mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	By default, store all local variables in dynamic alloca instead of static one. It reduces the stack space usage in use-after-return mode (dynamic alloca will not be called if the local variables are stored in a fake stack), and improves the debug info quality for local variables (they will not be described relatively to %rbp/%rsp, which are assumed to be clobbered by function calls). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228336 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2026 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2026 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of AddressSanitizer, an address sanity checker.
 | |
| // Details of the algorithm:
 | |
| //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/MC/MCSectionMachO.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Endian.h"
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ModuleUtils.h"
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| #include <system_error>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "asan"
 | |
| 
 | |
| static const uint64_t kDefaultShadowScale = 3;
 | |
| static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
 | |
| static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
 | |
| static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
 | |
| static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
 | |
| static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
 | |
| static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
 | |
| static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
 | |
| static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
 | |
| static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
 | |
| static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
 | |
| static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
 | |
| 
 | |
| static const size_t kMinStackMallocSize = 1 << 6;  // 64B
 | |
| static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
 | |
| static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
 | |
| static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
 | |
| 
 | |
| static const char *const kAsanModuleCtorName = "asan.module_ctor";
 | |
| static const char *const kAsanModuleDtorName = "asan.module_dtor";
 | |
| static const uint64_t    kAsanCtorAndDtorPriority = 1;
 | |
| static const char *const kAsanReportErrorTemplate = "__asan_report_";
 | |
| static const char *const kAsanReportLoadN = "__asan_report_load_n";
 | |
| static const char *const kAsanReportStoreN = "__asan_report_store_n";
 | |
| static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
 | |
| static const char *const kAsanUnregisterGlobalsName =
 | |
|     "__asan_unregister_globals";
 | |
| static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
 | |
| static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
 | |
| static const char *const kAsanInitName = "__asan_init_v5";
 | |
| static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
 | |
| static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
 | |
| static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
 | |
| static const int         kMaxAsanStackMallocSizeClass = 10;
 | |
| static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
 | |
| static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
 | |
| static const char *const kAsanGenPrefix = "__asan_gen_";
 | |
| static const char *const kSanCovGenPrefix = "__sancov_gen_";
 | |
| static const char *const kAsanPoisonStackMemoryName =
 | |
|     "__asan_poison_stack_memory";
 | |
| static const char *const kAsanUnpoisonStackMemoryName =
 | |
|     "__asan_unpoison_stack_memory";
 | |
| 
 | |
| static const char *const kAsanOptionDetectUAR =
 | |
|     "__asan_option_detect_stack_use_after_return";
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static const int kAsanStackAfterReturnMagic = 0xf5;
 | |
| #endif
 | |
| 
 | |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | |
| static const size_t kNumberOfAccessSizes = 5;
 | |
| 
 | |
| static const unsigned kAllocaRzSize = 32;
 | |
| static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU;
 | |
| static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU;
 | |
| static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U;
 | |
| static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU;
 | |
| 
 | |
| // Command-line flags.
 | |
| 
 | |
| // This flag may need to be replaced with -f[no-]asan-reads.
 | |
| static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
 | |
|        cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
 | |
|        cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
 | |
|        cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
 | |
|        cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
 | |
|        cl::desc("use instrumentation with slow path for all accesses"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| // This flag limits the number of instructions to be instrumented
 | |
| // in any given BB. Normally, this should be set to unlimited (INT_MAX),
 | |
| // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
 | |
| // set it to 10000.
 | |
| static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
 | |
|        cl::init(10000),
 | |
|        cl::desc("maximal number of instructions to instrument in any given BB"),
 | |
|        cl::Hidden);
 | |
| // This flag may need to be replaced with -f[no]asan-stack.
 | |
| static cl::opt<bool> ClStack("asan-stack",
 | |
|        cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
 | |
|        cl::desc("Check return-after-free"), cl::Hidden, cl::init(true));
 | |
| // This flag may need to be replaced with -f[no]asan-globals.
 | |
| static cl::opt<bool> ClGlobals("asan-globals",
 | |
|        cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInitializers("asan-initialization-order",
 | |
|        cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair",
 | |
|        cl::desc("Instrument <, <=, >, >=, - with pointer operands"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| static cl::opt<unsigned> ClRealignStack("asan-realign-stack",
 | |
|        cl::desc("Realign stack to the value of this flag (power of two)"),
 | |
|        cl::Hidden, cl::init(32));
 | |
| static cl::opt<int> ClInstrumentationWithCallsThreshold(
 | |
|     "asan-instrumentation-with-call-threshold",
 | |
|        cl::desc("If the function being instrumented contains more than "
 | |
|                 "this number of memory accesses, use callbacks instead of "
 | |
|                 "inline checks (-1 means never use callbacks)."),
 | |
|        cl::Hidden, cl::init(7000));
 | |
| static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
 | |
|        "asan-memory-access-callback-prefix",
 | |
|        cl::desc("Prefix for memory access callbacks"), cl::Hidden,
 | |
|        cl::init("__asan_"));
 | |
| static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
 | |
|        cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(false));
 | |
| 
 | |
| // These flags allow to change the shadow mapping.
 | |
| // The shadow mapping looks like
 | |
| //    Shadow = (Mem >> scale) + (1 << offset_log)
 | |
| static cl::opt<int> ClMappingScale("asan-mapping-scale",
 | |
|        cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
 | |
| 
 | |
| // Optimization flags. Not user visible, used mostly for testing
 | |
| // and benchmarking the tool.
 | |
| static cl::opt<bool> ClOpt("asan-opt",
 | |
|        cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
 | |
|        cl::desc("Instrument the same temp just once"), cl::Hidden,
 | |
|        cl::init(true));
 | |
| static cl::opt<bool> ClOptGlobals("asan-opt-globals",
 | |
|        cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
 | |
|        cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| 
 | |
| static cl::opt<bool> ClDynamicAllocaStack(
 | |
|     "asan-stack-dynamic-alloca",
 | |
|     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
 | |
|     cl::init(true));
 | |
| 
 | |
| // Debug flags.
 | |
| static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
 | |
|                             cl::init(0));
 | |
| static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
 | |
|                                  cl::Hidden, cl::init(0));
 | |
| static cl::opt<std::string> ClDebugFunc("asan-debug-func",
 | |
|                                         cl::Hidden, cl::desc("Debug func"));
 | |
| static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
 | |
|                                cl::Hidden, cl::init(-1));
 | |
| static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
 | |
|                                cl::Hidden, cl::init(-1));
 | |
| 
 | |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | |
| STATISTIC(NumInstrumentedDynamicAllocas,
 | |
|           "Number of instrumented dynamic allocas");
 | |
| STATISTIC(NumOptimizedAccessesToGlobalArray,
 | |
|           "Number of optimized accesses to global arrays");
 | |
| STATISTIC(NumOptimizedAccessesToGlobalVar,
 | |
|           "Number of optimized accesses to global vars");
 | |
| 
 | |
| namespace {
 | |
| /// Frontend-provided metadata for source location.
 | |
| struct LocationMetadata {
 | |
|   StringRef Filename;
 | |
|   int LineNo;
 | |
|   int ColumnNo;
 | |
| 
 | |
|   LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
 | |
| 
 | |
|   bool empty() const { return Filename.empty(); }
 | |
| 
 | |
|   void parse(MDNode *MDN) {
 | |
|     assert(MDN->getNumOperands() == 3);
 | |
|     MDString *MDFilename = cast<MDString>(MDN->getOperand(0));
 | |
|     Filename = MDFilename->getString();
 | |
|     LineNo =
 | |
|         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
 | |
|     ColumnNo =
 | |
|         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Frontend-provided metadata for global variables.
 | |
| class GlobalsMetadata {
 | |
|  public:
 | |
|   struct Entry {
 | |
|     Entry()
 | |
|         : SourceLoc(), Name(), IsDynInit(false),
 | |
|           IsBlacklisted(false) {}
 | |
|     LocationMetadata SourceLoc;
 | |
|     StringRef Name;
 | |
|     bool IsDynInit;
 | |
|     bool IsBlacklisted;
 | |
|   };
 | |
| 
 | |
|   GlobalsMetadata() : inited_(false) {}
 | |
| 
 | |
|   void init(Module& M) {
 | |
|     assert(!inited_);
 | |
|     inited_ = true;
 | |
|     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
 | |
|     if (!Globals)
 | |
|       return;
 | |
|     for (auto MDN : Globals->operands()) {
 | |
|       // Metadata node contains the global and the fields of "Entry".
 | |
|       assert(MDN->getNumOperands() == 5);
 | |
|       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
 | |
|       // The optimizer may optimize away a global entirely.
 | |
|       if (!GV)
 | |
|         continue;
 | |
|       // We can already have an entry for GV if it was merged with another
 | |
|       // global.
 | |
|       Entry &E = Entries[GV];
 | |
|       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
 | |
|         E.SourceLoc.parse(Loc);
 | |
|       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
 | |
|         E.Name = Name->getString();
 | |
|       ConstantInt *IsDynInit =
 | |
|           mdconst::extract<ConstantInt>(MDN->getOperand(3));
 | |
|       E.IsDynInit |= IsDynInit->isOne();
 | |
|       ConstantInt *IsBlacklisted =
 | |
|           mdconst::extract<ConstantInt>(MDN->getOperand(4));
 | |
|       E.IsBlacklisted |= IsBlacklisted->isOne();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Returns metadata entry for a given global.
 | |
|   Entry get(GlobalVariable *G) const {
 | |
|     auto Pos = Entries.find(G);
 | |
|     return (Pos != Entries.end()) ? Pos->second : Entry();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool inited_;
 | |
|   DenseMap<GlobalVariable*, Entry> Entries;
 | |
| };
 | |
| 
 | |
| /// This struct defines the shadow mapping using the rule:
 | |
| ///   shadow = (mem >> Scale) ADD-or-OR Offset.
 | |
| struct ShadowMapping {
 | |
|   int Scale;
 | |
|   uint64_t Offset;
 | |
|   bool OrShadowOffset;
 | |
| };
 | |
| 
 | |
| static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize) {
 | |
|   bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
 | |
|   bool IsIOS = TargetTriple.isiOS();
 | |
|   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
 | |
|   bool IsLinux = TargetTriple.isOSLinux();
 | |
|   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
 | |
|                  TargetTriple.getArch() == llvm::Triple::ppc64le;
 | |
|   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
 | |
|   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
 | |
|                   TargetTriple.getArch() == llvm::Triple::mipsel;
 | |
|   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
 | |
|                   TargetTriple.getArch() == llvm::Triple::mips64el;
 | |
|   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
 | |
|   bool IsWindows = TargetTriple.isOSWindows();
 | |
| 
 | |
|   ShadowMapping Mapping;
 | |
| 
 | |
|   if (LongSize == 32) {
 | |
|     if (IsAndroid)
 | |
|       Mapping.Offset = 0;
 | |
|     else if (IsMIPS32)
 | |
|       Mapping.Offset = kMIPS32_ShadowOffset32;
 | |
|     else if (IsFreeBSD)
 | |
|       Mapping.Offset = kFreeBSD_ShadowOffset32;
 | |
|     else if (IsIOS)
 | |
|       Mapping.Offset = kIOSShadowOffset32;
 | |
|     else if (IsWindows)
 | |
|       Mapping.Offset = kWindowsShadowOffset32;
 | |
|     else
 | |
|       Mapping.Offset = kDefaultShadowOffset32;
 | |
|   } else {  // LongSize == 64
 | |
|     if (IsPPC64)
 | |
|       Mapping.Offset = kPPC64_ShadowOffset64;
 | |
|     else if (IsFreeBSD)
 | |
|       Mapping.Offset = kFreeBSD_ShadowOffset64;
 | |
|     else if (IsLinux && IsX86_64)
 | |
|       Mapping.Offset = kSmallX86_64ShadowOffset;
 | |
|     else if (IsMIPS64)
 | |
|       Mapping.Offset = kMIPS64_ShadowOffset64;
 | |
|     else if (IsAArch64)
 | |
|       Mapping.Offset = kAArch64_ShadowOffset64;
 | |
|     else
 | |
|       Mapping.Offset = kDefaultShadowOffset64;
 | |
|   }
 | |
| 
 | |
|   Mapping.Scale = kDefaultShadowScale;
 | |
|   if (ClMappingScale) {
 | |
|     Mapping.Scale = ClMappingScale;
 | |
|   }
 | |
| 
 | |
|   // OR-ing shadow offset if more efficient (at least on x86) if the offset
 | |
|   // is a power of two, but on ppc64 we have to use add since the shadow
 | |
|   // offset is not necessary 1/8-th of the address space.
 | |
|   Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1));
 | |
| 
 | |
|   return Mapping;
 | |
| }
 | |
| 
 | |
| static size_t RedzoneSizeForScale(int MappingScale) {
 | |
|   // Redzone used for stack and globals is at least 32 bytes.
 | |
|   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
 | |
|   return std::max(32U, 1U << MappingScale);
 | |
| }
 | |
| 
 | |
| /// AddressSanitizer: instrument the code in module to find memory bugs.
 | |
| struct AddressSanitizer : public FunctionPass {
 | |
|   AddressSanitizer() : FunctionPass(ID) {
 | |
|     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   const char *getPassName() const override {
 | |
|     return "AddressSanitizerFunctionPass";
 | |
|   }
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   }
 | |
|   void instrumentMop(Instruction *I, bool UseCalls);
 | |
|   void instrumentPointerComparisonOrSubtraction(Instruction *I);
 | |
|   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
 | |
|                          Value *Addr, uint32_t TypeSize, bool IsWrite,
 | |
|                          Value *SizeArgument, bool UseCalls);
 | |
|   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | |
|                            Value *ShadowValue, uint32_t TypeSize);
 | |
|   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
 | |
|                                  bool IsWrite, size_t AccessSizeIndex,
 | |
|                                  Value *SizeArgument);
 | |
|   void instrumentMemIntrinsic(MemIntrinsic *MI);
 | |
|   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
 | |
|   bool doInitialization(Module &M) override;
 | |
|   static char ID;  // Pass identification, replacement for typeid
 | |
| 
 | |
|   DominatorTree &getDominatorTree() const { return *DT; }
 | |
| 
 | |
|  private:
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool LooksLikeCodeInBug11395(Instruction *I);
 | |
|   bool GlobalIsLinkerInitialized(GlobalVariable *G);
 | |
| 
 | |
|   LLVMContext *C;
 | |
|   const DataLayout *DL;
 | |
|   Triple TargetTriple;
 | |
|   int LongSize;
 | |
|   Type *IntptrTy;
 | |
|   ShadowMapping Mapping;
 | |
|   DominatorTree *DT;
 | |
|   Function *AsanCtorFunction;
 | |
|   Function *AsanInitFunction;
 | |
|   Function *AsanHandleNoReturnFunc;
 | |
|   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
 | |
|   // This array is indexed by AccessIsWrite and log2(AccessSize).
 | |
|   Function *AsanErrorCallback[2][kNumberOfAccessSizes];
 | |
|   Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes];
 | |
|   // This array is indexed by AccessIsWrite.
 | |
|   Function *AsanErrorCallbackSized[2],
 | |
|            *AsanMemoryAccessCallbackSized[2];
 | |
|   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
 | |
|   InlineAsm *EmptyAsm;
 | |
|   GlobalsMetadata GlobalsMD;
 | |
| 
 | |
|   friend struct FunctionStackPoisoner;
 | |
| };
 | |
| 
 | |
| class AddressSanitizerModule : public ModulePass {
 | |
|  public:
 | |
|   AddressSanitizerModule() : ModulePass(ID) {}
 | |
|   bool runOnModule(Module &M) override;
 | |
|   static char ID;  // Pass identification, replacement for typeid
 | |
|   const char *getPassName() const override {
 | |
|     return "AddressSanitizerModule";
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
 | |
|   bool ShouldInstrumentGlobal(GlobalVariable *G);
 | |
|   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
 | |
|   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
 | |
|   size_t MinRedzoneSizeForGlobal() const {
 | |
|     return RedzoneSizeForScale(Mapping.Scale);
 | |
|   }
 | |
| 
 | |
|   GlobalsMetadata GlobalsMD;
 | |
|   Type *IntptrTy;
 | |
|   LLVMContext *C;
 | |
|   const DataLayout *DL;
 | |
|   Triple TargetTriple;
 | |
|   ShadowMapping Mapping;
 | |
|   Function *AsanPoisonGlobals;
 | |
|   Function *AsanUnpoisonGlobals;
 | |
|   Function *AsanRegisterGlobals;
 | |
|   Function *AsanUnregisterGlobals;
 | |
| };
 | |
| 
 | |
| // Stack poisoning does not play well with exception handling.
 | |
| // When an exception is thrown, we essentially bypass the code
 | |
| // that unpoisones the stack. This is why the run-time library has
 | |
| // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
 | |
| // stack in the interceptor. This however does not work inside the
 | |
| // actual function which catches the exception. Most likely because the
 | |
| // compiler hoists the load of the shadow value somewhere too high.
 | |
| // This causes asan to report a non-existing bug on 453.povray.
 | |
| // It sounds like an LLVM bug.
 | |
| struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
 | |
|   Function &F;
 | |
|   AddressSanitizer &ASan;
 | |
|   DIBuilder DIB;
 | |
|   LLVMContext *C;
 | |
|   Type *IntptrTy;
 | |
|   Type *IntptrPtrTy;
 | |
|   ShadowMapping Mapping;
 | |
| 
 | |
|   SmallVector<AllocaInst*, 16> AllocaVec;
 | |
|   SmallVector<Instruction*, 8> RetVec;
 | |
|   unsigned StackAlignment;
 | |
| 
 | |
|   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
 | |
|            *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
 | |
|   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
 | |
| 
 | |
|   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
 | |
|   struct AllocaPoisonCall {
 | |
|     IntrinsicInst *InsBefore;
 | |
|     AllocaInst *AI;
 | |
|     uint64_t Size;
 | |
|     bool DoPoison;
 | |
|   };
 | |
|   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
 | |
| 
 | |
|   // Stores left and right redzone shadow addresses for dynamic alloca
 | |
|   // and pointer to alloca instruction itself.
 | |
|   // LeftRzAddr is a shadow address for alloca left redzone.
 | |
|   // RightRzAddr is a shadow address for alloca right redzone.
 | |
|   struct DynamicAllocaCall {
 | |
|     AllocaInst *AI;
 | |
|     Value *LeftRzAddr;
 | |
|     Value *RightRzAddr;
 | |
|     bool Poison;
 | |
|     explicit DynamicAllocaCall(AllocaInst *AI,
 | |
|                       Value *LeftRzAddr = nullptr,
 | |
|                       Value *RightRzAddr = nullptr)
 | |
|       : AI(AI), LeftRzAddr(LeftRzAddr), RightRzAddr(RightRzAddr), Poison(true)
 | |
|     {}
 | |
|   };
 | |
|   SmallVector<DynamicAllocaCall, 1> DynamicAllocaVec;
 | |
| 
 | |
|   // Maps Value to an AllocaInst from which the Value is originated.
 | |
|   typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
 | |
|   AllocaForValueMapTy AllocaForValue;
 | |
| 
 | |
|   bool HasNonEmptyInlineAsm;
 | |
|   std::unique_ptr<CallInst> EmptyInlineAsm;
 | |
| 
 | |
|   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
 | |
|       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
 | |
|         C(ASan.C), IntptrTy(ASan.IntptrTy),
 | |
|         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
 | |
|         StackAlignment(1 << Mapping.Scale), HasNonEmptyInlineAsm(false),
 | |
|         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
 | |
| 
 | |
|   bool runOnFunction() {
 | |
|     if (!ClStack) return false;
 | |
|     // Collect alloca, ret, lifetime instructions etc.
 | |
|     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
 | |
|       visit(*BB);
 | |
| 
 | |
|     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
 | |
| 
 | |
|     initializeCallbacks(*F.getParent());
 | |
| 
 | |
|     poisonStack();
 | |
| 
 | |
|     if (ClDebugStack) {
 | |
|       DEBUG(dbgs() << F);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Finds all Alloca instructions and puts
 | |
|   // poisoned red zones around all of them.
 | |
|   // Then unpoison everything back before the function returns.
 | |
|   void poisonStack();
 | |
| 
 | |
|   // ----------------------- Visitors.
 | |
|   /// \brief Collect all Ret instructions.
 | |
|   void visitReturnInst(ReturnInst &RI) {
 | |
|     RetVec.push_back(&RI);
 | |
|   }
 | |
| 
 | |
|   // Unpoison dynamic allocas redzones.
 | |
|   void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) {
 | |
|     if (!AllocaCall.Poison)
 | |
|       return;
 | |
|     for (auto Ret : RetVec) {
 | |
|       IRBuilder<> IRBRet(Ret);
 | |
|       PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty());
 | |
|       Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty());
 | |
|       Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr,
 | |
|                                               ConstantInt::get(IntptrTy, 4));
 | |
|       IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr,
 | |
|                                                      Int32PtrTy));
 | |
|       IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(PartialRzAddr,
 | |
|                                                      Int32PtrTy));
 | |
|       IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr,
 | |
|                                                      Int32PtrTy));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Right shift for BigEndian and left shift for LittleEndian.
 | |
|   Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) {
 | |
|     return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift)
 | |
|                                      : IRB.CreateLShr(Val, Shift);
 | |
|   }
 | |
| 
 | |
|   // Compute PartialRzMagic for dynamic alloca call. Since we don't know the
 | |
|   // size of requested memory until runtime, we should compute it dynamically.
 | |
|   // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic,
 | |
|   // otherwise it would contain the value that we will use to poison the
 | |
|   // partial redzone for alloca call.
 | |
|   Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB);
 | |
| 
 | |
|   // Deploy and poison redzones around dynamic alloca call. To do this, we
 | |
|   // should replace this call with another one with changed parameters and
 | |
|   // replace all its uses with new address, so
 | |
|   //   addr = alloca type, old_size, align
 | |
|   // is replaced by
 | |
|   //   new_size = (old_size + additional_size) * sizeof(type)
 | |
|   //   tmp = alloca i8, new_size, max(align, 32)
 | |
|   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
 | |
|   // Additional_size is added to make new memory allocation contain not only
 | |
|   // requested memory, but also left, partial and right redzones.
 | |
|   // After that, we should poison redzones:
 | |
|   // (1) Left redzone with kAsanAllocaLeftMagic.
 | |
|   // (2) Partial redzone with the value, computed in runtime by
 | |
|   //     computePartialRzMagic function.
 | |
|   // (3) Right redzone with kAsanAllocaRightMagic.
 | |
|   void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall);
 | |
| 
 | |
|   /// \brief Collect Alloca instructions we want (and can) handle.
 | |
|   void visitAllocaInst(AllocaInst &AI) {
 | |
|     if (!isInterestingAlloca(AI)) return;
 | |
| 
 | |
|     StackAlignment = std::max(StackAlignment, AI.getAlignment());
 | |
|     if (isDynamicAlloca(AI))
 | |
|       DynamicAllocaVec.push_back(DynamicAllocaCall(&AI));
 | |
|     else
 | |
|       AllocaVec.push_back(&AI);
 | |
|   }
 | |
| 
 | |
|   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
 | |
|   /// errors.
 | |
|   void visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     if (!ClCheckLifetime) return;
 | |
|     Intrinsic::ID ID = II.getIntrinsicID();
 | |
|     if (ID != Intrinsic::lifetime_start &&
 | |
|         ID != Intrinsic::lifetime_end)
 | |
|       return;
 | |
|     // Found lifetime intrinsic, add ASan instrumentation if necessary.
 | |
|     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
 | |
|     // If size argument is undefined, don't do anything.
 | |
|     if (Size->isMinusOne()) return;
 | |
|     // Check that size doesn't saturate uint64_t and can
 | |
|     // be stored in IntptrTy.
 | |
|     const uint64_t SizeValue = Size->getValue().getLimitedValue();
 | |
|     if (SizeValue == ~0ULL ||
 | |
|         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
 | |
|       return;
 | |
|     // Find alloca instruction that corresponds to llvm.lifetime argument.
 | |
|     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
 | |
|     if (!AI) return;
 | |
|     bool DoPoison = (ID == Intrinsic::lifetime_end);
 | |
|     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
 | |
|     AllocaPoisonCallVec.push_back(APC);
 | |
|   }
 | |
| 
 | |
|   void visitCallInst(CallInst &CI) {
 | |
|     HasNonEmptyInlineAsm |=
 | |
|         CI.isInlineAsm() && !CI.isIdenticalTo(EmptyInlineAsm.get());
 | |
|   }
 | |
| 
 | |
|   // ---------------------- Helpers.
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool doesDominateAllExits(const Instruction *I) const {
 | |
|     for (auto Ret : RetVec) {
 | |
|       if (!ASan.getDominatorTree().dominates(I, Ret))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isDynamicAlloca(AllocaInst &AI) const {
 | |
|     return AI.isArrayAllocation() || !AI.isStaticAlloca();
 | |
|   }
 | |
| 
 | |
|   // Check if we want (and can) handle this alloca.
 | |
|   bool isInterestingAlloca(AllocaInst &AI) const {
 | |
|     return (AI.getAllocatedType()->isSized() &&
 | |
|             // alloca() may be called with 0 size, ignore it.
 | |
|             getAllocaSizeInBytes(&AI) > 0);
 | |
|   }
 | |
| 
 | |
|   uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
 | |
|     Type *Ty = AI->getAllocatedType();
 | |
|     uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty);
 | |
|     return SizeInBytes;
 | |
|   }
 | |
|   /// Finds alloca where the value comes from.
 | |
|   AllocaInst *findAllocaForValue(Value *V);
 | |
|   void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
 | |
|                       Value *ShadowBase, bool DoPoison);
 | |
|   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
 | |
| 
 | |
|   void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
 | |
|                                           int Size);
 | |
|   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
 | |
|                                bool Dynamic);
 | |
|   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
 | |
|                      Instruction *ThenTerm, Value *ValueIfFalse);
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| char AddressSanitizer::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(AddressSanitizer, "asan",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
 | |
|     false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(AddressSanitizer, "asan",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
 | |
|     false, false)
 | |
| FunctionPass *llvm::createAddressSanitizerFunctionPass() {
 | |
|   return new AddressSanitizer();
 | |
| }
 | |
| 
 | |
| char AddressSanitizerModule::ID = 0;
 | |
| INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
 | |
|     "ModulePass", false, false)
 | |
| ModulePass *llvm::createAddressSanitizerModulePass() {
 | |
|   return new AddressSanitizerModule();
 | |
| }
 | |
| 
 | |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
 | |
|   size_t Res = countTrailingZeros(TypeSize / 8);
 | |
|   assert(Res < kNumberOfAccessSizes);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // \brief Create a constant for Str so that we can pass it to the run-time lib.
 | |
| static GlobalVariable *createPrivateGlobalForString(
 | |
|     Module &M, StringRef Str, bool AllowMerging) {
 | |
|   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | |
|   // We use private linkage for module-local strings. If they can be merged
 | |
|   // with another one, we set the unnamed_addr attribute.
 | |
|   GlobalVariable *GV =
 | |
|       new GlobalVariable(M, StrConst->getType(), true,
 | |
|                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
 | |
|   if (AllowMerging)
 | |
|     GV->setUnnamedAddr(true);
 | |
|   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// \brief Create a global describing a source location.
 | |
| static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
 | |
|                                                        LocationMetadata MD) {
 | |
|   Constant *LocData[] = {
 | |
|       createPrivateGlobalForString(M, MD.Filename, true),
 | |
|       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
 | |
|       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
 | |
|   };
 | |
|   auto LocStruct = ConstantStruct::getAnon(LocData);
 | |
|   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
 | |
|                                GlobalValue::PrivateLinkage, LocStruct,
 | |
|                                kAsanGenPrefix);
 | |
|   GV->setUnnamedAddr(true);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
 | |
|   return G->getName().find(kAsanGenPrefix) == 0 ||
 | |
|          G->getName().find(kSanCovGenPrefix) == 0;
 | |
| }
 | |
| 
 | |
| Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
 | |
|   // Shadow >> scale
 | |
|   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
 | |
|   if (Mapping.Offset == 0)
 | |
|     return Shadow;
 | |
|   // (Shadow >> scale) | offset
 | |
|   if (Mapping.OrShadowOffset)
 | |
|     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
 | |
|   else
 | |
|     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
 | |
| }
 | |
| 
 | |
| // Instrument memset/memmove/memcpy
 | |
| void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
 | |
|   IRBuilder<> IRB(MI);
 | |
|   if (isa<MemTransferInst>(MI)) {
 | |
|     IRB.CreateCall3(
 | |
|         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
 | |
|         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | |
|         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
 | |
|         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
 | |
|   } else if (isa<MemSetInst>(MI)) {
 | |
|     IRB.CreateCall3(
 | |
|         AsanMemset,
 | |
|         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | |
|         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
 | |
|         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
 | |
|   }
 | |
|   MI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| // If I is an interesting memory access, return the PointerOperand
 | |
| // and set IsWrite/Alignment. Otherwise return nullptr.
 | |
| static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
 | |
|                                         unsigned *Alignment) {
 | |
|   // Skip memory accesses inserted by another instrumentation.
 | |
|   if (I->getMetadata("nosanitize"))
 | |
|     return nullptr;
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (!ClInstrumentReads) return nullptr;
 | |
|     *IsWrite = false;
 | |
|     *Alignment = LI->getAlignment();
 | |
|     return LI->getPointerOperand();
 | |
|   }
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (!ClInstrumentWrites) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *Alignment = SI->getAlignment();
 | |
|     return SI->getPointerOperand();
 | |
|   }
 | |
|   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | |
|     if (!ClInstrumentAtomics) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *Alignment = 0;
 | |
|     return RMW->getPointerOperand();
 | |
|   }
 | |
|   if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
 | |
|     if (!ClInstrumentAtomics) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *Alignment = 0;
 | |
|     return XCHG->getPointerOperand();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isPointerOperand(Value *V) {
 | |
|   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
 | |
| }
 | |
| 
 | |
| // This is a rough heuristic; it may cause both false positives and
 | |
| // false negatives. The proper implementation requires cooperation with
 | |
| // the frontend.
 | |
| static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
 | |
|   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
 | |
|     if (!Cmp->isRelational())
 | |
|       return false;
 | |
|   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|     if (BO->getOpcode() != Instruction::Sub)
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   if (!isPointerOperand(I->getOperand(0)) ||
 | |
|       !isPointerOperand(I->getOperand(1)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
 | |
|   // If a global variable does not have dynamic initialization we don't
 | |
|   // have to instrument it.  However, if a global does not have initializer
 | |
|   // at all, we assume it has dynamic initializer (in other TU).
 | |
|   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
 | |
| }
 | |
| 
 | |
| void
 | |
| AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
 | |
|   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
 | |
|   for (int i = 0; i < 2; i++) {
 | |
|     if (Param[i]->getType()->isPointerTy())
 | |
|       Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
 | |
|   }
 | |
|   IRB.CreateCall2(F, Param[0], Param[1]);
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) {
 | |
|   bool IsWrite = false;
 | |
|   unsigned Alignment = 0;
 | |
|   Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment);
 | |
|   assert(Addr);
 | |
|   if (ClOpt && ClOptGlobals) {
 | |
|     if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
 | |
|       // If initialization order checking is disabled, a simple access to a
 | |
|       // dynamically initialized global is always valid.
 | |
|       if (!ClInitializers || GlobalIsLinkerInitialized(G)) {
 | |
|         NumOptimizedAccessesToGlobalVar++;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
 | |
|     if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
 | |
|       if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
 | |
|         if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
 | |
|           NumOptimizedAccessesToGlobalArray++;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Type *OrigPtrTy = Addr->getType();
 | |
|   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
 | |
| 
 | |
|   assert(OrigTy->isSized());
 | |
|   uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
 | |
| 
 | |
|   assert((TypeSize % 8) == 0);
 | |
| 
 | |
|   if (IsWrite)
 | |
|     NumInstrumentedWrites++;
 | |
|   else
 | |
|     NumInstrumentedReads++;
 | |
| 
 | |
|   unsigned Granularity = 1 << Mapping.Scale;
 | |
|   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
 | |
|   // if the data is properly aligned.
 | |
|   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
 | |
|        TypeSize == 128) &&
 | |
|       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
 | |
|     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls);
 | |
|   // Instrument unusual size or unusual alignment.
 | |
|   // We can not do it with a single check, so we do 1-byte check for the first
 | |
|   // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
 | |
|   // to report the actual access size.
 | |
|   IRBuilder<> IRB(I);
 | |
|   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
 | |
|   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | |
|   if (UseCalls) {
 | |
|     IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size);
 | |
|   } else {
 | |
|     Value *LastByte = IRB.CreateIntToPtr(
 | |
|         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
 | |
|         OrigPtrTy);
 | |
|     instrumentAddress(I, I, Addr, 8, IsWrite, Size, false);
 | |
|     instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Validate the result of Module::getOrInsertFunction called for an interface
 | |
| // function of AddressSanitizer. If the instrumented module defines a function
 | |
| // with the same name, their prototypes must match, otherwise
 | |
| // getOrInsertFunction returns a bitcast.
 | |
| static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
 | |
|   if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
 | |
|   FuncOrBitcast->dump();
 | |
|   report_fatal_error("trying to redefine an AddressSanitizer "
 | |
|                      "interface function");
 | |
| }
 | |
| 
 | |
| Instruction *AddressSanitizer::generateCrashCode(
 | |
|     Instruction *InsertBefore, Value *Addr,
 | |
|     bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
 | |
|   IRBuilder<> IRB(InsertBefore);
 | |
|   CallInst *Call = SizeArgument
 | |
|     ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
 | |
|     : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
 | |
| 
 | |
|   // We don't do Call->setDoesNotReturn() because the BB already has
 | |
|   // UnreachableInst at the end.
 | |
|   // This EmptyAsm is required to avoid callback merge.
 | |
|   IRB.CreateCall(EmptyAsm);
 | |
|   return Call;
 | |
| }
 | |
| 
 | |
| Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | |
|                                             Value *ShadowValue,
 | |
|                                             uint32_t TypeSize) {
 | |
|   size_t Granularity = 1 << Mapping.Scale;
 | |
|   // Addr & (Granularity - 1)
 | |
|   Value *LastAccessedByte = IRB.CreateAnd(
 | |
|       AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
 | |
|   // (Addr & (Granularity - 1)) + size - 1
 | |
|   if (TypeSize / 8 > 1)
 | |
|     LastAccessedByte = IRB.CreateAdd(
 | |
|         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
 | |
|   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
 | |
|   LastAccessedByte = IRB.CreateIntCast(
 | |
|       LastAccessedByte, ShadowValue->getType(), false);
 | |
|   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
 | |
|   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
 | |
|                                          Instruction *InsertBefore, Value *Addr,
 | |
|                                          uint32_t TypeSize, bool IsWrite,
 | |
|                                          Value *SizeArgument, bool UseCalls) {
 | |
|   IRBuilder<> IRB(InsertBefore);
 | |
|   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | |
|   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
 | |
| 
 | |
|   if (UseCalls) {
 | |
|     IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex],
 | |
|                    AddrLong);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Type *ShadowTy  = IntegerType::get(
 | |
|       *C, std::max(8U, TypeSize >> Mapping.Scale));
 | |
|   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
 | |
|   Value *ShadowPtr = memToShadow(AddrLong, IRB);
 | |
|   Value *CmpVal = Constant::getNullValue(ShadowTy);
 | |
|   Value *ShadowValue = IRB.CreateLoad(
 | |
|       IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
 | |
| 
 | |
|   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
 | |
|   size_t Granularity = 1 << Mapping.Scale;
 | |
|   TerminatorInst *CrashTerm = nullptr;
 | |
| 
 | |
|   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
 | |
|     // We use branch weights for the slow path check, to indicate that the slow
 | |
|     // path is rarely taken. This seems to be the case for SPEC benchmarks.
 | |
|     TerminatorInst *CheckTerm =
 | |
|         SplitBlockAndInsertIfThen(Cmp, InsertBefore, false,
 | |
|             MDBuilder(*C).createBranchWeights(1, 100000));
 | |
|     assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
 | |
|     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
 | |
|     IRB.SetInsertPoint(CheckTerm);
 | |
|     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
 | |
|     BasicBlock *CrashBlock =
 | |
|         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
 | |
|     CrashTerm = new UnreachableInst(*C, CrashBlock);
 | |
|     BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
 | |
|     ReplaceInstWithInst(CheckTerm, NewTerm);
 | |
|   } else {
 | |
|     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true);
 | |
|   }
 | |
| 
 | |
|   Instruction *Crash = generateCrashCode(
 | |
|       CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
 | |
|   Crash->setDebugLoc(OrigIns->getDebugLoc());
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
 | |
|                                                   GlobalValue *ModuleName) {
 | |
|   // Set up the arguments to our poison/unpoison functions.
 | |
|   IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt());
 | |
| 
 | |
|   // Add a call to poison all external globals before the given function starts.
 | |
|   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
 | |
|   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
 | |
| 
 | |
|   // Add calls to unpoison all globals before each return instruction.
 | |
|   for (auto &BB : GlobalInit.getBasicBlockList())
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
 | |
|       CallInst::Create(AsanUnpoisonGlobals, "", RI);
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::createInitializerPoisonCalls(
 | |
|     Module &M, GlobalValue *ModuleName) {
 | |
|   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | |
| 
 | |
|   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
 | |
|   for (Use &OP : CA->operands()) {
 | |
|     if (isa<ConstantAggregateZero>(OP))
 | |
|       continue;
 | |
|     ConstantStruct *CS = cast<ConstantStruct>(OP);
 | |
| 
 | |
|     // Must have a function or null ptr.
 | |
|     if (Function* F = dyn_cast<Function>(CS->getOperand(1))) {
 | |
|       if (F->getName() == kAsanModuleCtorName) continue;
 | |
|       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
 | |
|       // Don't instrument CTORs that will run before asan.module_ctor.
 | |
|       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
 | |
|       poisonOneInitializer(*F, ModuleName);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
 | |
|   Type *Ty = cast<PointerType>(G->getType())->getElementType();
 | |
|   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
 | |
| 
 | |
|   if (GlobalsMD.get(G).IsBlacklisted) return false;
 | |
|   if (!Ty->isSized()) return false;
 | |
|   if (!G->hasInitializer()) return false;
 | |
|   if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
 | |
|   // Touch only those globals that will not be defined in other modules.
 | |
|   // Don't handle ODR linkage types and COMDATs since other modules may be built
 | |
|   // without ASan.
 | |
|   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
 | |
|       G->getLinkage() != GlobalVariable::PrivateLinkage &&
 | |
|       G->getLinkage() != GlobalVariable::InternalLinkage)
 | |
|     return false;
 | |
|   if (G->hasComdat())
 | |
|     return false;
 | |
|   // Two problems with thread-locals:
 | |
|   //   - The address of the main thread's copy can't be computed at link-time.
 | |
|   //   - Need to poison all copies, not just the main thread's one.
 | |
|   if (G->isThreadLocal())
 | |
|     return false;
 | |
|   // For now, just ignore this Global if the alignment is large.
 | |
|   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
 | |
| 
 | |
|   if (G->hasSection()) {
 | |
|     StringRef Section(G->getSection());
 | |
| 
 | |
|     if (TargetTriple.isOSBinFormatMachO()) {
 | |
|       StringRef ParsedSegment, ParsedSection;
 | |
|       unsigned TAA = 0, StubSize = 0;
 | |
|       bool TAAParsed;
 | |
|       std::string ErrorCode =
 | |
|         MCSectionMachO::ParseSectionSpecifier(Section, ParsedSegment,
 | |
|                                               ParsedSection, TAA, TAAParsed,
 | |
|                                               StubSize);
 | |
|       if (!ErrorCode.empty()) {
 | |
|         report_fatal_error("Invalid section specifier '" + ParsedSection +
 | |
|                            "': " + ErrorCode + ".");
 | |
|       }
 | |
| 
 | |
|       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
 | |
|       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
 | |
|       // them.
 | |
|       if (ParsedSegment == "__OBJC" ||
 | |
|           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
 | |
|         DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
 | |
|       // Constant CFString instances are compiled in the following way:
 | |
|       //  -- the string buffer is emitted into
 | |
|       //     __TEXT,__cstring,cstring_literals
 | |
|       //  -- the constant NSConstantString structure referencing that buffer
 | |
|       //     is placed into __DATA,__cfstring
 | |
|       // Therefore there's no point in placing redzones into __DATA,__cfstring.
 | |
|       // Moreover, it causes the linker to crash on OS X 10.7
 | |
|       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
 | |
|         DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       // The linker merges the contents of cstring_literals and removes the
 | |
|       // trailing zeroes.
 | |
|       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
 | |
|         DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Callbacks put into the CRT initializer/terminator sections
 | |
|     // should not be instrumented.
 | |
|     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
 | |
|     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
 | |
|     if (Section.startswith(".CRT")) {
 | |
|       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Globals from llvm.metadata aren't emitted, do not instrument them.
 | |
|     if (Section == "llvm.metadata") return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
|   // Declare our poisoning and unpoisoning functions.
 | |
|   AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
 | |
|   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
 | |
|   AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
 | |
|   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
 | |
|   // Declare functions that register/unregister globals.
 | |
|   AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanRegisterGlobalsName, IRB.getVoidTy(),
 | |
|       IntptrTy, IntptrTy, nullptr));
 | |
|   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
 | |
|   AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanUnregisterGlobalsName,
 | |
|       IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
 | |
| }
 | |
| 
 | |
| // This function replaces all global variables with new variables that have
 | |
| // trailing redzones. It also creates a function that poisons
 | |
| // redzones and inserts this function into llvm.global_ctors.
 | |
| bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
 | |
|   GlobalsMD.init(M);
 | |
| 
 | |
|   SmallVector<GlobalVariable *, 16> GlobalsToChange;
 | |
| 
 | |
|   for (auto &G : M.globals()) {
 | |
|     if (ShouldInstrumentGlobal(&G))
 | |
|       GlobalsToChange.push_back(&G);
 | |
|   }
 | |
| 
 | |
|   size_t n = GlobalsToChange.size();
 | |
|   if (n == 0) return false;
 | |
| 
 | |
|   // A global is described by a structure
 | |
|   //   size_t beg;
 | |
|   //   size_t size;
 | |
|   //   size_t size_with_redzone;
 | |
|   //   const char *name;
 | |
|   //   const char *module_name;
 | |
|   //   size_t has_dynamic_init;
 | |
|   //   void *source_location;
 | |
|   // We initialize an array of such structures and pass it to a run-time call.
 | |
|   StructType *GlobalStructTy =
 | |
|       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
 | |
|                       IntptrTy, IntptrTy, nullptr);
 | |
|   SmallVector<Constant *, 16> Initializers(n);
 | |
| 
 | |
|   bool HasDynamicallyInitializedGlobals = false;
 | |
| 
 | |
|   // We shouldn't merge same module names, as this string serves as unique
 | |
|   // module ID in runtime.
 | |
|   GlobalVariable *ModuleName = createPrivateGlobalForString(
 | |
|       M, M.getModuleIdentifier(), /*AllowMerging*/false);
 | |
| 
 | |
|   for (size_t i = 0; i < n; i++) {
 | |
|     static const uint64_t kMaxGlobalRedzone = 1 << 18;
 | |
|     GlobalVariable *G = GlobalsToChange[i];
 | |
| 
 | |
|     auto MD = GlobalsMD.get(G);
 | |
|     // Create string holding the global name (use global name from metadata
 | |
|     // if it's available, otherwise just write the name of global variable).
 | |
|     GlobalVariable *Name = createPrivateGlobalForString(
 | |
|         M, MD.Name.empty() ? G->getName() : MD.Name,
 | |
|         /*AllowMerging*/ true);
 | |
| 
 | |
|     PointerType *PtrTy = cast<PointerType>(G->getType());
 | |
|     Type *Ty = PtrTy->getElementType();
 | |
|     uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
 | |
|     uint64_t MinRZ = MinRedzoneSizeForGlobal();
 | |
|     // MinRZ <= RZ <= kMaxGlobalRedzone
 | |
|     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
 | |
|     uint64_t RZ = std::max(MinRZ,
 | |
|                          std::min(kMaxGlobalRedzone,
 | |
|                                   (SizeInBytes / MinRZ / 4) * MinRZ));
 | |
|     uint64_t RightRedzoneSize = RZ;
 | |
|     // Round up to MinRZ
 | |
|     if (SizeInBytes % MinRZ)
 | |
|       RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
 | |
|     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
 | |
|     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
 | |
| 
 | |
|     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
 | |
|     Constant *NewInitializer = ConstantStruct::get(
 | |
|         NewTy, G->getInitializer(),
 | |
|         Constant::getNullValue(RightRedZoneTy), nullptr);
 | |
| 
 | |
|     // Create a new global variable with enough space for a redzone.
 | |
|     GlobalValue::LinkageTypes Linkage = G->getLinkage();
 | |
|     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
 | |
|       Linkage = GlobalValue::InternalLinkage;
 | |
|     GlobalVariable *NewGlobal = new GlobalVariable(
 | |
|         M, NewTy, G->isConstant(), Linkage,
 | |
|         NewInitializer, "", G, G->getThreadLocalMode());
 | |
|     NewGlobal->copyAttributesFrom(G);
 | |
|     NewGlobal->setAlignment(MinRZ);
 | |
| 
 | |
|     Value *Indices2[2];
 | |
|     Indices2[0] = IRB.getInt32(0);
 | |
|     Indices2[1] = IRB.getInt32(0);
 | |
| 
 | |
|     G->replaceAllUsesWith(
 | |
|         ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
 | |
|     NewGlobal->takeName(G);
 | |
|     G->eraseFromParent();
 | |
| 
 | |
|     Constant *SourceLoc;
 | |
|     if (!MD.SourceLoc.empty()) {
 | |
|       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
 | |
|       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
 | |
|     } else {
 | |
|       SourceLoc = ConstantInt::get(IntptrTy, 0);
 | |
|     }
 | |
| 
 | |
|     Initializers[i] = ConstantStruct::get(
 | |
|         GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
 | |
|         ConstantInt::get(IntptrTy, SizeInBytes),
 | |
|         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
 | |
|         ConstantExpr::getPointerCast(Name, IntptrTy),
 | |
|         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
 | |
|         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
 | |
| 
 | |
|     if (ClInitializers && MD.IsDynInit)
 | |
|       HasDynamicallyInitializedGlobals = true;
 | |
| 
 | |
|     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
 | |
|   }
 | |
| 
 | |
|   ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
 | |
|   GlobalVariable *AllGlobals = new GlobalVariable(
 | |
|       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
 | |
|       ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
 | |
| 
 | |
|   // Create calls for poisoning before initializers run and unpoisoning after.
 | |
|   if (HasDynamicallyInitializedGlobals)
 | |
|     createInitializerPoisonCalls(M, ModuleName);
 | |
|   IRB.CreateCall2(AsanRegisterGlobals,
 | |
|                   IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | |
|                   ConstantInt::get(IntptrTy, n));
 | |
| 
 | |
|   // We also need to unregister globals at the end, e.g. when a shared library
 | |
|   // gets closed.
 | |
|   Function *AsanDtorFunction = Function::Create(
 | |
|       FunctionType::get(Type::getVoidTy(*C), false),
 | |
|       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
 | |
|   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
 | |
|   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
 | |
|   IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
 | |
|                        IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | |
|                        ConstantInt::get(IntptrTy, n));
 | |
|   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
 | |
| 
 | |
|   DEBUG(dbgs() << M);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizerModule::runOnModule(Module &M) {
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   if (!DLP)
 | |
|     return false;
 | |
|   DL = &DLP->getDataLayout();
 | |
|   C = &(M.getContext());
 | |
|   int LongSize = DL->getPointerSizeInBits();
 | |
|   IntptrTy = Type::getIntNTy(*C, LongSize);
 | |
|   TargetTriple = Triple(M.getTargetTriple());
 | |
|   Mapping = getShadowMapping(TargetTriple, LongSize);
 | |
|   initializeCallbacks(M);
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
 | |
|   assert(CtorFunc);
 | |
|   IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
 | |
| 
 | |
|   if (ClGlobals)
 | |
|     Changed |= InstrumentGlobals(IRB, M);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
|   // Create __asan_report* callbacks.
 | |
|   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
 | |
|     for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | |
|          AccessSizeIndex++) {
 | |
|       // IsWrite and TypeSize are encoded in the function name.
 | |
|       std::string Suffix =
 | |
|           (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
 | |
|       AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
 | |
|           checkInterfaceFunction(
 | |
|               M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix,
 | |
|                                     IRB.getVoidTy(), IntptrTy, nullptr));
 | |
|       AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
 | |
|           checkInterfaceFunction(
 | |
|               M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix,
 | |
|                                     IRB.getVoidTy(), IntptrTy, nullptr));
 | |
|     }
 | |
|   }
 | |
|   AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|               kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|               kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
| 
 | |
|   AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN",
 | |
|                             IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN",
 | |
|                             IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
| 
 | |
|   AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
 | |
|   AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
 | |
|   AsanMemset = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
 | |
| 
 | |
|   AsanHandleNoReturnFunc = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
 | |
| 
 | |
|   AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   // We insert an empty inline asm after __asan_report* to avoid callback merge.
 | |
|   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | |
|                             StringRef(""), StringRef(""),
 | |
|                             /*hasSideEffects=*/true);
 | |
| }
 | |
| 
 | |
| // virtual
 | |
| bool AddressSanitizer::doInitialization(Module &M) {
 | |
|   // Initialize the private fields. No one has accessed them before.
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   if (!DLP)
 | |
|     report_fatal_error("data layout missing");
 | |
|   DL = &DLP->getDataLayout();
 | |
| 
 | |
|   GlobalsMD.init(M);
 | |
| 
 | |
|   C = &(M.getContext());
 | |
|   LongSize = DL->getPointerSizeInBits();
 | |
|   IntptrTy = Type::getIntNTy(*C, LongSize);
 | |
|   TargetTriple = Triple(M.getTargetTriple());
 | |
| 
 | |
|   AsanCtorFunction = Function::Create(
 | |
|       FunctionType::get(Type::getVoidTy(*C), false),
 | |
|       GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
 | |
|   BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
 | |
|   // call __asan_init in the module ctor.
 | |
|   IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
 | |
|   AsanInitFunction = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr));
 | |
|   AsanInitFunction->setLinkage(Function::ExternalLinkage);
 | |
|   IRB.CreateCall(AsanInitFunction);
 | |
| 
 | |
|   Mapping = getShadowMapping(TargetTriple, LongSize);
 | |
| 
 | |
|   appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
 | |
|   // For each NSObject descendant having a +load method, this method is invoked
 | |
|   // by the ObjC runtime before any of the static constructors is called.
 | |
|   // Therefore we need to instrument such methods with a call to __asan_init
 | |
|   // at the beginning in order to initialize our runtime before any access to
 | |
|   // the shadow memory.
 | |
|   // We cannot just ignore these methods, because they may call other
 | |
|   // instrumented functions.
 | |
|   if (F.getName().find(" load]") != std::string::npos) {
 | |
|     IRBuilder<> IRB(F.begin()->begin());
 | |
|     IRB.CreateCall(AsanInitFunction);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::runOnFunction(Function &F) {
 | |
|   if (&F == AsanCtorFunction) return false;
 | |
|   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
 | |
|   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
 | |
|   initializeCallbacks(*F.getParent());
 | |
| 
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   // If needed, insert __asan_init before checking for SanitizeAddress attr.
 | |
|   maybeInsertAsanInitAtFunctionEntry(F);
 | |
| 
 | |
|   if (!F.hasFnAttribute(Attribute::SanitizeAddress))
 | |
|     return false;
 | |
| 
 | |
|   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
 | |
|     return false;
 | |
| 
 | |
|   // We want to instrument every address only once per basic block (unless there
 | |
|   // are calls between uses).
 | |
|   SmallSet<Value*, 16> TempsToInstrument;
 | |
|   SmallVector<Instruction*, 16> ToInstrument;
 | |
|   SmallVector<Instruction*, 8> NoReturnCalls;
 | |
|   SmallVector<BasicBlock*, 16> AllBlocks;
 | |
|   SmallVector<Instruction*, 16> PointerComparisonsOrSubtracts;
 | |
|   int NumAllocas = 0;
 | |
|   bool IsWrite;
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   // Fill the set of memory operations to instrument.
 | |
|   for (auto &BB : F) {
 | |
|     AllBlocks.push_back(&BB);
 | |
|     TempsToInstrument.clear();
 | |
|     int NumInsnsPerBB = 0;
 | |
|     for (auto &Inst : BB) {
 | |
|       if (LooksLikeCodeInBug11395(&Inst)) return false;
 | |
|       if (Value *Addr =
 | |
|               isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) {
 | |
|         if (ClOpt && ClOptSameTemp) {
 | |
|           if (!TempsToInstrument.insert(Addr).second)
 | |
|             continue;  // We've seen this temp in the current BB.
 | |
|         }
 | |
|       } else if (ClInvalidPointerPairs &&
 | |
|                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
 | |
|         PointerComparisonsOrSubtracts.push_back(&Inst);
 | |
|         continue;
 | |
|       } else if (isa<MemIntrinsic>(Inst)) {
 | |
|         // ok, take it.
 | |
|       } else {
 | |
|         if (isa<AllocaInst>(Inst))
 | |
|           NumAllocas++;
 | |
|         CallSite CS(&Inst);
 | |
|         if (CS) {
 | |
|           // A call inside BB.
 | |
|           TempsToInstrument.clear();
 | |
|           if (CS.doesNotReturn())
 | |
|             NoReturnCalls.push_back(CS.getInstruction());
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       ToInstrument.push_back(&Inst);
 | |
|       NumInsnsPerBB++;
 | |
|       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool UseCalls = false;
 | |
|   if (ClInstrumentationWithCallsThreshold >= 0 &&
 | |
|       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
 | |
|     UseCalls = true;
 | |
| 
 | |
|   // Instrument.
 | |
|   int NumInstrumented = 0;
 | |
|   for (auto Inst : ToInstrument) {
 | |
|     if (ClDebugMin < 0 || ClDebugMax < 0 ||
 | |
|         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
 | |
|       if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment))
 | |
|         instrumentMop(Inst, UseCalls);
 | |
|       else
 | |
|         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
 | |
|     }
 | |
|     NumInstrumented++;
 | |
|   }
 | |
| 
 | |
|   FunctionStackPoisoner FSP(F, *this);
 | |
|   bool ChangedStack = FSP.runOnFunction();
 | |
| 
 | |
|   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
 | |
|   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
 | |
|   for (auto CI : NoReturnCalls) {
 | |
|     IRBuilder<> IRB(CI);
 | |
|     IRB.CreateCall(AsanHandleNoReturnFunc);
 | |
|   }
 | |
| 
 | |
|   for (auto Inst : PointerComparisonsOrSubtracts) {
 | |
|     instrumentPointerComparisonOrSubtraction(Inst);
 | |
|     NumInstrumented++;
 | |
|   }
 | |
| 
 | |
|   bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
 | |
| 
 | |
|   DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // Workaround for bug 11395: we don't want to instrument stack in functions
 | |
| // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
 | |
| // FIXME: remove once the bug 11395 is fixed.
 | |
| bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
 | |
|   if (LongSize != 32) return false;
 | |
|   CallInst *CI = dyn_cast<CallInst>(I);
 | |
|   if (!CI || !CI->isInlineAsm()) return false;
 | |
|   if (CI->getNumArgOperands() <= 5) return false;
 | |
|   // We have inline assembly with quite a few arguments.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
|   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
 | |
|     std::string Suffix = itostr(i);
 | |
|     AsanStackMallocFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy, nullptr));
 | |
|     AsanStackFreeFunc[i] = checkInterfaceFunction(
 | |
|         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
 | |
|                               IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | |
|   }
 | |
|   AsanPoisonStackMemoryFunc = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
 | |
|                             IntptrTy, IntptrTy, nullptr));
 | |
|   AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
 | |
|                             IntptrTy, IntptrTy, nullptr));
 | |
| }
 | |
| 
 | |
| void
 | |
| FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
 | |
|                                       IRBuilder<> &IRB, Value *ShadowBase,
 | |
|                                       bool DoPoison) {
 | |
|   size_t n = ShadowBytes.size();
 | |
|   size_t i = 0;
 | |
|   // We need to (un)poison n bytes of stack shadow. Poison as many as we can
 | |
|   // using 64-bit stores (if we are on 64-bit arch), then poison the rest
 | |
|   // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
 | |
|   for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
 | |
|        LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
 | |
|     for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
 | |
|       uint64_t Val = 0;
 | |
|       for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
 | |
|         if (ASan.DL->isLittleEndian())
 | |
|           Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
 | |
|         else
 | |
|           Val = (Val << 8) | ShadowBytes[i + j];
 | |
|       }
 | |
|       if (!Val) continue;
 | |
|       Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | |
|       Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
 | |
|       Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
 | |
|       IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Fake stack allocator (asan_fake_stack.h) has 11 size classes
 | |
| // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
 | |
| static int StackMallocSizeClass(uint64_t LocalStackSize) {
 | |
|   assert(LocalStackSize <= kMaxStackMallocSize);
 | |
|   uint64_t MaxSize = kMinStackMallocSize;
 | |
|   for (int i = 0; ; i++, MaxSize *= 2)
 | |
|     if (LocalStackSize <= MaxSize)
 | |
|       return i;
 | |
|   llvm_unreachable("impossible LocalStackSize");
 | |
| }
 | |
| 
 | |
| // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
 | |
| // We can not use MemSet intrinsic because it may end up calling the actual
 | |
| // memset. Size is a multiple of 8.
 | |
| // Currently this generates 8-byte stores on x86_64; it may be better to
 | |
| // generate wider stores.
 | |
| void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
 | |
|     IRBuilder<> &IRB, Value *ShadowBase, int Size) {
 | |
|   assert(!(Size % 8));
 | |
|   assert(kAsanStackAfterReturnMagic == 0xf5);
 | |
|   for (int i = 0; i < Size; i += 8) {
 | |
|     Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | |
|     IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
 | |
|                     IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static DebugLoc getFunctionEntryDebugLocation(Function &F) {
 | |
|   for (const auto &Inst : F.getEntryBlock())
 | |
|     if (!isa<AllocaInst>(Inst))
 | |
|       return Inst.getDebugLoc();
 | |
|   return DebugLoc();
 | |
| }
 | |
| 
 | |
| PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
 | |
|                                           Value *ValueIfTrue,
 | |
|                                           Instruction *ThenTerm,
 | |
|                                           Value *ValueIfFalse) {
 | |
|   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
 | |
|   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
 | |
|   PHI->addIncoming(ValueIfFalse, CondBlock);
 | |
|   BasicBlock *ThenBlock = ThenTerm->getParent();
 | |
|   PHI->addIncoming(ValueIfTrue, ThenBlock);
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| Value *FunctionStackPoisoner::createAllocaForLayout(
 | |
|     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
 | |
|   AllocaInst *Alloca;
 | |
|   if (Dynamic) {
 | |
|     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
 | |
|                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
 | |
|                               "MyAlloca");
 | |
|   } else {
 | |
|     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
 | |
|                               nullptr, "MyAlloca");
 | |
|     assert(Alloca->isStaticAlloca());
 | |
|   }
 | |
|   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
 | |
|   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
 | |
|   Alloca->setAlignment(FrameAlignment);
 | |
|   return IRB.CreatePointerCast(Alloca, IntptrTy);
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::poisonStack() {
 | |
|   assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
 | |
| 
 | |
|   if (ClInstrumentAllocas)
 | |
|     // Handle dynamic allocas.
 | |
|     for (auto &AllocaCall : DynamicAllocaVec)
 | |
|       handleDynamicAllocaCall(AllocaCall);
 | |
| 
 | |
|   if (AllocaVec.size() == 0) return;
 | |
| 
 | |
|   int StackMallocIdx = -1;
 | |
|   DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);
 | |
| 
 | |
|   Instruction *InsBefore = AllocaVec[0];
 | |
|   IRBuilder<> IRB(InsBefore);
 | |
|   IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
| 
 | |
|   SmallVector<ASanStackVariableDescription, 16> SVD;
 | |
|   SVD.reserve(AllocaVec.size());
 | |
|   for (AllocaInst *AI : AllocaVec) {
 | |
|     ASanStackVariableDescription D = { AI->getName().data(),
 | |
|                                    getAllocaSizeInBytes(AI),
 | |
|                                    AI->getAlignment(), AI, 0};
 | |
|     SVD.push_back(D);
 | |
|   }
 | |
|   // Minimal header size (left redzone) is 4 pointers,
 | |
|   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
 | |
|   size_t MinHeaderSize = ASan.LongSize / 2;
 | |
|   ASanStackFrameLayout L;
 | |
|   ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
 | |
|   DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
 | |
|   uint64_t LocalStackSize = L.FrameSize;
 | |
|   bool DoStackMalloc =
 | |
|       ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
 | |
|   // Don't do dynamic alloca in presence of inline asm: too often it
 | |
|   // makes assumptions on which registers are available.
 | |
|   bool DoDynamicAlloca = ClDynamicAllocaStack && !HasNonEmptyInlineAsm;
 | |
| 
 | |
|   Value *StaticAlloca =
 | |
|       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
 | |
| 
 | |
|   Value *FakeStack;
 | |
|   Value *LocalStackBase;
 | |
| 
 | |
|   if (DoStackMalloc) {
 | |
|     // void *FakeStack = __asan_option_detect_stack_use_after_return
 | |
|     //     ? __asan_stack_malloc_N(LocalStackSize)
 | |
|     //     : nullptr;
 | |
|     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
 | |
|     Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
 | |
|         kAsanOptionDetectUAR, IRB.getInt32Ty());
 | |
|     Value *UARIsEnabled =
 | |
|         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
 | |
|                          Constant::getNullValue(IRB.getInt32Ty()));
 | |
|     Instruction *Term =
 | |
|         SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
 | |
|     IRBuilder<> IRBIf(Term);
 | |
|     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | |
|     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
 | |
|     Value *FakeStackValue =
 | |
|         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
 | |
|                          ConstantInt::get(IntptrTy, LocalStackSize));
 | |
|     IRB.SetInsertPoint(InsBefore);
 | |
|     IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
 | |
|                           ConstantInt::get(IntptrTy, 0));
 | |
| 
 | |
|     Value *NoFakeStack =
 | |
|         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
 | |
|     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
 | |
|     IRBIf.SetInsertPoint(Term);
 | |
|     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     Value *AllocaValue =
 | |
|         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
 | |
|     IRB.SetInsertPoint(InsBefore);
 | |
|     IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
 | |
|   } else {
 | |
|     // void *FakeStack = nullptr;
 | |
|     // void *LocalStackBase = alloca(LocalStackSize);
 | |
|     FakeStack = ConstantInt::get(IntptrTy, 0);
 | |
|     LocalStackBase =
 | |
|         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
 | |
|   }
 | |
| 
 | |
|   // Insert poison calls for lifetime intrinsics for alloca.
 | |
|   bool HavePoisonedAllocas = false;
 | |
|   for (const auto &APC : AllocaPoisonCallVec) {
 | |
|     assert(APC.InsBefore);
 | |
|     assert(APC.AI);
 | |
|     IRBuilder<> IRB(APC.InsBefore);
 | |
|     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
 | |
|     HavePoisonedAllocas |= APC.DoPoison;
 | |
|   }
 | |
| 
 | |
|   // Replace Alloca instructions with base+offset.
 | |
|   for (const auto &Desc : SVD) {
 | |
|     AllocaInst *AI = Desc.AI;
 | |
|     Value *NewAllocaPtr = IRB.CreateIntToPtr(
 | |
|         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
 | |
|         AI->getType());
 | |
|     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
 | |
|     AI->replaceAllUsesWith(NewAllocaPtr);
 | |
|   }
 | |
| 
 | |
|   // The left-most redzone has enough space for at least 4 pointers.
 | |
|   // Write the Magic value to redzone[0].
 | |
|   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
 | |
|   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
 | |
|                   BasePlus0);
 | |
|   // Write the frame description constant to redzone[1].
 | |
|   Value *BasePlus1 = IRB.CreateIntToPtr(
 | |
|     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
 | |
|     IntptrPtrTy);
 | |
|   GlobalVariable *StackDescriptionGlobal =
 | |
|       createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
 | |
|                                    /*AllowMerging*/true);
 | |
|   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
 | |
|                                              IntptrTy);
 | |
|   IRB.CreateStore(Description, BasePlus1);
 | |
|   // Write the PC to redzone[2].
 | |
|   Value *BasePlus2 = IRB.CreateIntToPtr(
 | |
|     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
 | |
|                                                    2 * ASan.LongSize/8)),
 | |
|     IntptrPtrTy);
 | |
|   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
 | |
| 
 | |
|   // Poison the stack redzones at the entry.
 | |
|   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
 | |
|   poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
 | |
| 
 | |
|   // (Un)poison the stack before all ret instructions.
 | |
|   for (auto Ret : RetVec) {
 | |
|     IRBuilder<> IRBRet(Ret);
 | |
|     // Mark the current frame as retired.
 | |
|     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
 | |
|                        BasePlus0);
 | |
|     if (DoStackMalloc) {
 | |
|       assert(StackMallocIdx >= 0);
 | |
|       // if FakeStack != 0  // LocalStackBase == FakeStack
 | |
|       //     // In use-after-return mode, poison the whole stack frame.
 | |
|       //     if StackMallocIdx <= 4
 | |
|       //         // For small sizes inline the whole thing:
 | |
|       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
 | |
|       //         **SavedFlagPtr(FakeStack) = 0
 | |
|       //     else
 | |
|       //         __asan_stack_free_N(FakeStack, LocalStackSize)
 | |
|       // else
 | |
|       //     <This is not a fake stack; unpoison the redzones>
 | |
|       Value *Cmp =
 | |
|           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
 | |
|       TerminatorInst *ThenTerm, *ElseTerm;
 | |
|       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
 | |
| 
 | |
|       IRBuilder<> IRBPoison(ThenTerm);
 | |
|       if (StackMallocIdx <= 4) {
 | |
|         int ClassSize = kMinStackMallocSize << StackMallocIdx;
 | |
|         SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
 | |
|                                            ClassSize >> Mapping.Scale);
 | |
|         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
 | |
|             FakeStack,
 | |
|             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
 | |
|         Value *SavedFlagPtr = IRBPoison.CreateLoad(
 | |
|             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
 | |
|         IRBPoison.CreateStore(
 | |
|             Constant::getNullValue(IRBPoison.getInt8Ty()),
 | |
|             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
 | |
|       } else {
 | |
|         // For larger frames call __asan_stack_free_*.
 | |
|         IRBPoison.CreateCall2(AsanStackFreeFunc[StackMallocIdx], FakeStack,
 | |
|                               ConstantInt::get(IntptrTy, LocalStackSize));
 | |
|       }
 | |
| 
 | |
|       IRBuilder<> IRBElse(ElseTerm);
 | |
|       poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
 | |
|     } else if (HavePoisonedAllocas) {
 | |
|       // If we poisoned some allocas in llvm.lifetime analysis,
 | |
|       // unpoison whole stack frame now.
 | |
|       poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
 | |
|     } else {
 | |
|       poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ClInstrumentAllocas)
 | |
|     // Unpoison dynamic allocas.
 | |
|     for (auto &AllocaCall : DynamicAllocaVec)
 | |
|       unpoisonDynamicAlloca(AllocaCall);
 | |
| 
 | |
|   // We are done. Remove the old unused alloca instructions.
 | |
|   for (auto AI : AllocaVec)
 | |
|     AI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
 | |
|                                          IRBuilder<> &IRB, bool DoPoison) {
 | |
|   // For now just insert the call to ASan runtime.
 | |
|   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
 | |
|   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
 | |
|   IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
 | |
|                            : AsanUnpoisonStackMemoryFunc,
 | |
|                   AddrArg, SizeArg);
 | |
| }
 | |
| 
 | |
| // Handling llvm.lifetime intrinsics for a given %alloca:
 | |
| // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
 | |
| // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
 | |
| //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
 | |
| //     could be poisoned by previous llvm.lifetime.end instruction, as the
 | |
| //     variable may go in and out of scope several times, e.g. in loops).
 | |
| // (3) if we poisoned at least one %alloca in a function,
 | |
| //     unpoison the whole stack frame at function exit.
 | |
| 
 | |
| AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|     // We're intested only in allocas we can handle.
 | |
|     return isInterestingAlloca(*AI) ? AI : nullptr;
 | |
|   // See if we've already calculated (or started to calculate) alloca for a
 | |
|   // given value.
 | |
|   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
 | |
|   if (I != AllocaForValue.end())
 | |
|     return I->second;
 | |
|   // Store 0 while we're calculating alloca for value V to avoid
 | |
|   // infinite recursion if the value references itself.
 | |
|   AllocaForValue[V] = nullptr;
 | |
|   AllocaInst *Res = nullptr;
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     Res = findAllocaForValue(CI->getOperand(0));
 | |
|   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *IncValue = PN->getIncomingValue(i);
 | |
|       // Allow self-referencing phi-nodes.
 | |
|       if (IncValue == PN) continue;
 | |
|       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
 | |
|       // AI for incoming values should exist and should all be equal.
 | |
|       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
 | |
|         return nullptr;
 | |
|       Res = IncValueAI;
 | |
|     }
 | |
|   }
 | |
|   if (Res)
 | |
|     AllocaForValue[V] = Res;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is
 | |
| // constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2.
 | |
| // (1) Val1 is resposible for forming base value for PartialRzMagic, containing
 | |
| //     only 00 for fully addressable and 0xcb for fully poisoned bytes for each
 | |
| //     8-byte chunk of user memory respectively.
 | |
| // (2) Val2 forms the value for marking first poisoned byte in shadow memory
 | |
| //     with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0).
 | |
| 
 | |
| // Shift = Padding & ~7; // the number of bits we need to shift to access first
 | |
| //                          chunk in shadow memory, containing nonzero bytes.
 | |
| // Example:
 | |
| // Padding = 21                       Padding = 16
 | |
| // Shadow:  |00|00|05|cb|          Shadow:  |00|00|cb|cb|
 | |
| //                ^                               ^
 | |
| //                |                               |
 | |
| // Shift = 21 & ~7 = 16            Shift = 16 & ~7 = 16
 | |
| //
 | |
| // Val1 = 0xcbcbcbcb << Shift;
 | |
| // PartialBits = Padding ? Padding & 7 : 0xcb;
 | |
| // Val2 = PartialBits << Shift;
 | |
| // Result = Val1 | Val2;
 | |
| Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize,
 | |
|                                                     IRBuilder<> &IRB) {
 | |
|   PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false);
 | |
|   Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7));
 | |
|   unsigned Val1Int = kAsanAllocaPartialVal1;
 | |
|   unsigned Val2Int = kAsanAllocaPartialVal2;
 | |
|   if (!ASan.DL->isLittleEndian()) {
 | |
|     Val1Int = sys::getSwappedBytes(Val1Int);
 | |
|     Val2Int = sys::getSwappedBytes(Val2Int);
 | |
|   }
 | |
|   Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift);
 | |
|   Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7));
 | |
|   // For BigEndian get 0x000000YZ -> 0xYZ000000.
 | |
|   if (ASan.DL->isBigEndian())
 | |
|     PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24));
 | |
|   Value *Val2 = IRB.getInt32(Val2Int);
 | |
|   Value *Cond =
 | |
|       IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty()));
 | |
|   Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift),
 | |
|                           shiftAllocaMagic(Val2, IRB, Shift));
 | |
|   return IRB.CreateOr(Val1, Val2);
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::handleDynamicAllocaCall(
 | |
|     DynamicAllocaCall &AllocaCall) {
 | |
|   AllocaInst *AI = AllocaCall.AI;
 | |
|   if (!doesDominateAllExits(AI)) {
 | |
|     // We do not yet handle complex allocas
 | |
|     AllocaCall.Poison = false;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> IRB(AI);
 | |
| 
 | |
|   PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
 | |
|   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
 | |
|   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
 | |
| 
 | |
|   Value *Zero = Constant::getNullValue(IntptrTy);
 | |
|   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
 | |
|   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
 | |
|   Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask);
 | |
| 
 | |
|   // Since we need to extend alloca with additional memory to locate
 | |
|   // redzones, and OldSize is number of allocated blocks with
 | |
|   // ElementSize size, get allocated memory size in bytes by
 | |
|   // OldSize * ElementSize.
 | |
|   unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType());
 | |
|   Value *OldSize = IRB.CreateMul(AI->getArraySize(),
 | |
|                                  ConstantInt::get(IntptrTy, ElementSize));
 | |
| 
 | |
|   // PartialSize = OldSize % 32
 | |
|   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
 | |
| 
 | |
|   // Misalign = kAllocaRzSize - PartialSize;
 | |
|   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
 | |
| 
 | |
|   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
 | |
|   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
 | |
|   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
 | |
| 
 | |
|   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
 | |
|   // Align is added to locate left redzone, PartialPadding for possible
 | |
|   // partial redzone and kAllocaRzSize for right redzone respectively.
 | |
|   Value *AdditionalChunkSize = IRB.CreateAdd(
 | |
|       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
 | |
| 
 | |
|   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
 | |
| 
 | |
|   // Insert new alloca with new NewSize and Align params.
 | |
|   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
 | |
|   NewAlloca->setAlignment(Align);
 | |
| 
 | |
|   // NewAddress = Address + Align
 | |
|   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
 | |
|                                     ConstantInt::get(IntptrTy, Align));
 | |
| 
 | |
|   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
 | |
| 
 | |
|   // LeftRzAddress = NewAddress - kAllocaRzSize
 | |
|   Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize);
 | |
| 
 | |
|   // Poisoning left redzone.
 | |
|   AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB);
 | |
|   IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic),
 | |
|                   IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy));
 | |
| 
 | |
|   // PartialRzAligned = PartialRzAddr & ~AllocaRzMask
 | |
|   Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize);
 | |
|   Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask);
 | |
| 
 | |
|   // Poisoning partial redzone.
 | |
|   Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB);
 | |
|   Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB);
 | |
|   IRB.CreateStore(PartialRzMagic,
 | |
|                   IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy));
 | |
| 
 | |
|   // RightRzAddress
 | |
|   //   =  (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask
 | |
|   Value *RightRzAddress = IRB.CreateAnd(
 | |
|       IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask);
 | |
| 
 | |
|   // Poisoning right redzone.
 | |
|   AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB);
 | |
|   IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic),
 | |
|                   IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy));
 | |
| 
 | |
|   // Replace all uses of AddessReturnedByAlloca with NewAddress.
 | |
|   AI->replaceAllUsesWith(NewAddressPtr);
 | |
| 
 | |
|   // We are done. Erase old alloca and store left, partial and right redzones
 | |
|   // shadow addresses for future unpoisoning.
 | |
|   AI->eraseFromParent();
 | |
|   NumInstrumentedDynamicAllocas++;
 | |
| }
 |