Chris Lattner 2fbfdcffd3 Change references to the Method class to be references to the Function
class.  The Method class is obsolete (renamed) and all references to it
are being converted over to Function.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2144 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-07 20:49:59 +00:00

1370 lines
47 KiB
C++

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Type.h"
#include "llvm/ConstantVals.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/GlobalVariable.h"
#include "Support/CommandLine.h"
#include <math.h> // For fmod
#include <signal.h>
#include <setjmp.h>
#include <iostream>
using std::vector;
using std::cout;
using std::cerr;
cl::Flag QuietMode ("quiet" , "Do not emit any non-program output");
cl::Alias QuietModeA("q" , "Alias for -quiet", cl::NoFlags, QuietMode);
cl::Flag ArrayChecksEnabled("array-checks", "Enable array bound checks");
cl::Flag AbortOnExceptions("abort-on-exception", "Halt execution on a machine exception");
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
static TargetData TD("lli Interpreter");
CachedWriter CW; // Object to accelerate printing of LLVM
#ifdef PROFILE_STRUCTURE_FIELDS
static cl::Flag ProfileStructureFields("profilestructfields",
"Profile Structure Field Accesses");
#include <map>
static std::map<const StructType *, vector<unsigned> > FieldAccessCounts;
#endif
sigjmp_buf SignalRecoverBuffer;
static bool InInstruction = false;
extern "C" {
static void SigHandler(int Signal) {
if (InInstruction)
siglongjmp(SignalRecoverBuffer, Signal);
}
}
static void initializeSignalHandlers() {
struct sigaction Action;
Action.sa_handler = SigHandler;
Action.sa_flags = SA_SIGINFO;
sigemptyset(&Action.sa_mask);
sigaction(SIGSEGV, &Action, 0);
sigaction(SIGBUS, &Action, 0);
sigaction(SIGINT, &Action, 0);
sigaction(SIGFPE, &Action, 0);
}
//===----------------------------------------------------------------------===//
// Value Manipulation code
//===----------------------------------------------------------------------===//
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(CPV)->getValue(); break
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (Constant *CPV = dyn_cast<Constant>(V)) {
GenericValue Result;
switch (CPV->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Result.PointerVal = 0;
} else if (isa<ConstantPointerRef>(CPV)) {
assert(0 && "Not implemented!");
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
cout << "ERROR: Constant unimp for type: " << CPV->getType() << "\n";
}
return Result;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalAddress *Address =
(GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID);
GenericValue Result;
Result.PointerVal = (PointerTy)(GenericValue*)Address->Ptr;
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned OpSlot = getOperandSlot(V);
assert(TyP < SF.Values.size() &&
OpSlot < SF.Values[TyP].size() && "Value out of range!");
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void printOperandInfo(Value *V, ExecutionContext &SF) {
if (isa<Constant>(V)) {
cout << "Constant Pool Value\n";
} else if (isa<GlobalValue>(V)) {
cout << "Global Value\n";
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned Slot = getOperandSlot(V);
cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
<< " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF
<< " Contents=0x";
const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot];
for (unsigned i = 0; i < sizeof(GenericValue); ++i) {
unsigned char Cur = Buf[i];
cout << ( Cur >= 160? char((Cur>>4)+'A'-10) : char((Cur>>4) + '0'))
<< ((Cur&15) >= 10? char((Cur&15)+'A'-10) : char((Cur&15) + '0'));
}
cout << "\n";
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
//cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << "\n";
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Annotation Wrangling code
//===----------------------------------------------------------------------===//
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID,
&MethodInfo::Create);
AnnotationManager::registerAnnotationFactory(GlobalAddressAID,
&GlobalAddress::Create);
initializeSignalHandlers();
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
static void InitializeMemory(Constant *Init, char *Addr) {
#define INITIALIZE_MEMORY(TYID, CLASS, TY) \
case Type::TYID##TyID: { \
TY Tmp = cast<CLASS>(Init)->getValue(); \
memcpy(Addr, &Tmp, sizeof(TY)); \
} return
switch (Init->getType()->getPrimitiveID()) {
INITIALIZE_MEMORY(Bool , ConstantBool, bool);
INITIALIZE_MEMORY(UByte , ConstantUInt, unsigned char);
INITIALIZE_MEMORY(SByte , ConstantSInt, signed char);
INITIALIZE_MEMORY(UShort , ConstantUInt, unsigned short);
INITIALIZE_MEMORY(Short , ConstantSInt, signed short);
INITIALIZE_MEMORY(UInt , ConstantUInt, unsigned int);
INITIALIZE_MEMORY(Int , ConstantSInt, signed int);
INITIALIZE_MEMORY(ULong , ConstantUInt, uint64_t);
INITIALIZE_MEMORY(Long , ConstantSInt, int64_t);
INITIALIZE_MEMORY(Float , ConstantFP , float);
INITIALIZE_MEMORY(Double , ConstantFP , double);
#undef INITIALIZE_MEMORY
case Type::ArrayTyID: {
ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
Addr+SL->MemberOffsets[i]);
return;
}
case Type::PointerTyID:
if (isa<ConstantPointerNull>(Init)) {
*(void**)Addr = 0;
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Init)) {
GlobalAddress *Address =
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
*(void**)Addr = (GenericValue*)Address->Ptr;
} else {
assert(0 && "Unknown Constant pointer type!");
}
return;
default:
CW << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
assert(AID == GlobalAddressAID);
// This annotation will only be created on GlobalValue objects...
GlobalValue *GVal = cast<GlobalValue>((Value*)O);
if (isa<Function>(GVal)) {
// The GlobalAddress object for a function is just a pointer to function
// itself. Don't delete it when the annotation is gone though!
return new GlobalAddress(GVal, false);
}
// Handle the case of a global variable...
assert(isa<GlobalVariable>(GVal) &&
"Global value found that isn't a function or global variable!");
GlobalVariable *GV = cast<GlobalVariable>(GVal);
// First off, we must allocate space for the global variable to point at...
const Type *Ty = GV->getType()->getElementType(); // Type to be allocated
// Allocate enough memory to hold the type...
void *Addr = calloc(1, TD.getTypeSize(Ty));
assert(Addr != 0 && "Null pointer returned by malloc!");
// Initialize the memory if there is an initializer...
if (GV->hasInitializer())
InitializeMemory(GV->getInitializer(), (char*)Addr);
return new GlobalAddress(Addr, true); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, ULong);
IMPLEMENT_BINARY_OPERATOR(+, Long);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
IMPLEMENT_BINARY_OPERATOR(+, Pointer);
default:
cout << "Unhandled type for Add instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, ULong);
IMPLEMENT_BINARY_OPERATOR(-, Long);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
IMPLEMENT_BINARY_OPERATOR(-, Pointer);
default:
cout << "Unhandled type for Sub instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(*, UByte);
IMPLEMENT_BINARY_OPERATOR(*, SByte);
IMPLEMENT_BINARY_OPERATOR(*, UShort);
IMPLEMENT_BINARY_OPERATOR(*, Short);
IMPLEMENT_BINARY_OPERATOR(*, UInt);
IMPLEMENT_BINARY_OPERATOR(*, Int);
IMPLEMENT_BINARY_OPERATOR(*, ULong);
IMPLEMENT_BINARY_OPERATOR(*, Long);
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
IMPLEMENT_BINARY_OPERATOR(*, Pointer);
default:
cout << "Unhandled type for Mul instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(/, UByte);
IMPLEMENT_BINARY_OPERATOR(/, SByte);
IMPLEMENT_BINARY_OPERATOR(/, UShort);
IMPLEMENT_BINARY_OPERATOR(/, Short);
IMPLEMENT_BINARY_OPERATOR(/, UInt);
IMPLEMENT_BINARY_OPERATOR(/, Int);
IMPLEMENT_BINARY_OPERATOR(/, ULong);
IMPLEMENT_BINARY_OPERATOR(/, Long);
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
IMPLEMENT_BINARY_OPERATOR(/, Pointer);
default:
cout << "Unhandled type for Div instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(%, UByte);
IMPLEMENT_BINARY_OPERATOR(%, SByte);
IMPLEMENT_BINARY_OPERATOR(%, UShort);
IMPLEMENT_BINARY_OPERATOR(%, Short);
IMPLEMENT_BINARY_OPERATOR(%, UInt);
IMPLEMENT_BINARY_OPERATOR(%, Int);
IMPLEMENT_BINARY_OPERATOR(%, ULong);
IMPLEMENT_BINARY_OPERATOR(%, Long);
IMPLEMENT_BINARY_OPERATOR(%, Pointer);
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
cout << "Unhandled type for Rem instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(&, UByte);
IMPLEMENT_BINARY_OPERATOR(&, SByte);
IMPLEMENT_BINARY_OPERATOR(&, UShort);
IMPLEMENT_BINARY_OPERATOR(&, Short);
IMPLEMENT_BINARY_OPERATOR(&, UInt);
IMPLEMENT_BINARY_OPERATOR(&, Int);
IMPLEMENT_BINARY_OPERATOR(&, ULong);
IMPLEMENT_BINARY_OPERATOR(&, Long);
IMPLEMENT_BINARY_OPERATOR(&, Pointer);
default:
cout << "Unhandled type for And instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(|, UByte);
IMPLEMENT_BINARY_OPERATOR(|, SByte);
IMPLEMENT_BINARY_OPERATOR(|, UShort);
IMPLEMENT_BINARY_OPERATOR(|, Short);
IMPLEMENT_BINARY_OPERATOR(|, UInt);
IMPLEMENT_BINARY_OPERATOR(|, Int);
IMPLEMENT_BINARY_OPERATOR(|, ULong);
IMPLEMENT_BINARY_OPERATOR(|, Long);
IMPLEMENT_BINARY_OPERATOR(|, Pointer);
default:
cout << "Unhandled type for Or instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(^, UByte);
IMPLEMENT_BINARY_OPERATOR(^, SByte);
IMPLEMENT_BINARY_OPERATOR(^, UShort);
IMPLEMENT_BINARY_OPERATOR(^, Short);
IMPLEMENT_BINARY_OPERATOR(^, UInt);
IMPLEMENT_BINARY_OPERATOR(^, Int);
IMPLEMENT_BINARY_OPERATOR(^, ULong);
IMPLEMENT_BINARY_OPERATOR(^, Long);
IMPLEMENT_BINARY_OPERATOR(^, Pointer);
default:
cout << "Unhandled type for Xor instruction: " << Ty << "\n";
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, ULong);
IMPLEMENT_SETCC(==, Long);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
IMPLEMENT_SETCC(==, Pointer);
default:
cout << "Unhandled type for SetEQ instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, ULong);
IMPLEMENT_SETCC(!=, Long);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
IMPLEMENT_SETCC(!=, Pointer);
default:
cout << "Unhandled type for SetNE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, ULong);
IMPLEMENT_SETCC(<=, Long);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
IMPLEMENT_SETCC(<=, Pointer);
default:
cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, ULong);
IMPLEMENT_SETCC(>=, Long);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
IMPLEMENT_SETCC(>=, Pointer);
default:
cout << "Unhandled type for SetGE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, ULong);
IMPLEMENT_SETCC(<, Long);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
IMPLEMENT_SETCC(<, Pointer);
default:
cout << "Unhandled type for SetLT instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, ULong);
IMPLEMENT_SETCC(>, Long);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
IMPLEMENT_SETCC(>, Pointer);
default:
cout << "Unhandled type for SetGT instruction: " << Ty << "\n";
}
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break;
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break;
case Instruction::Div: R = executeDivInst (Src1, Src2, Ty, SF); break;
case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty, SF); break;
case Instruction::And: R = executeAndInst (Src1, Src2, Ty, SF); break;
case Instruction::Or: R = executeOrInst (Src1, Src2, Ty, SF); break;
case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty, SF); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break;
default:
cout << "Don't know how to handle this binary operator!\n-->" << I;
R = Src1;
}
SetValue(I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
static void PerformExitStuff() {
#ifdef PROFILE_STRUCTURE_FIELDS
// Print out structure field accounting information...
if (!FieldAccessCounts.empty()) {
CW << "Profile Field Access Counts:\n";
std::map<const StructType *, vector<unsigned> >::iterator
I = FieldAccessCounts.begin(), E = FieldAccessCounts.end();
for (; I != E; ++I) {
vector<unsigned> &OfC = I->second;
CW << " '" << (Value*)I->first << "'\t- Sum=";
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << Sum << " - ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << OfC[i];
}
CW << "\n";
}
CW << "\n";
CW << "Profile Field Access Percentages:\n";
cout.precision(3);
for (I = FieldAccessCounts.begin(); I != E; ++I) {
vector<unsigned> &OfC = I->second;
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << " '" << (Value*)I->first << "'\t- ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << double(OfC[i])/Sum;
}
CW << "\n";
}
CW << "\n";
FieldAccessCounts.clear();
}
#endif
}
void Interpreter::exitCalled(GenericValue GV) {
if (!QuietMode) {
cout << "Program returned ";
print(Type::IntTy, GV);
cout << " via 'void exit(int)'\n";
}
ExitCode = GV.SByteVal;
ECStack.clear();
PerformExitStuff();
}
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
}
// Save previously executing meth
const Function *M = ECStack.back().CurMethod;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
if (!QuietMode) {
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
}
if (RetTy->isIntegral())
ExitCode = Result.SByteVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
PerformExitStuff();
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// This must be a function that is executing because of a user 'call'
// instruction.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
Value *Cond = I->getCondition();
GenericValue CondVal = getOperandValue(Cond, SF);
if (CondVal.BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType()->getElementType(); // Type to be allocated
unsigned NumElements = 1;
// FIXME: Malloc/Alloca should always have an argument!
if (I->getNumOperands()) { // Allocating a unsized array type?
// Get the number of elements being allocated by the array...
GenericValue NumEl = getOperandValue(I->getOperand(0), SF);
NumElements = NumEl.UIntVal;
}
// Allocate enough memory to hold the type...
// FIXME: Don't use CALLOC, use a tainted malloc.
void *Memory = calloc(NumElements, TD.getTypeSize(Ty));
GenericValue Result;
Result.PointerVal = (PointerTy)Memory;
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(I, Result, SF);
if (I->getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
assert(I->getOperand(0)->getType()->isPointerType() && "Freeing nonptr?");
GenericValue Value = getOperandValue(I->getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free((void*)Value.PointerVal); // Free memory
}
// getElementOffset - The workhorse for getelementptr, load and store. This
// function returns the offset that arguments ArgOff+1 -> NumArgs specify for
// the pointer type specified by argument Arg.
//
static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
assert(isa<PointerType>(I->getPointerOperand()->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
PointerTy Total = 0;
const Type *Ty = I->getPointerOperand()->getType();
unsigned ArgOff = I->getFirstIndexOperandNumber();
while (ArgOff < I->getNumOperands()) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SLO = TD.getStructLayout(STy);
// Indicies must be ubyte constants...
const ConstantUInt *CPU = cast<ConstantUInt>(I->getOperand(ArgOff++));
assert(CPU->getType() == Type::UByteTy);
unsigned Index = CPU->getValue();
#ifdef PROFILE_STRUCTURE_FIELDS
if (ProfileStructureFields) {
// Do accounting for this field...
vector<unsigned> &OfC = FieldAccessCounts[STy];
if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size());
OfC[Index]++;
}
#endif
Total += SLO->MemberOffsets[Index];
Ty = STy->getElementTypes()[Index];
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be uint type...
assert(I->getOperand(ArgOff)->getType() == Type::UIntTy);
unsigned Idx = getOperandValue(I->getOperand(ArgOff++), SF).UIntVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << (ArgOff-I->getFirstIndexOperandNumber())
<< "\n";
// Get outta here!!!
siglongjmp(SignalRecoverBuffer, SIGTRAP);
}
Ty = ST->getElementType();
unsigned Size = TD.getTypeSize(Ty);
Total += Size*Idx;
}
}
return Total;
}
static void executeGEPInst(GetElementPtrInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
GenericValue Result;
Result.PointerVal = SrcPtr + getElementOffset(I, SF);
SetValue(I, Result, SF);
}
static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices
SrcPtr += Offset;
GenericValue *Ptr = (GenericValue*)SrcPtr;
GenericValue Result;
switch (I->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break;
case Type::UIntTyID:
case Type::IntTyID: Result.IntVal = Ptr->IntVal; break;
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = Ptr->ULongVal; break;
case Type::PointerTyID: Result.PointerVal = Ptr->PointerVal; break;
case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break;
case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break;
default:
cout << "Cannot load value of type " << I->getType() << "!\n";
}
SetValue(I, Result, SF);
}
static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
SrcPtr += getElementOffset(I, SF); // Handle any structure indices
GenericValue *Ptr = (GenericValue *)SrcPtr;
GenericValue Val = getOperandValue(I->getOperand(0), SF);
switch (I->getOperand(0)->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break;
case Type::UIntTyID:
case Type::IntTyID: Ptr->IntVal = Val.IntVal; break;
case Type::ULongTyID:
case Type::LongTyID: Ptr->LongVal = Val.LongVal; break;
case Type::PointerTyID: Ptr->PointerVal = Val.PointerVal; break;
case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break;
case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break;
default:
cout << "Cannot store value of type " << I->getType() << "!\n";
}
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
vector<GenericValue> ArgVals;
ArgVals.reserve(I->getNumOperands()-1);
for (unsigned i = 1; i < I->getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I->getOperand(i), SF));
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I->getCalledValue(), SF);
callMethod((Function*)SRC.PointerVal, ArgVals);
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(<<, UByte);
IMPLEMENT_SHIFT(<<, SByte);
IMPLEMENT_SHIFT(<<, UShort);
IMPLEMENT_SHIFT(<<, Short);
IMPLEMENT_SHIFT(<<, UInt);
IMPLEMENT_SHIFT(<<, Int);
IMPLEMENT_SHIFT(<<, ULong);
IMPLEMENT_SHIFT(<<, Long);
default:
cout << "Unhandled type for Shl instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
}
static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(>>, UByte);
IMPLEMENT_SHIFT(>>, SByte);
IMPLEMENT_SHIFT(>>, UShort);
IMPLEMENT_SHIFT(>>, Short);
IMPLEMENT_SHIFT(>>, UInt);
IMPLEMENT_SHIFT(>>, Int);
IMPLEMENT_SHIFT(>>, ULong);
IMPLEMENT_SHIFT(>>, Long);
default:
cout << "Unhandled type for Shr instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
case Type::DESTTY##TyID: \
switch (SrcTy->getPrimitiveID()) { \
IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
#define IMPLEMENT_CAST_CASE_END() \
default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
break; \
} \
break
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static void executeCastInst(CastInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType();
const Type *SrcTy = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_CAST_CASE(UByte , (unsigned char));
IMPLEMENT_CAST_CASE(SByte , ( signed char));
IMPLEMENT_CAST_CASE(UShort , (unsigned short));
IMPLEMENT_CAST_CASE(Short , ( signed char));
IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
IMPLEMENT_CAST_CASE(Int , ( signed int ));
IMPLEMENT_CAST_CASE(ULong , (uint64_t));
IMPLEMENT_CAST_CASE(Long , ( int64_t));
IMPLEMENT_CAST_CASE(Pointer, (PointerTy)(uint32_t));
IMPLEMENT_CAST_CASE(Float , (float));
IMPLEMENT_CAST_CASE(Double , (double));
default:
cout << "Unhandled dest type for cast instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Function *M) : Annotation(MethodInfoAID) {
// Assign slot numbers to the function arguments...
const Function::ArgumentListType &ArgList = M->getArgumentList();
for (Function::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI)
(*AI)->addAnnotation(new SlotNumber(getValueSlot(*AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
BasicBlock *BB = *MI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II){
Instruction *I = *II; // For each instruction... Add Annote
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I)));
}
}
}
unsigned MethodInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified function...
//
void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller == 0 ||
ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
if (M->isExternal()) {
GenericValue Result = callExternalMethod(M, ArgVals);
const Type *RetTy = M->getReturnType();
// Copy the result back into the result variable if we are not returning
// void.
if (RetTy != Type::VoidTy) {
if (!ECStack.empty() && ECStack.back().Caller) {
ExecutionContext &SF = ECStack.back();
SetValue(SF.Caller, Result, SF);
SF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// print it.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
if (RetTy->isIntegral())
ExitCode = Result.SByteVal; // Capture the exit code of the program
}
}
return;
}
// Process the function, assigning instruction numbers to the instructions in
// the function. Also calculate the number of values for each type slot
// active.
//
MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(MethInfo->NumPlaneElements.size());
for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) {
StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]);
// Taint the initial values of stuff
memset(&StackFrame.Values[i][0], 42,
MethInfo->NumPlaneElements[i]*sizeof(GenericValue));
}
StackFrame.PrevBB = 0; // No previous BB for PHI nodes...
// Run through the function arguments and initialize their values...
assert(ArgVals.size() == M->getArgumentList().size() &&
"Invalid number of values passed to function invocation!");
unsigned i = 0;
for (Function::ArgumentListType::iterator MI = M->getArgumentList().begin(),
ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) {
SetValue(*MI, ArgVals[i], StackFrame);
}
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
if (Trace)
CW << "Run:" << I;
// Set a sigsetjmp buffer so that we can recover if an error happens during
// instruction execution...
//
if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) {
--SF.CurInst; // Back up to erroring instruction
if (SigNo != SIGINT) {
cout << "EXCEPTION OCCURRED [" << _sys_siglistp[SigNo] << "]:\n";
printStackTrace();
// If -abort-on-exception was specified, terminate LLI instead of trying
// to debug it.
//
if (AbortOnExceptions) exit(1);
} else if (SigNo == SIGINT) {
cout << "CTRL-C Detected, execution halted.\n";
}
InInstruction = false;
return true;
}
InInstruction = true;
if (I->isBinaryOp()) {
executeBinaryInst(cast<BinaryOperator>(I), SF);
} else {
switch (I->getOpcode()) {
// Terminators
case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break;
case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break;
// Memory Instructions
case Instruction::Alloca:
case Instruction::Malloc: executeAllocInst((AllocationInst*)I, SF); break;
case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break;
case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break;
case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break;
case Instruction::GetElementPtr:
executeGEPInst(cast<GetElementPtrInst>(I), SF); break;
// Miscellaneous Instructions
case Instruction::Call: executeCallInst (cast<CallInst> (I), SF); break;
case Instruction::PHINode: executePHINode (cast<PHINode> (I), SF); break;
case Instruction::Shl: executeShlInst (cast<ShiftInst>(I), SF); break;
case Instruction::Shr: executeShrInst (cast<ShiftInst>(I), SF); break;
case Instruction::Cast: executeCastInst (cast<CastInst> (I), SF); break;
default:
cout << "Don't know how to execute this instruction!\n-->" << I;
}
}
InInstruction = false;
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
unsigned StackSize = ECStack.size();
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// If we we able to step into the function, finish it now. We might not be
// able the step into a function, if it's external for example.
if (ECStack.size() != StackSize)
finish(); // Finish executing the function...
else
printCurrentInstruction();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
WriteAsOperand(cout, ECStack.back().CurBB) << ":\n";
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID: cout << V.SByteVal; break;
case Type::UByteTyID: cout << V.UByteVal; break;
case Type::ShortTyID: cout << V.ShortVal; break;
case Type::UShortTyID: cout << V.UShortVal; break;
case Type::IntTyID: cout << V.IntVal; break;
case Type::UIntTyID: cout << V.UIntVal; break;
case Type::LongTyID: cout << (long)V.LongVal; break;
case Type::ULongTyID: cout << (unsigned long)V.ULongVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
case Type::PointerTyID:cout << (void*)V.PointerVal; break;
default:
cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::print(const Type *Ty, GenericValue V) {
CW << Ty << " ";
printValue(Ty, V);
}
void Interpreter::print(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Function *F = dyn_cast<const Function>(PickedVal)) {
CW << F; // Print the function
} else if (const Type *Ty = dyn_cast<const Type>(PickedVal)) {
CW << "type %" << Name << " = " << Ty->getDescription() << "\n";
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(PickedVal)) {
CW << BB; // Print the basic block
} else { // Otherwise there should be an annotation for the slot#
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << "\n";
}
}
void Interpreter::infoValue(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
cout << "Value: ";
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << "\n";
printOperandInfo(PickedVal, ECStack[CurFrame]);
}
// printStackFrame - Print information about the specified stack frame, or -1
// for the default one.
//
void Interpreter::printStackFrame(int FrameNo = -1) {
if (FrameNo == -1) FrameNo = CurFrame;
Function *Func = ECStack[FrameNo].CurMethod;
const Type *RetTy = Func->getReturnType();
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
<< (Value*)RetTy << " \"" << Func->getName() << "\"(";
Function::ArgumentListType &Args = Func->getArgumentList();
for (unsigned i = 0; i < Args.size(); ++i) {
if (i != 0) cout << ", ";
CW << (Value*)Args[i] << "=";
printValue(Args[i]->getType(), getOperandValue(Args[i], ECStack[FrameNo]));
}
cout << ")\n";
CW << *(ECStack[FrameNo].CurInst-(FrameNo != int(ECStack.size()-1)));
}