy == 0) 
 | 
						|
      error("Couldn't parse type!");
 | 
						|
 | 
						|
    // Don't directly push the new type on the Tab. Instead we want to replace 
 | 
						|
    // the opaque type we previously inserted with the new concrete value. This
 | 
						|
    // approach helps with forward references to types. The refinement from the
 | 
						|
    // abstract (opaque) type to the new type causes all uses of the abstract
 | 
						|
    // type to use the concrete type (NewTy). This will also cause the opaque
 | 
						|
    // type to be deleted.
 | 
						|
    cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
 | 
						|
 | 
						|
    // This should have replaced the old opaque type with the new type in the
 | 
						|
    // value table... or with a preexisting type that was already in the system.
 | 
						|
    // Let's just make sure it did.
 | 
						|
    assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a single constant value
 | 
						|
Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
 | 
						|
  // We must check for a ConstantExpr before switching by type because
 | 
						|
  // a ConstantExpr can be of any type, and has no explicit value.
 | 
						|
  // 
 | 
						|
  // 0 if not expr; numArgs if is expr
 | 
						|
  unsigned isExprNumArgs = read_vbr_uint();
 | 
						|
 | 
						|
  if (isExprNumArgs) {
 | 
						|
    // 'undef' is encoded with 'exprnumargs' == 1.
 | 
						|
    if (!hasNoUndefValue)
 | 
						|
      if (--isExprNumArgs == 0)
 | 
						|
        return UndefValue::get(getType(TypeID));
 | 
						|
  
 | 
						|
    // FIXME: Encoding of constant exprs could be much more compact!
 | 
						|
    std::vector<Constant*> ArgVec;
 | 
						|
    ArgVec.reserve(isExprNumArgs);
 | 
						|
    unsigned Opcode = read_vbr_uint();
 | 
						|
 | 
						|
    // Bytecode files before LLVM 1.4 need have a missing terminator inst.
 | 
						|
    if (hasNoUnreachableInst) Opcode++;
 | 
						|
    
 | 
						|
    // Read the slot number and types of each of the arguments
 | 
						|
    for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | 
						|
      unsigned ArgValSlot = read_vbr_uint();
 | 
						|
      unsigned ArgTypeSlot = 0;
 | 
						|
      if (read_typeid(ArgTypeSlot))
 | 
						|
        error("Invalid argument type (type type) for constant value");
 | 
						|
      
 | 
						|
      // Get the arg value from its slot if it exists, otherwise a placeholder
 | 
						|
      ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Construct a ConstantExpr of the appropriate kind
 | 
						|
    if (isExprNumArgs == 1) {           // All one-operand expressions
 | 
						|
      if (Opcode != Instruction::Cast)
 | 
						|
        error("Only Cast instruction has one argument for ConstantExpr");
 | 
						|
 | 
						|
      Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
 | 
						|
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | 
						|
      return Result;
 | 
						|
    } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | 
						|
      std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
 | 
						|
 | 
						|
      if (hasRestrictedGEPTypes) {
 | 
						|
        const Type *BaseTy = ArgVec[0]->getType();
 | 
						|
        generic_gep_type_iterator<std::vector<Constant*>::iterator>
 | 
						|
          GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
 | 
						|
          E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
 | 
						|
        for (unsigned i = 0; GTI != E; ++GTI, ++i)
 | 
						|
          if (isa<StructType>(*GTI)) {
 | 
						|
            if (IdxList[i]->getType() != Type::UByteTy)
 | 
						|
              error("Invalid index for getelementptr!");
 | 
						|
            IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
 | 
						|
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | 
						|
      return Result;
 | 
						|
    } else if (Opcode == Instruction::Select) {
 | 
						|
      if (ArgVec.size() != 3)
 | 
						|
        error("Select instruction must have three arguments.");
 | 
						|
      Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1], 
 | 
						|
                                                 ArgVec[2]);
 | 
						|
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | 
						|
      return Result;
 | 
						|
    } else {                            // All other 2-operand expressions
 | 
						|
      Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | 
						|
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Ok, not an ConstantExpr.  We now know how to read the given type...
 | 
						|
  const Type *Ty = getType(TypeID);
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::BoolTyID: {
 | 
						|
    unsigned Val = read_vbr_uint();
 | 
						|
    if (Val != 0 && Val != 1) 
 | 
						|
      error("Invalid boolean value read.");
 | 
						|
    Constant* Result = ConstantBool::get(Val == 1);
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::UByteTyID:   // Unsigned integer types...
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID: {
 | 
						|
    unsigned Val = read_vbr_uint();
 | 
						|
    if (!ConstantUInt::isValueValidForType(Ty, Val)) 
 | 
						|
      error("Invalid unsigned byte/short/int read.");
 | 
						|
    Constant* Result =  ConstantUInt::get(Ty, Val);
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ULongTyID: {
 | 
						|
    Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::SByteTyID:   // Signed integer types...
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID: {
 | 
						|
  case Type::LongTyID:
 | 
						|
    int64_t Val = read_vbr_int64();
 | 
						|
    if (!ConstantSInt::isValueValidForType(Ty, Val)) 
 | 
						|
      error("Invalid signed byte/short/int/long read.");
 | 
						|
    Constant* Result = ConstantSInt::get(Ty, Val);
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    float Val;
 | 
						|
    read_float(Val);
 | 
						|
    Constant* Result = ConstantFP::get(Ty, Val);
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    double Val;
 | 
						|
    read_double(Val);
 | 
						|
    Constant* Result = ConstantFP::get(Ty, Val);
 | 
						|
    if (Handler) Handler->handleConstantValue(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *AT = cast<ArrayType>(Ty);
 | 
						|
    unsigned NumElements = AT->getNumElements();
 | 
						|
    unsigned TypeSlot = getTypeSlot(AT->getElementType());
 | 
						|
    std::vector<Constant*> Elements;
 | 
						|
    Elements.reserve(NumElements);
 | 
						|
    while (NumElements--)     // Read all of the elements of the constant.
 | 
						|
      Elements.push_back(getConstantValue(TypeSlot,
 | 
						|
                                          read_vbr_uint()));
 | 
						|
    Constant* Result = ConstantArray::get(AT, Elements);
 | 
						|
    if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *ST = cast<StructType>(Ty);
 | 
						|
 | 
						|
    std::vector<Constant *> Elements;
 | 
						|
    Elements.reserve(ST->getNumElements());
 | 
						|
    for (unsigned i = 0; i != ST->getNumElements(); ++i)
 | 
						|
      Elements.push_back(getConstantValue(ST->getElementType(i),
 | 
						|
                                          read_vbr_uint()));
 | 
						|
 | 
						|
    Constant* Result = ConstantStruct::get(ST, Elements);
 | 
						|
    if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
 | 
						|
    return Result;
 | 
						|
  }    
 | 
						|
 | 
						|
  case Type::PackedTyID: {
 | 
						|
    const PackedType *PT = cast<PackedType>(Ty);
 | 
						|
    unsigned NumElements = PT->getNumElements();
 | 
						|
    unsigned TypeSlot = getTypeSlot(PT->getElementType());
 | 
						|
    std::vector<Constant*> Elements;
 | 
						|
    Elements.reserve(NumElements);
 | 
						|
    while (NumElements--)     // Read all of the elements of the constant.
 | 
						|
      Elements.push_back(getConstantValue(TypeSlot,
 | 
						|
                                          read_vbr_uint()));
 | 
						|
    Constant* Result = ConstantPacked::get(PT, Elements);
 | 
						|
    if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID: {  // ConstantPointerRef value...
 | 
						|
    const PointerType *PT = cast<PointerType>(Ty);
 | 
						|
    unsigned Slot = read_vbr_uint();
 | 
						|
    
 | 
						|
    // Check to see if we have already read this global variable...
 | 
						|
    Value *Val = getValue(TypeID, Slot, false);
 | 
						|
    if (Val) {
 | 
						|
      GlobalValue *GV = dyn_cast<GlobalValue>(Val);
 | 
						|
      if (!GV) error("GlobalValue not in ValueTable!");
 | 
						|
      if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
 | 
						|
      return GV;
 | 
						|
    } else {
 | 
						|
      error("Forward references are not allowed here.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    error("Don't know how to deserialize constant value of type '" +
 | 
						|
                      Ty->getDescription());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Resolve references for constants. This function resolves the forward 
 | 
						|
/// referenced constants in the ConstantFwdRefs map. It uses the 
 | 
						|
/// replaceAllUsesWith method of Value class to substitute the placeholder
 | 
						|
/// instance with the actual instance.
 | 
						|
void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){
 | 
						|
  ConstantRefsType::iterator I =
 | 
						|
    ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot));
 | 
						|
  if (I == ConstantFwdRefs.end()) return;   // Never forward referenced?
 | 
						|
 | 
						|
  Value *PH = I->second;   // Get the placeholder...
 | 
						|
  PH->replaceAllUsesWith(NewV);
 | 
						|
  delete PH;                               // Delete the old placeholder
 | 
						|
  ConstantFwdRefs.erase(I);                // Remove the map entry for it
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the constant strings section.
 | 
						|
void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
 | 
						|
  for (; NumEntries; --NumEntries) {
 | 
						|
    unsigned Typ = 0;
 | 
						|
    if (read_typeid(Typ))
 | 
						|
      error("Invalid type (type type) for string constant");
 | 
						|
    const Type *Ty = getType(Typ);
 | 
						|
    if (!isa<ArrayType>(Ty))
 | 
						|
      error("String constant data invalid!");
 | 
						|
    
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    if (ATy->getElementType() != Type::SByteTy &&
 | 
						|
        ATy->getElementType() != Type::UByteTy)
 | 
						|
      error("String constant data invalid!");
 | 
						|
    
 | 
						|
    // Read character data.  The type tells us how long the string is.
 | 
						|
    char Data[ATy->getNumElements()]; 
 | 
						|
    read_data(Data, Data+ATy->getNumElements());
 | 
						|
 | 
						|
    std::vector<Constant*> Elements(ATy->getNumElements());
 | 
						|
    if (ATy->getElementType() == Type::SByteTy)
 | 
						|
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
        Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
 | 
						|
    else
 | 
						|
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
        Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
 | 
						|
 | 
						|
    // Create the constant, inserting it as needed.
 | 
						|
    Constant *C = ConstantArray::get(ATy, Elements);
 | 
						|
    unsigned Slot = insertValue(C, Typ, Tab);
 | 
						|
    ResolveReferencesToConstant(C, Slot);
 | 
						|
    if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the constant pool.
 | 
						|
void BytecodeReader::ParseConstantPool(ValueTable &Tab, 
 | 
						|
                                       TypeListTy &TypeTab,
 | 
						|
                                       bool isFunction) {
 | 
						|
  if (Handler) Handler->handleGlobalConstantsBegin();
 | 
						|
 | 
						|
  /// In LLVM 1.3 Type does not derive from Value so the types
 | 
						|
  /// do not occupy a plane. Consequently, we read the types
 | 
						|
  /// first in the constant pool.
 | 
						|
  if (isFunction && !hasTypeDerivedFromValue) {
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    ParseTypes(TypeTab, NumEntries);
 | 
						|
  }
 | 
						|
 | 
						|
  while (moreInBlock()) {
 | 
						|
    unsigned NumEntries = read_vbr_uint();
 | 
						|
    unsigned Typ = 0;
 | 
						|
    bool isTypeType = read_typeid(Typ);
 | 
						|
 | 
						|
    /// In LLVM 1.2 and before, Types were written to the
 | 
						|
    /// bytecode file in the "Type Type" plane (#12).
 | 
						|
    /// In 1.3 plane 12 is now the label plane.  Handle this here.
 | 
						|
    if (isTypeType) {
 | 
						|
      ParseTypes(TypeTab, NumEntries);
 | 
						|
    } else if (Typ == Type::VoidTyID) {
 | 
						|
      /// Use of Type::VoidTyID is a misnomer. It actually means
 | 
						|
      /// that the following plane is constant strings
 | 
						|
      assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
 | 
						|
      ParseStringConstants(NumEntries, Tab);
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
        Constant *C = ParseConstantValue(Typ);
 | 
						|
        assert(C && "ParseConstantValue returned NULL!");
 | 
						|
        unsigned Slot = insertValue(C, Typ, Tab);
 | 
						|
 | 
						|
        // If we are reading a function constant table, make sure that we adjust
 | 
						|
        // the slot number to be the real global constant number.
 | 
						|
        //
 | 
						|
        if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
 | 
						|
            ModuleValues[Typ])
 | 
						|
          Slot += ModuleValues[Typ]->size();
 | 
						|
        ResolveReferencesToConstant(C, Slot);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  checkPastBlockEnd("Constant Pool");
 | 
						|
  if (Handler) Handler->handleGlobalConstantsEnd();
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the contents of a function. Note that this function can be
 | 
						|
/// called lazily by materializeFunction
 | 
						|
/// @see materializeFunction
 | 
						|
void BytecodeReader::ParseFunctionBody(Function* F) {
 | 
						|
 | 
						|
  unsigned FuncSize = BlockEnd - At;
 | 
						|
  GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
 | 
						|
 | 
						|
  unsigned LinkageType = read_vbr_uint();
 | 
						|
  switch (LinkageType) {
 | 
						|
  case 0: Linkage = GlobalValue::ExternalLinkage; break;
 | 
						|
  case 1: Linkage = GlobalValue::WeakLinkage; break;
 | 
						|
  case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | 
						|
  case 3: Linkage = GlobalValue::InternalLinkage; break;
 | 
						|
  case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
 | 
						|
  default:
 | 
						|
    error("Invalid linkage type for Function.");
 | 
						|
    Linkage = GlobalValue::InternalLinkage;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  F->setLinkage(Linkage);
 | 
						|
  if (Handler) Handler->handleFunctionBegin(F,FuncSize);
 | 
						|
 | 
						|
  // Keep track of how many basic blocks we have read in...
 | 
						|
  unsigned BlockNum = 0;
 | 
						|
  bool InsertedArguments = false;
 | 
						|
 | 
						|
  BufPtr MyEnd = BlockEnd;
 | 
						|
  while (At < MyEnd) {
 | 
						|
    unsigned Type, Size;
 | 
						|
    BufPtr OldAt = At;
 | 
						|
    read_block(Type, Size);
 | 
						|
 | 
						|
    switch (Type) {
 | 
						|
    case BytecodeFormat::ConstantPoolBlockID:
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        // Insert arguments into the value table before we parse the first basic
 | 
						|
        // block in the function, but after we potentially read in the
 | 
						|
        // compaction table.
 | 
						|
        insertArguments(F);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      ParseConstantPool(FunctionValues, FunctionTypes, true);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::CompactionTableBlockID:
 | 
						|
      ParseCompactionTable();
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::BasicBlock: {
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        // Insert arguments into the value table before we parse the first basic
 | 
						|
        // block in the function, but after we potentially read in the
 | 
						|
        // compaction table.
 | 
						|
        insertArguments(F);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      BasicBlock *BB = ParseBasicBlock(BlockNum++);
 | 
						|
      F->getBasicBlockList().push_back(BB);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case BytecodeFormat::InstructionListBlockID: {
 | 
						|
      // Insert arguments into the value table before we parse the instruction
 | 
						|
      // list for the function, but after we potentially read in the compaction
 | 
						|
      // table.
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        insertArguments(F);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (BlockNum) 
 | 
						|
        error("Already parsed basic blocks!");
 | 
						|
      BlockNum = ParseInstructionList(F);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case BytecodeFormat::SymbolTableBlockID:
 | 
						|
      ParseSymbolTable(F, &F->getSymbolTable());
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      At += Size;
 | 
						|
      if (OldAt > At) 
 | 
						|
        error("Wrapped around reading bytecode.");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    BlockEnd = MyEnd;
 | 
						|
 | 
						|
    // Malformed bc file if read past end of block.
 | 
						|
    align32();
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure there were no references to non-existant basic blocks.
 | 
						|
  if (BlockNum != ParsedBasicBlocks.size())
 | 
						|
    error("Illegal basic block operand reference");
 | 
						|
 | 
						|
  ParsedBasicBlocks.clear();
 | 
						|
 | 
						|
  // Resolve forward references.  Replace any uses of a forward reference value
 | 
						|
  // with the real value.
 | 
						|
 | 
						|
  // replaceAllUsesWith is very inefficient for instructions which have a LARGE
 | 
						|
  // number of operands.  PHI nodes often have forward references, and can also
 | 
						|
  // often have a very large number of operands.
 | 
						|
  //
 | 
						|
  // FIXME: REEVALUATE.  replaceAllUsesWith is _much_ faster now, and this code
 | 
						|
  // should be simplified back to using it!
 | 
						|
  //
 | 
						|
  std::map<Value*, Value*> ForwardRefMapping;
 | 
						|
  for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator 
 | 
						|
         I = ForwardReferences.begin(), E = ForwardReferences.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second,
 | 
						|
                                            false);
 | 
						|
 | 
						|
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Value* V = I->getOperand(i))
 | 
						|
          if (Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
            std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A);
 | 
						|
            if (It != ForwardRefMapping.end()) I->setOperand(i, It->second);
 | 
						|
          }
 | 
						|
 | 
						|
  while (!ForwardReferences.empty()) {
 | 
						|
    std::map<std::pair<unsigned,unsigned>, Value*>::iterator I =
 | 
						|
      ForwardReferences.begin();
 | 
						|
    Value *PlaceHolder = I->second;
 | 
						|
    ForwardReferences.erase(I);
 | 
						|
 | 
						|
    // Now that all the uses are gone, delete the placeholder...
 | 
						|
    // If we couldn't find a def (error case), then leak a little
 | 
						|
    // memory, because otherwise we can't remove all uses!
 | 
						|
    delete PlaceHolder;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear out function-level types...
 | 
						|
  FunctionTypes.clear();
 | 
						|
  CompactionTypes.clear();
 | 
						|
  CompactionValues.clear();
 | 
						|
  freeTable(FunctionValues);
 | 
						|
 | 
						|
  if (Handler) Handler->handleFunctionEnd(F);
 | 
						|
}
 | 
						|
 | 
						|
/// This function parses LLVM functions lazily. It obtains the type of the
 | 
						|
/// function and records where the body of the function is in the bytecode
 | 
						|
/// buffer. The caller can then use the ParseNextFunction and 
 | 
						|
/// ParseAllFunctionBodies to get handler events for the functions.
 | 
						|
void BytecodeReader::ParseFunctionLazily() {
 | 
						|
  if (FunctionSignatureList.empty())
 | 
						|
    error("FunctionSignatureList empty!");
 | 
						|
 | 
						|
  Function *Func = FunctionSignatureList.back();
 | 
						|
  FunctionSignatureList.pop_back();
 | 
						|
 | 
						|
  // Save the information for future reading of the function
 | 
						|
  LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
 | 
						|
 | 
						|
  // Pretend we've `parsed' this function
 | 
						|
  At = BlockEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// The ParserFunction method lazily parses one function. Use this method to 
 | 
						|
/// casue the parser to parse a specific function in the module. Note that 
 | 
						|
/// this will remove the function from what is to be included by 
 | 
						|
/// ParseAllFunctionBodies.
 | 
						|
/// @see ParseAllFunctionBodies
 | 
						|
/// @see ParseBytecode
 | 
						|
void BytecodeReader::ParseFunction(Function* Func) {
 | 
						|
  // Find {start, end} pointers and slot in the map. If not there, we're done.
 | 
						|
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
 | 
						|
 | 
						|
  // Make sure we found it
 | 
						|
  if (Fi == LazyFunctionLoadMap.end()) {
 | 
						|
    error("Unrecognized function of type " + Func->getType()->getDescription());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  BlockStart = At = Fi->second.Buf;
 | 
						|
  BlockEnd = Fi->second.EndBuf;
 | 
						|
  assert(Fi->first == Func && "Found wrong function?");
 | 
						|
 | 
						|
  LazyFunctionLoadMap.erase(Fi);
 | 
						|
 | 
						|
  this->ParseFunctionBody(Func);
 | 
						|
}
 | 
						|
 | 
						|
/// The ParseAllFunctionBodies method parses through all the previously
 | 
						|
/// unparsed functions in the bytecode file. If you want to completely parse
 | 
						|
/// a bytecode file, this method should be called after Parsebytecode because
 | 
						|
/// Parsebytecode only records the locations in the bytecode file of where
 | 
						|
/// the function definitions are located. This function uses that information
 | 
						|
/// to materialize the functions.
 | 
						|
/// @see ParseBytecode
 | 
						|
void BytecodeReader::ParseAllFunctionBodies() {
 | 
						|
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
 | 
						|
  LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
 | 
						|
 | 
						|
  while (Fi != Fe) {
 | 
						|
    Function* Func = Fi->first;
 | 
						|
    BlockStart = At = Fi->second.Buf;
 | 
						|
    BlockEnd = Fi->second.EndBuf;
 | 
						|
    this->ParseFunctionBody(Func);
 | 
						|
    ++Fi;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the global type list
 | 
						|
void BytecodeReader::ParseGlobalTypes() {
 | 
						|
  // Read the number of types
 | 
						|
  unsigned NumEntries = read_vbr_uint();
 | 
						|
 | 
						|
  // Ignore the type plane identifier for types if the bc file is pre 1.3
 | 
						|
  if (hasTypeDerivedFromValue)
 | 
						|
    read_vbr_uint();
 | 
						|
 | 
						|
  ParseTypes(ModuleTypes, NumEntries);
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the Global info (types, global vars, constants)
 | 
						|
void BytecodeReader::ParseModuleGlobalInfo() {
 | 
						|
 | 
						|
  if (Handler) Handler->handleModuleGlobalsBegin();
 | 
						|
 | 
						|
  // Read global variables...
 | 
						|
  unsigned VarType = read_vbr_uint();
 | 
						|
  while (VarType != Type::VoidTyID) { // List is terminated by Void
 | 
						|
    // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
 | 
						|
    // Linkage, bit4+ = slot#
 | 
						|
    unsigned SlotNo = VarType >> 5;
 | 
						|
    if (sanitizeTypeId(SlotNo))
 | 
						|
      error("Invalid type (type type) for global var!");
 | 
						|
    unsigned LinkageID = (VarType >> 2) & 7;
 | 
						|
    bool isConstant = VarType & 1;
 | 
						|
    bool hasInitializer = VarType & 2;
 | 
						|
    GlobalValue::LinkageTypes Linkage;
 | 
						|
 | 
						|
    switch (LinkageID) {
 | 
						|
    case 0: Linkage = GlobalValue::ExternalLinkage;  break;
 | 
						|
    case 1: Linkage = GlobalValue::WeakLinkage;      break;
 | 
						|
    case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | 
						|
    case 3: Linkage = GlobalValue::InternalLinkage;  break;
 | 
						|
    case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
 | 
						|
    default: 
 | 
						|
      error("Unknown linkage type: " + utostr(LinkageID));
 | 
						|
      Linkage = GlobalValue::InternalLinkage;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    const Type *Ty = getType(SlotNo);
 | 
						|
    if (!Ty) {
 | 
						|
      error("Global has no type! SlotNo=" + utostr(SlotNo));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isa<PointerType>(Ty)) {
 | 
						|
      error("Global not a pointer type! Ty= " + Ty->getDescription());
 | 
						|
    }
 | 
						|
 | 
						|
    const Type *ElTy = cast<PointerType>(Ty)->getElementType();
 | 
						|
 | 
						|
    // Create the global variable...
 | 
						|
    GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
 | 
						|
                                            0, "", TheModule);
 | 
						|
    insertValue(GV, SlotNo, ModuleValues);
 | 
						|
 | 
						|
    unsigned initSlot = 0;
 | 
						|
    if (hasInitializer) {   
 | 
						|
      initSlot = read_vbr_uint();
 | 
						|
      GlobalInits.push_back(std::make_pair(GV, initSlot));
 | 
						|
    }
 | 
						|
 | 
						|
    // Notify handler about the global value.
 | 
						|
    if (Handler)
 | 
						|
      Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
 | 
						|
 | 
						|
    // Get next item
 | 
						|
    VarType = read_vbr_uint();
 | 
						|
  }
 | 
						|
 | 
						|
  // Read the function objects for all of the functions that are coming
 | 
						|
  unsigned FnSignature = read_vbr_uint();
 | 
						|
 | 
						|
  if (hasNoFlagsForFunctions)
 | 
						|
    FnSignature = (FnSignature << 5) + 1;
 | 
						|
 | 
						|
  // List is terminated by VoidTy.
 | 
						|
  while ((FnSignature >> 5) != Type::VoidTyID) {
 | 
						|
    const Type *Ty = getType(FnSignature >> 5);
 | 
						|
    if (!isa<PointerType>(Ty) ||
 | 
						|
        !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
 | 
						|
      error("Function not a pointer to function type! Ty = " + 
 | 
						|
            Ty->getDescription());
 | 
						|
    }
 | 
						|
 | 
						|
    // We create functions by passing the underlying FunctionType to create...
 | 
						|
    const FunctionType* FTy = 
 | 
						|
      cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
 | 
						|
 | 
						|
 | 
						|
    // Insert the place hodler
 | 
						|
    Function* Func = new Function(FTy, GlobalValue::InternalLinkage, 
 | 
						|
                                  "", TheModule);
 | 
						|
    insertValue(Func, FnSignature >> 5, ModuleValues);
 | 
						|
 | 
						|
    // Flags are not used yet.
 | 
						|
    //unsigned Flags = FnSignature & 31;
 | 
						|
 | 
						|
    // Save this for later so we know type of lazily instantiated functions
 | 
						|
    FunctionSignatureList.push_back(Func);
 | 
						|
 | 
						|
    if (Handler) Handler->handleFunctionDeclaration(Func);
 | 
						|
 | 
						|
    // Get the next function signature.
 | 
						|
    FnSignature = read_vbr_uint();
 | 
						|
    if (hasNoFlagsForFunctions)
 | 
						|
      FnSignature = (FnSignature << 5) + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the function signature list is set up, reverse it so that we can 
 | 
						|
  // remove elements efficiently from the back of the vector.
 | 
						|
  std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
 | 
						|
 | 
						|
  // If this bytecode format has dependent library information in it ..
 | 
						|
  if (!hasNoDependentLibraries) {
 | 
						|
    // Read in the number of dependent library items that follow
 | 
						|
    unsigned num_dep_libs = read_vbr_uint();
 | 
						|
    std::string dep_lib;
 | 
						|
    while( num_dep_libs-- ) {
 | 
						|
      dep_lib = read_str();
 | 
						|
      TheModule->addLibrary(dep_lib);
 | 
						|
      if (Handler)
 | 
						|
        Handler->handleDependentLibrary(dep_lib);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Read target triple and place into the module
 | 
						|
    std::string triple = read_str();
 | 
						|
    TheModule->setTargetTriple(triple);
 | 
						|
    if (Handler)
 | 
						|
      Handler->handleTargetTriple(triple);
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasInconsistentModuleGlobalInfo)
 | 
						|
    align32();
 | 
						|
 | 
						|
  // This is for future proofing... in the future extra fields may be added that
 | 
						|
  // we don't understand, so we transparently ignore them.
 | 
						|
  //
 | 
						|
  At = BlockEnd;
 | 
						|
 | 
						|
  if (Handler) Handler->handleModuleGlobalsEnd();
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the version information and decode it by setting flags on the
 | 
						|
/// Reader that enable backward compatibility of the reader.
 | 
						|
void BytecodeReader::ParseVersionInfo() {
 | 
						|
  unsigned Version = read_vbr_uint();
 | 
						|
 | 
						|
  // Unpack version number: low four bits are for flags, top bits = version
 | 
						|
  Module::Endianness  Endianness;
 | 
						|
  Module::PointerSize PointerSize;
 | 
						|
  Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
 | 
						|
  PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
 | 
						|
 | 
						|
  bool hasNoEndianness = Version & 4;
 | 
						|
  bool hasNoPointerSize = Version & 8;
 | 
						|
  
 | 
						|
  RevisionNum = Version >> 4;
 | 
						|
 | 
						|
  // Default values for the current bytecode version
 | 
						|
  hasInconsistentModuleGlobalInfo = false;
 | 
						|
  hasExplicitPrimitiveZeros = false;
 | 
						|
  hasRestrictedGEPTypes = false;
 | 
						|
  hasTypeDerivedFromValue = false;
 | 
						|
  hasLongBlockHeaders = false;
 | 
						|
  has32BitTypes = false;
 | 
						|
  hasNoDependentLibraries = false;
 | 
						|
  hasAlignment = false;
 | 
						|
  hasInconsistentBBSlotNums = false;
 | 
						|
  hasVBRByteTypes = false;
 | 
						|
  hasUnnecessaryModuleBlockId = false;
 | 
						|
  hasNoUndefValue = false;
 | 
						|
  hasNoFlagsForFunctions = false;
 | 
						|
  hasNoUnreachableInst = false;
 | 
						|
 | 
						|
  switch (RevisionNum) {
 | 
						|
  case 0:               //  LLVM 1.0, 1.1 (Released)
 | 
						|
    // Base LLVM 1.0 bytecode format.
 | 
						|
    hasInconsistentModuleGlobalInfo = true;
 | 
						|
    hasExplicitPrimitiveZeros = true;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
 | 
						|
  case 1:               // LLVM 1.2 (Released)
 | 
						|
    // LLVM 1.2 added explicit support for emitting strings efficiently.
 | 
						|
 | 
						|
    // Also, it fixed the problem where the size of the ModuleGlobalInfo block
 | 
						|
    // included the size for the alignment at the end, where the rest of the
 | 
						|
    // blocks did not.
 | 
						|
 | 
						|
    // LLVM 1.2 and before required that GEP indices be ubyte constants for
 | 
						|
    // structures and longs for sequential types.
 | 
						|
    hasRestrictedGEPTypes = true;
 | 
						|
 | 
						|
    // LLVM 1.2 and before had the Type class derive from Value class. This
 | 
						|
    // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
 | 
						|
    // written differently because Types can no longer be part of the 
 | 
						|
    // type planes for Values.
 | 
						|
    hasTypeDerivedFromValue = true;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
    
 | 
						|
  case 2:                // 1.2.5 (Not Released)
 | 
						|
 | 
						|
    // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
 | 
						|
    // especially for small files where the 8 bytes per block is a large
 | 
						|
    // fraction of the total block size. In LLVM 1.3, the block type and length
 | 
						|
    // are compressed into a single 32-bit unsigned integer. 27 bits for length,
 | 
						|
    // 5 bits for block type.
 | 
						|
    hasLongBlockHeaders = true;
 | 
						|
 | 
						|
    // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
 | 
						|
    // this has been reduced to vbr_uint24. It shouldn't make much difference
 | 
						|
    // since we haven't run into a module with > 24 million types, but for
 | 
						|
    // safety the 24-bit restriction has been enforced in 1.3 to free some bits
 | 
						|
    // in various places and to ensure consistency.
 | 
						|
    has32BitTypes = true;
 | 
						|
 | 
						|
    // LLVM 1.2 and earlier did not provide a target triple nor a list of 
 | 
						|
    // libraries on which the bytecode is dependent. LLVM 1.3 provides these
 | 
						|
    // features, for use in future versions of LLVM.
 | 
						|
    hasNoDependentLibraries = true;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
 | 
						|
  case 3:               // LLVM 1.3 (Released)
 | 
						|
    // LLVM 1.3 and earlier caused alignment bytes to be written on some block
 | 
						|
    // boundaries and at the end of some strings. In extreme cases (e.g. lots 
 | 
						|
    // of GEP references to a constant array), this can increase the file size
 | 
						|
    // by 30% or more. In version 1.4 alignment is done away with completely.
 | 
						|
    hasAlignment = true;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
    
 | 
						|
  case 4:               // 1.3.1 (Not Released)
 | 
						|
    // In version 4, we did not support the 'undef' constant.
 | 
						|
    hasNoUndefValue = true;
 | 
						|
 | 
						|
    // In version 4 and above, we did not include space for flags for functions
 | 
						|
    // in the module info block.
 | 
						|
    hasNoFlagsForFunctions = true;
 | 
						|
 | 
						|
    // In version 4 and above, we did not include the 'unreachable' instruction
 | 
						|
    // in the opcode numbering in the bytecode file.
 | 
						|
    hasNoUnreachableInst = true;
 | 
						|
    break;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
 | 
						|
  case 5:               // 1.x.x (Not Released)
 | 
						|
    break;
 | 
						|
    // FIXME: NONE of this is implemented yet!
 | 
						|
 | 
						|
    // In version 5, basic blocks have a minimum index of 0 whereas all the 
 | 
						|
    // other primitives have a minimum index of 1 (because 0 is the "null" 
 | 
						|
    // value. In version 5, we made this consistent.
 | 
						|
    hasInconsistentBBSlotNums = true;
 | 
						|
 | 
						|
    // In version 5, the types SByte and UByte were encoded as vbr_uint so that
 | 
						|
    // signed values > 63 and unsigned values >127 would be encoded as two
 | 
						|
    // bytes. In version 5, they are encoded directly in a single byte.
 | 
						|
    hasVBRByteTypes = true;
 | 
						|
 | 
						|
    // In version 5, modules begin with a "Module Block" which encodes a 4-byte
 | 
						|
    // integer value 0x01 to identify the module block. This is unnecessary and
 | 
						|
    // removed in version 5.
 | 
						|
    hasUnnecessaryModuleBlockId = true;
 | 
						|
 | 
						|
  default:
 | 
						|
    error("Unknown bytecode version number: " + itostr(RevisionNum));
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasNoEndianness) Endianness  = Module::AnyEndianness;
 | 
						|
  if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
 | 
						|
 | 
						|
  TheModule->setEndianness(Endianness);
 | 
						|
  TheModule->setPointerSize(PointerSize);
 | 
						|
 | 
						|
  if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a whole module.
 | 
						|
void BytecodeReader::ParseModule() {
 | 
						|
  unsigned Type, Size;
 | 
						|
 | 
						|
  FunctionSignatureList.clear(); // Just in case...
 | 
						|
 | 
						|
  // Read into instance variables...
 | 
						|
  ParseVersionInfo();
 | 
						|
  align32();
 | 
						|
 | 
						|
  bool SeenModuleGlobalInfo = false;
 | 
						|
  bool SeenGlobalTypePlane = false;
 | 
						|
  BufPtr MyEnd = BlockEnd;
 | 
						|
  while (At < MyEnd) {
 | 
						|
    BufPtr OldAt = At;
 | 
						|
    read_block(Type, Size);
 | 
						|
 | 
						|
    switch (Type) {
 | 
						|
 | 
						|
    case BytecodeFormat::GlobalTypePlaneBlockID:
 | 
						|
      if (SeenGlobalTypePlane)
 | 
						|
        error("Two GlobalTypePlane Blocks Encountered!");
 | 
						|
 | 
						|
      if (Size > 0)
 | 
						|
        ParseGlobalTypes();
 | 
						|
      SeenGlobalTypePlane = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::ModuleGlobalInfoBlockID: 
 | 
						|
      if (SeenModuleGlobalInfo)
 | 
						|
        error("Two ModuleGlobalInfo Blocks Encountered!");
 | 
						|
      ParseModuleGlobalInfo();
 | 
						|
      SeenModuleGlobalInfo = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::ConstantPoolBlockID:
 | 
						|
      ParseConstantPool(ModuleValues, ModuleTypes,false);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::FunctionBlockID:
 | 
						|
      ParseFunctionLazily();
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::SymbolTableBlockID:
 | 
						|
      ParseSymbolTable(0, &TheModule->getSymbolTable());
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      At += Size;
 | 
						|
      if (OldAt > At) {
 | 
						|
        error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    BlockEnd = MyEnd;
 | 
						|
    align32();
 | 
						|
  }
 | 
						|
 | 
						|
  // After the module constant pool has been read, we can safely initialize
 | 
						|
  // global variables...
 | 
						|
  while (!GlobalInits.empty()) {
 | 
						|
    GlobalVariable *GV = GlobalInits.back().first;
 | 
						|
    unsigned Slot = GlobalInits.back().second;
 | 
						|
    GlobalInits.pop_back();
 | 
						|
 | 
						|
    // Look up the initializer value...
 | 
						|
    // FIXME: Preserve this type ID!
 | 
						|
 | 
						|
    const llvm::PointerType* GVType = GV->getType();
 | 
						|
    unsigned TypeSlot = getTypeSlot(GVType->getElementType());
 | 
						|
    if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
 | 
						|
      if (GV->hasInitializer()) 
 | 
						|
        error("Global *already* has an initializer?!");
 | 
						|
      if (Handler) Handler->handleGlobalInitializer(GV,CV);
 | 
						|
      GV->setInitializer(CV);
 | 
						|
    } else
 | 
						|
      error("Cannot find initializer value.");
 | 
						|
  }
 | 
						|
 | 
						|
  /// Make sure we pulled them all out. If we didn't then there's a declaration
 | 
						|
  /// but a missing body. That's not allowed.
 | 
						|
  if (!FunctionSignatureList.empty())
 | 
						|
    error("Function declared, but bytecode stream ended before definition");
 | 
						|
}
 | 
						|
 | 
						|
/// This function handles allocation of the buffer used for decompression of
 | 
						|
/// compressed bytecode files. It is called by Compressor::decompress which is
 | 
						|
/// called by BytecodeReader::ParseBytecode. 
 | 
						|
static unsigned GetDecompressionBuffer(char*&buff, unsigned& sz, void* ctxt){
 | 
						|
  // Case the context variable to our BufferInfo
 | 
						|
  BytecodeReader::BufferInfo* bi = 
 | 
						|
    reinterpret_cast<BytecodeReader::BufferInfo*>(ctxt);
 | 
						|
 | 
						|
  // Compute the new, doubled, size of the block
 | 
						|
  unsigned new_size = bi->size * 2;
 | 
						|
 | 
						|
  // Extend or allocate the block (realloc(0,n) == malloc(n))
 | 
						|
  char* new_buff = (char*) ::realloc(bi->buff, new_size);
 | 
						|
 | 
						|
  // Figure out what to return to the Compressor. If this is the first call,
 | 
						|
  // then bi->buff will be null. In this case we want to return the entire
 | 
						|
  // buffer because there was no previous allocation.  Otherwise, when the
 | 
						|
  // buffer is reallocated, we save the new base pointer in the BufferInfo.buff
 | 
						|
  // field but return the address of only the extension, mid-way through the
 | 
						|
  // buffer (since its size was doubled). Furthermore, the sz result must be
 | 
						|
  // 1/2 the total size of the buffer.
 | 
						|
  if (bi->buff == 0 ) {
 | 
						|
    buff = bi->buff = new_buff;
 | 
						|
    sz = new_size;
 | 
						|
  } else {
 | 
						|
    bi->buff = new_buff;
 | 
						|
    buff = new_buff + bi->size;
 | 
						|
    sz = bi->size;
 | 
						|
  }
 | 
						|
 | 
						|
  // Retain the size of the allocated block
 | 
						|
  bi->size = new_size;
 | 
						|
 | 
						|
  // Make sure we fail (return 1) if we didn't get any memory.
 | 
						|
  return (bi->buff == 0 ? 1 : 0);
 | 
						|
}
 | 
						|
 | 
						|
/// This function completely parses a bytecode buffer given by the \p Buf
 | 
						|
/// and \p Length parameters.
 | 
						|
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length, 
 | 
						|
                                   const std::string &ModuleID) {
 | 
						|
 | 
						|
  try {
 | 
						|
    At = MemStart = BlockStart = Buf;
 | 
						|
    MemEnd = BlockEnd = Buf + Length;
 | 
						|
 | 
						|
    // Create the module
 | 
						|
    TheModule = new Module(ModuleID);
 | 
						|
 | 
						|
    if (Handler) Handler->handleStart(TheModule, Length);
 | 
						|
 | 
						|
    // Read the four bytes of the signature.
 | 
						|
    unsigned Sig = read_uint();
 | 
						|
 | 
						|
    // If this is a compressed file
 | 
						|
    if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
 | 
						|
 | 
						|
      // Compute the initial length of the uncompression buffer. Note that this
 | 
						|
      // is twice the length of the compressed buffer and will be doubled again
 | 
						|
      // in GetDecompressionBuffer for an initial allocation of 4xLength.  This 
 | 
						|
      // calculation is based on the typical compression ratio of bzip2 on LLVM 
 | 
						|
      // bytecode files which typically ranges in the 50%-75% range.   Since we 
 | 
						|
      // tyipcally get at least 50%, doubling is insufficient. By using a 4x 
 | 
						|
      // multiplier on the first allocation, we minimize the impact of having to
 | 
						|
      // copy the buffer on reallocation.
 | 
						|
      bi.size = Length * 2;
 | 
						|
 | 
						|
      // Invoke the decompression of the bytecode. Note that we have to skip the
 | 
						|
      // file's magic number which is not part of the compressed block. Hence,
 | 
						|
      // the Buf+4 and Length-4.
 | 
						|
      unsigned decompressedLength = Compressor::decompress((char*)Buf+4,Length-4,
 | 
						|
        GetDecompressionBuffer, (void*) &bi);
 | 
						|
 | 
						|
      // We must adjust the buffer pointers used by the bytecode reader to point
 | 
						|
      // into the new decompressed block. After decompression, the BufferInfo
 | 
						|
      // structure (member bi), will point to a contiguous memory area that has
 | 
						|
      // the decompressed data.
 | 
						|
      At = MemStart = BlockStart = Buf = (BufPtr) bi.buff;
 | 
						|
      MemEnd = BlockEnd = Buf + decompressedLength;
 | 
						|
 | 
						|
    // else if this isn't a regular (uncompressed) bytecode file, then its
 | 
						|
    // and error, generate that now.
 | 
						|
    } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
 | 
						|
      error("Invalid bytecode signature: " + utohexstr(Sig));
 | 
						|
    }
 | 
						|
 | 
						|
    // Tell the handler we're starting a module
 | 
						|
    if (Handler) Handler->handleModuleBegin(ModuleID);
 | 
						|
 | 
						|
    // Get the module block and size and verify. This is handled specially
 | 
						|
    // because the module block/size is always written in long format. Other
 | 
						|
    // blocks are written in short format so the read_block method is used.
 | 
						|
    unsigned Type, Size;
 | 
						|
    Type = read_uint();
 | 
						|
    Size = read_uint();
 | 
						|
    if (Type != BytecodeFormat::ModuleBlockID) {
 | 
						|
      error("Expected Module Block! Type:" + utostr(Type) + ", Size:" 
 | 
						|
            + utostr(Size));
 | 
						|
    }
 | 
						|
 | 
						|
    // It looks like the darwin ranlib program is broken, and adds trailing
 | 
						|
    // garbage to the end of some bytecode files.  This hack allows the bc
 | 
						|
    // reader to ignore trailing garbage on bytecode files.
 | 
						|
    if (At + Size < MemEnd)
 | 
						|
      MemEnd = BlockEnd = At+Size;
 | 
						|
 | 
						|
    if (At + Size != MemEnd)
 | 
						|
      error("Invalid Top Level Block Length! Type:" + utostr(Type)
 | 
						|
            + ", Size:" + utostr(Size));
 | 
						|
 | 
						|
    // Parse the module contents
 | 
						|
    this->ParseModule();
 | 
						|
 | 
						|
    // Check for missing functions
 | 
						|
    if (hasFunctions())
 | 
						|
      error("Function expected, but bytecode stream ended!");
 | 
						|
 | 
						|
    // Tell the handler we're done with the module
 | 
						|
    if (Handler) 
 | 
						|
      Handler->handleModuleEnd(ModuleID);
 | 
						|
 | 
						|
    // Tell the handler we're finished the parse
 | 
						|
    if (Handler) Handler->handleFinish();
 | 
						|
 | 
						|
  } catch (std::string& errstr) {
 | 
						|
    if (Handler) Handler->handleError(errstr);
 | 
						|
    freeState();
 | 
						|
    delete TheModule;
 | 
						|
    TheModule = 0;
 | 
						|
    if (bi.buff != 0 )
 | 
						|
      ::free(bi.buff);
 | 
						|
    throw;
 | 
						|
  } catch (...) {
 | 
						|
    std::string msg("Unknown Exception Occurred");
 | 
						|
    if (Handler) Handler->handleError(msg);
 | 
						|
    freeState();
 | 
						|
    delete TheModule;
 | 
						|
    TheModule = 0;
 | 
						|
    if (bi.buff != 0 )
 | 
						|
      ::free(bi.buff);
 | 
						|
    throw msg;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//=== Default Implementations of Handler Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
BytecodeHandler::~BytecodeHandler() {}
 | 
						|
 | 
						|
// vim: sw=2
 |