mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	ConstantFoldLoadThroughGEPConstantExpr. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83311 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			541 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			541 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CloneFunction.cpp - Clone a function into another function ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CloneFunctionInto interface, which is used as the
 | |
| // low-level function cloner.  This is used by the CloneFunction and function
 | |
| // inliner to do the dirty work of copying the body of a function around.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| // CloneBasicBlock - See comments in Cloning.h
 | |
| BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
 | |
|                                   DenseMap<const Value*, Value*> &ValueMap,
 | |
|                                   const char *NameSuffix, Function *F,
 | |
|                                   ClonedCodeInfo *CodeInfo) {
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
|   
 | |
|   // Loop over all instructions, and copy them over.
 | |
|   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
 | |
|        II != IE; ++II) {
 | |
|     Instruction *NewInst = II->clone();
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     ValueMap[II] = NewInst;                // Add instruction map to value.
 | |
|     
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|                                         BB != &BB->getParent()->getEntryBlock();
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| // Clone OldFunc into NewFunc, transforming the old arguments into references to
 | |
| // ArgMap values.
 | |
| //
 | |
| void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                              DenseMap<const Value*, Value*> &ValueMap,
 | |
|                              SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                              const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
 | |
|        E = OldFunc->arg_end(); I != E; ++I)
 | |
|     assert(ValueMap.count(I) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   // Clone any attributes.
 | |
|   if (NewFunc->arg_size() == OldFunc->arg_size())
 | |
|     NewFunc->copyAttributesFrom(OldFunc);
 | |
|   else {
 | |
|     //Some arguments were deleted with the ValueMap. Copy arguments one by one
 | |
|     for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
 | |
|            E = OldFunc->arg_end(); I != E; ++I)
 | |
|       if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
 | |
|         Anew->addAttr( OldFunc->getAttributes()
 | |
|                        .getParamAttributes(I->getArgNo() + 1));
 | |
|     NewFunc->setAttributes(NewFunc->getAttributes()
 | |
|                            .addAttr(0, OldFunc->getAttributes()
 | |
|                                      .getRetAttributes()));
 | |
|     NewFunc->setAttributes(NewFunc->getAttributes()
 | |
|                            .addAttr(~0, OldFunc->getAttributes()
 | |
|                                      .getFnAttributes()));
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the basic blocks in the function, cloning them as
 | |
|   // appropriate.  Note that we save BE this way in order to handle cloning of
 | |
|   // recursive functions into themselves.
 | |
|   //
 | |
|   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | |
|        BI != BE; ++BI) {
 | |
|     const BasicBlock &BB = *BI;
 | |
| 
 | |
|     // Create a new basic block and copy instructions into it!
 | |
|     BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
 | |
|                                       CodeInfo);
 | |
|     ValueMap[&BB] = CBB;                       // Add basic block mapping.
 | |
| 
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
 | |
|       Returns.push_back(RI);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the instructions in the function, fixing up operand
 | |
|   // references as we go.  This uses ValueMap to do all the hard work.
 | |
|   //
 | |
|   for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
 | |
|          BE = NewFunc->end(); BB != BE; ++BB)
 | |
|     // Loop over all instructions, fixing each one as we find it...
 | |
|     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
 | |
|       RemapInstruction(II, ValueMap);
 | |
| }
 | |
| 
 | |
| /// CloneFunction - Return a copy of the specified function, but without
 | |
| /// embedding the function into another module.  Also, any references specified
 | |
| /// in the ValueMap are changed to refer to their mapped value instead of the
 | |
| /// original one.  If any of the arguments to the function are in the ValueMap,
 | |
| /// the arguments are deleted from the resultant function.  The ValueMap is
 | |
| /// updated to include mappings from all of the instructions and basicblocks in
 | |
| /// the function from their old to new values.
 | |
| ///
 | |
| Function *llvm::CloneFunction(const Function *F,
 | |
|                               DenseMap<const Value*, Value*> &ValueMap,
 | |
|                               ClonedCodeInfo *CodeInfo) {
 | |
|   std::vector<const Type*> ArgTypes;
 | |
| 
 | |
|   // The user might be deleting arguments to the function by specifying them in
 | |
|   // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
 | |
|   //
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I)
 | |
|     if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
 | |
|       ArgTypes.push_back(I->getType());
 | |
| 
 | |
|   // Create a new function type...
 | |
|   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
 | |
|                                     ArgTypes, F->getFunctionType()->isVarArg());
 | |
| 
 | |
|   // Create the new function...
 | |
|   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
 | |
| 
 | |
|   // Loop over the arguments, copying the names of the mapped arguments over...
 | |
|   Function::arg_iterator DestI = NewF->arg_begin();
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I)
 | |
|     if (ValueMap.count(I) == 0) {   // Is this argument preserved?
 | |
|       DestI->setName(I->getName()); // Copy the name over...
 | |
|       ValueMap[I] = DestI++;        // Add mapping to ValueMap
 | |
|     }
 | |
| 
 | |
|   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
 | |
|   CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
 | |
|   return NewF;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// PruningFunctionCloner - This class is a private class used to implement
 | |
|   /// the CloneAndPruneFunctionInto method.
 | |
|   struct VISIBILITY_HIDDEN PruningFunctionCloner {
 | |
|     Function *NewFunc;
 | |
|     const Function *OldFunc;
 | |
|     DenseMap<const Value*, Value*> &ValueMap;
 | |
|     SmallVectorImpl<ReturnInst*> &Returns;
 | |
|     const char *NameSuffix;
 | |
|     ClonedCodeInfo *CodeInfo;
 | |
|     const TargetData *TD;
 | |
|     Value *DbgFnStart;
 | |
|   public:
 | |
|     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
 | |
|                           DenseMap<const Value*, Value*> &valueMap,
 | |
|                           SmallVectorImpl<ReturnInst*> &returns,
 | |
|                           const char *nameSuffix, 
 | |
|                           ClonedCodeInfo *codeInfo,
 | |
|                           const TargetData *td)
 | |
|     : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
 | |
|       NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
 | |
|     }
 | |
| 
 | |
|     /// CloneBlock - The specified block is found to be reachable, clone it and
 | |
|     /// anything that it can reach.
 | |
|     void CloneBlock(const BasicBlock *BB,
 | |
|                     std::vector<const BasicBlock*> &ToClone);
 | |
|     
 | |
|   public:
 | |
|     /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
 | |
|     /// mapping its operands through ValueMap if they are available.
 | |
|     Constant *ConstantFoldMappedInstruction(const Instruction *I);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// CloneBlock - The specified block is found to be reachable, clone it and
 | |
| /// anything that it can reach.
 | |
| void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
 | |
|                                        std::vector<const BasicBlock*> &ToClone){
 | |
|   Value *&BBEntry = ValueMap[BB];
 | |
| 
 | |
|   // Have we already cloned this block?
 | |
|   if (BBEntry) return;
 | |
|   
 | |
|   // Nope, clone it now.
 | |
|   BasicBlock *NewBB;
 | |
|   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
|   
 | |
|   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
 | |
|   // loop doesn't include the terminator.
 | |
|   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
 | |
|        II != IE; ++II) {
 | |
|     // If this instruction constant folds, don't bother cloning the instruction,
 | |
|     // instead, just add the constant to the value map.
 | |
|     if (Constant *C = ConstantFoldMappedInstruction(II)) {
 | |
|       ValueMap[II] = C;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
 | |
|     if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
 | |
|       if (DbgFnStart == NULL) {
 | |
|         DISubprogram SP(DFSI->getSubprogram());
 | |
|         if (SP.describes(BB->getParent()))
 | |
|           DbgFnStart = DFSI->getSubprogram();
 | |
|       }
 | |
|     } 
 | |
|     if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
 | |
|       if (DREIS->getContext() == DbgFnStart)
 | |
|         continue;
 | |
|     }
 | |
|       
 | |
|     Instruction *NewInst = II->clone();
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     ValueMap[II] = NewInst;                // Add instruction map to value.
 | |
|     
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finally, clone over the terminator.
 | |
|   const TerminatorInst *OldTI = BB->getTerminator();
 | |
|   bool TerminatorDone = false;
 | |
|   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
 | |
|     if (BI->isConditional()) {
 | |
|       // If the condition was a known constant in the callee...
 | |
|       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | |
|       // Or is a known constant in the caller...
 | |
|       if (Cond == 0)  
 | |
|         Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
 | |
| 
 | |
|       // Constant fold to uncond branch!
 | |
|       if (Cond) {
 | |
|         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
 | |
|         ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|         ToClone.push_back(Dest);
 | |
|         TerminatorDone = true;
 | |
|       }
 | |
|     }
 | |
|   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
 | |
|     // If switching on a value known constant in the caller.
 | |
|     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     if (Cond == 0)  // Or known constant after constant prop in the callee...
 | |
|       Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
 | |
|     if (Cond) {     // Constant fold to uncond branch!
 | |
|       BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
 | |
|       ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|       ToClone.push_back(Dest);
 | |
|       TerminatorDone = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!TerminatorDone) {
 | |
|     Instruction *NewInst = OldTI->clone();
 | |
|     if (OldTI->hasName())
 | |
|       NewInst->setName(OldTI->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     ValueMap[OldTI] = NewInst;             // Add instruction map to value.
 | |
|     
 | |
|     // Recursively clone any reachable successor blocks.
 | |
|     const TerminatorInst *TI = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       ToClone.push_back(TI->getSuccessor(i));
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|       BB != &BB->getParent()->front();
 | |
|   }
 | |
|   
 | |
|   if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
 | |
|     Returns.push_back(RI);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
 | |
| /// mapping its operands through ValueMap if they are available.
 | |
| Constant *PruningFunctionCloner::
 | |
| ConstantFoldMappedInstruction(const Instruction *I) {
 | |
|   LLVMContext &Context = I->getContext();
 | |
|   
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
 | |
|                                                            ValueMap,
 | |
|                                                            Context)))
 | |
|       Ops.push_back(Op);
 | |
|     else
 | |
|       return 0;  // All operands not constant!
 | |
| 
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | |
|                                            &Ops[0], Ops.size(), 
 | |
|                                            Context, TD);
 | |
| 
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
 | |
|       if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|           if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|             return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
 | |
|                                                           CE);
 | |
| 
 | |
|   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
 | |
|                                   Ops.size(), Context, TD);
 | |
| }
 | |
| 
 | |
| /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
 | |
| /// except that it does some simple constant prop and DCE on the fly.  The
 | |
| /// effect of this is to copy significantly less code in cases where (for
 | |
| /// example) a function call with constant arguments is inlined, and those
 | |
| /// constant arguments cause a significant amount of code in the callee to be
 | |
| /// dead.  Since this doesn't produce an exact copy of the input, it can't be
 | |
| /// used for things like CloneFunction or CloneModule.
 | |
| void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                                      DenseMap<const Value*, Value*> &ValueMap,
 | |
|                                      SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                                      const char *NameSuffix, 
 | |
|                                      ClonedCodeInfo *CodeInfo,
 | |
|                                      const TargetData *TD) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
|   LLVMContext &Context = OldFunc->getContext();
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   for (Function::const_arg_iterator II = OldFunc->arg_begin(), 
 | |
|        E = OldFunc->arg_end(); II != E; ++II)
 | |
|     assert(ValueMap.count(II) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
 | |
|                             NameSuffix, CodeInfo, TD);
 | |
| 
 | |
|   // Clone the entry block, and anything recursively reachable from it.
 | |
|   std::vector<const BasicBlock*> CloneWorklist;
 | |
|   CloneWorklist.push_back(&OldFunc->getEntryBlock());
 | |
|   while (!CloneWorklist.empty()) {
 | |
|     const BasicBlock *BB = CloneWorklist.back();
 | |
|     CloneWorklist.pop_back();
 | |
|     PFC.CloneBlock(BB, CloneWorklist);
 | |
|   }
 | |
|   
 | |
|   // Loop over all of the basic blocks in the old function.  If the block was
 | |
|   // reachable, we have cloned it and the old block is now in the value map:
 | |
|   // insert it into the new function in the right order.  If not, ignore it.
 | |
|   //
 | |
|   // Defer PHI resolution until rest of function is resolved.
 | |
|   SmallVector<const PHINode*, 16> PHIToResolve;
 | |
|   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | |
|        BI != BE; ++BI) {
 | |
|     BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
 | |
|     if (NewBB == 0) continue;  // Dead block.
 | |
| 
 | |
|     // Add the new block to the new function.
 | |
|     NewFunc->getBasicBlockList().push_back(NewBB);
 | |
|     
 | |
|     // Loop over all of the instructions in the block, fixing up operand
 | |
|     // references as we go.  This uses ValueMap to do all the hard work.
 | |
|     //
 | |
|     BasicBlock::iterator I = NewBB->begin();
 | |
|     
 | |
|     // Handle PHI nodes specially, as we have to remove references to dead
 | |
|     // blocks.
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       // Skip over all PHI nodes, remembering them for later.
 | |
|       BasicBlock::const_iterator OldI = BI->begin();
 | |
|       for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
 | |
|         PHIToResolve.push_back(cast<PHINode>(OldI));
 | |
|     }
 | |
|     
 | |
|     // Otherwise, remap the rest of the instructions normally.
 | |
|     for (; I != NewBB->end(); ++I)
 | |
|       RemapInstruction(I, ValueMap);
 | |
|   }
 | |
|   
 | |
|   // Defer PHI resolution until rest of function is resolved, PHI resolution
 | |
|   // requires the CFG to be up-to-date.
 | |
|   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
 | |
|     const PHINode *OPN = PHIToResolve[phino];
 | |
|     unsigned NumPreds = OPN->getNumIncomingValues();
 | |
|     const BasicBlock *OldBB = OPN->getParent();
 | |
|     BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
 | |
| 
 | |
|     // Map operands for blocks that are live and remove operands for blocks
 | |
|     // that are dead.
 | |
|     for (; phino != PHIToResolve.size() &&
 | |
|          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
 | |
|       OPN = PHIToResolve[phino];
 | |
|       PHINode *PN = cast<PHINode>(ValueMap[OPN]);
 | |
|       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
 | |
|         if (BasicBlock *MappedBlock = 
 | |
|             cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
 | |
|           Value *InVal = MapValue(PN->getIncomingValue(pred),
 | |
|                                   ValueMap, Context);
 | |
|           assert(InVal && "Unknown input value?");
 | |
|           PN->setIncomingValue(pred, InVal);
 | |
|           PN->setIncomingBlock(pred, MappedBlock);
 | |
|         } else {
 | |
|           PN->removeIncomingValue(pred, false);
 | |
|           --pred, --e;  // Revisit the next entry.
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     
 | |
|     // The loop above has removed PHI entries for those blocks that are dead
 | |
|     // and has updated others.  However, if a block is live (i.e. copied over)
 | |
|     // but its terminator has been changed to not go to this block, then our
 | |
|     // phi nodes will have invalid entries.  Update the PHI nodes in this
 | |
|     // case.
 | |
|     PHINode *PN = cast<PHINode>(NewBB->begin());
 | |
|     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
 | |
|     if (NumPreds != PN->getNumIncomingValues()) {
 | |
|       assert(NumPreds < PN->getNumIncomingValues());
 | |
|       // Count how many times each predecessor comes to this block.
 | |
|       std::map<BasicBlock*, unsigned> PredCount;
 | |
|       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
 | |
|            PI != E; ++PI)
 | |
|         --PredCount[*PI];
 | |
|       
 | |
|       // Figure out how many entries to remove from each PHI.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         ++PredCount[PN->getIncomingBlock(i)];
 | |
|       
 | |
|       // At this point, the excess predecessor entries are positive in the
 | |
|       // map.  Loop over all of the PHIs and remove excess predecessor
 | |
|       // entries.
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
 | |
|              E = PredCount.end(); PCI != E; ++PCI) {
 | |
|           BasicBlock *Pred     = PCI->first;
 | |
|           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
 | |
|             PN->removeIncomingValue(Pred, false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the loops above have made these phi nodes have 0 or 1 operand,
 | |
|     // replace them with undef or the input value.  We must do this for
 | |
|     // correctness, because 0-operand phis are not valid.
 | |
|     PN = cast<PHINode>(NewBB->begin());
 | |
|     if (PN->getNumIncomingValues() == 0) {
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       BasicBlock::const_iterator OldI = OldBB->begin();
 | |
|       while ((PN = dyn_cast<PHINode>(I++))) {
 | |
|         Value *NV = UndefValue::get(PN->getType());
 | |
|         PN->replaceAllUsesWith(NV);
 | |
|         assert(ValueMap[OldI] == PN && "ValueMap mismatch");
 | |
|         ValueMap[OldI] = NV;
 | |
|         PN->eraseFromParent();
 | |
|         ++OldI;
 | |
|       }
 | |
|     }
 | |
|     // NOTE: We cannot eliminate single entry phi nodes here, because of
 | |
|     // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
 | |
|     // pointing at them.  Thus, deleting one would require scanning the ValueMap
 | |
|     // to update any entries in it that would require that.  This would be
 | |
|     // really slow.
 | |
|   }
 | |
|   
 | |
|   // Now that the inlined function body has been fully constructed, go through
 | |
|   // and zap unconditional fall-through branches.  This happen all the time when
 | |
|   // specializing code: code specialization turns conditional branches into
 | |
|   // uncond branches, and this code folds them.
 | |
|   Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
 | |
|   while (I != NewFunc->end()) {
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
 | |
|     if (!BI || BI->isConditional()) { ++I; continue; }
 | |
|     
 | |
|     // Note that we can't eliminate uncond branches if the destination has
 | |
|     // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
 | |
|     // require scanning the ValueMap to update any entries that point to the phi
 | |
|     // node.
 | |
|     BasicBlock *Dest = BI->getSuccessor(0);
 | |
|     if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
 | |
|       ++I; continue;
 | |
|     }
 | |
|     
 | |
|     // We know all single-entry PHI nodes in the inlined function have been
 | |
|     // removed, so we just need to splice the blocks.
 | |
|     BI->eraseFromParent();
 | |
|     
 | |
|     // Move all the instructions in the succ to the pred.
 | |
|     I->getInstList().splice(I->end(), Dest->getInstList());
 | |
|     
 | |
|     // Make all PHI nodes that referred to Dest now refer to I as their source.
 | |
|     Dest->replaceAllUsesWith(I);
 | |
| 
 | |
|     // Remove the dest block.
 | |
|     Dest->eraseFromParent();
 | |
|     
 | |
|     // Do not increment I, iteratively merge all things this block branches to.
 | |
|   }
 | |
| }
 |