mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79758 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1081 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1081 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This register allocator allocates registers to a basic block at a time,
 | |
| // attempting to keep values in registers and reusing registers as appropriate.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/IndexedMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumStores, "Number of stores added");
 | |
| STATISTIC(NumLoads , "Number of loads added");
 | |
| 
 | |
| static RegisterRegAlloc
 | |
|   localRegAlloc("local", "local register allocator",
 | |
|                 createLocalRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID;
 | |
|     RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
 | |
|   private:
 | |
|     const TargetMachine *TM;
 | |
|     MachineFunction *MF;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const TargetInstrInfo *TII;
 | |
| 
 | |
|     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
 | |
|     // values are spilled.
 | |
|     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
 | |
| 
 | |
|     // Virt2PhysRegMap - This map contains entries for each virtual register
 | |
|     // that is currently available in a physical register.
 | |
|     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 | |
| 
 | |
|     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
 | |
|       return Virt2PhysRegMap[VirtReg];
 | |
|     }
 | |
| 
 | |
|     // PhysRegsUsed - This array is effectively a map, containing entries for
 | |
|     // each physical register that currently has a value (ie, it is in
 | |
|     // Virt2PhysRegMap).  The value mapped to is the virtual register
 | |
|     // corresponding to the physical register (the inverse of the
 | |
|     // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
 | |
|     // because it is used by a future instruction, and to -2 if it is not
 | |
|     // allocatable.  If the entry for a physical register is -1, then the
 | |
|     // physical register is "not in the map".
 | |
|     //
 | |
|     std::vector<int> PhysRegsUsed;
 | |
| 
 | |
|     // PhysRegsUseOrder - This contains a list of the physical registers that
 | |
|     // currently have a virtual register value in them.  This list provides an
 | |
|     // ordering of registers, imposing a reallocation order.  This list is only
 | |
|     // used if all registers are allocated and we have to spill one, in which
 | |
|     // case we spill the least recently used register.  Entries at the front of
 | |
|     // the list are the least recently used registers, entries at the back are
 | |
|     // the most recently used.
 | |
|     //
 | |
|     std::vector<unsigned> PhysRegsUseOrder;
 | |
| 
 | |
|     // Virt2LastUseMap - This maps each virtual register to its last use
 | |
|     // (MachineInstr*, operand index pair).
 | |
|     IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
 | |
|     Virt2LastUseMap;
 | |
| 
 | |
|     std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | |
|       return Virt2LastUseMap[Reg];
 | |
|     }
 | |
| 
 | |
|     // VirtRegModified - This bitset contains information about which virtual
 | |
|     // registers need to be spilled back to memory when their registers are
 | |
|     // scavenged.  If a virtual register has simply been rematerialized, there
 | |
|     // is no reason to spill it to memory when we need the register back.
 | |
|     //
 | |
|     BitVector VirtRegModified;
 | |
|     
 | |
|     // UsedInMultipleBlocks - Tracks whether a particular register is used in
 | |
|     // more than one block.
 | |
|     BitVector UsedInMultipleBlocks;
 | |
| 
 | |
|     void markVirtRegModified(unsigned Reg, bool Val = true) {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | |
|       Reg -= TargetRegisterInfo::FirstVirtualRegister;
 | |
|       if (Val)
 | |
|         VirtRegModified.set(Reg);
 | |
|       else
 | |
|         VirtRegModified.reset(Reg);
 | |
|     }
 | |
| 
 | |
|     bool isVirtRegModified(unsigned Reg) const {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | |
|       assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
 | |
|              && "Illegal virtual register!");
 | |
|       return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
 | |
|     }
 | |
| 
 | |
|     void AddToPhysRegsUseOrder(unsigned Reg) {
 | |
|       std::vector<unsigned>::iterator It =
 | |
|         std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
 | |
|       if (It != PhysRegsUseOrder.end())
 | |
|         PhysRegsUseOrder.erase(It);
 | |
|       PhysRegsUseOrder.push_back(Reg);
 | |
|     }
 | |
| 
 | |
|     void MarkPhysRegRecentlyUsed(unsigned Reg) {
 | |
|       if (PhysRegsUseOrder.empty() ||
 | |
|           PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
 | |
| 
 | |
|       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
 | |
|         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
 | |
|           unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
 | |
|           PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
 | |
|           // Add it to the end of the list
 | |
|           PhysRegsUseOrder.push_back(RegMatch);
 | |
|           if (RegMatch == Reg)
 | |
|             return;    // Found an exact match, exit early
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     virtual const char *getPassName() const {
 | |
|       return "Local Register Allocator";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequiredID(PHIEliminationID);
 | |
|       AU.addRequiredID(TwoAddressInstructionPassID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// runOnMachineFunction - Register allocate the whole function
 | |
|     bool runOnMachineFunction(MachineFunction &Fn);
 | |
| 
 | |
|     /// AllocateBasicBlock - Register allocate the specified basic block.
 | |
|     void AllocateBasicBlock(MachineBasicBlock &MBB);
 | |
| 
 | |
| 
 | |
|     /// areRegsEqual - This method returns true if the specified registers are
 | |
|     /// related to each other.  To do this, it checks to see if they are equal
 | |
|     /// or if the first register is in the alias set of the second register.
 | |
|     ///
 | |
|     bool areRegsEqual(unsigned R1, unsigned R2) const {
 | |
|       if (R1 == R2) return true;
 | |
|       for (const unsigned *AliasSet = TRI->getAliasSet(R2);
 | |
|            *AliasSet; ++AliasSet) {
 | |
|         if (*AliasSet == R1) return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// getStackSpaceFor - This returns the frame index of the specified virtual
 | |
|     /// register on the stack, allocating space if necessary.
 | |
|     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
 | |
| 
 | |
|     /// removePhysReg - This method marks the specified physical register as no
 | |
|     /// longer being in use.
 | |
|     ///
 | |
|     void removePhysReg(unsigned PhysReg);
 | |
| 
 | |
|     /// spillVirtReg - This method spills the value specified by PhysReg into
 | |
|     /// the virtual register slot specified by VirtReg.  It then updates the RA
 | |
|     /// data structures to indicate the fact that PhysReg is now available.
 | |
|     ///
 | |
|     void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|                       unsigned VirtReg, unsigned PhysReg);
 | |
| 
 | |
|     /// spillPhysReg - This method spills the specified physical register into
 | |
|     /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
 | |
|     /// true, then the request is ignored if the physical register does not
 | |
|     /// contain a virtual register.
 | |
|     ///
 | |
|     void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | |
|                       unsigned PhysReg, bool OnlyVirtRegs = false);
 | |
| 
 | |
|     /// assignVirtToPhysReg - This method updates local state so that we know
 | |
|     /// that PhysReg is the proper container for VirtReg now.  The physical
 | |
|     /// register must not be used for anything else when this is called.
 | |
|     ///
 | |
|     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
 | |
| 
 | |
|     /// isPhysRegAvailable - Return true if the specified physical register is
 | |
|     /// free and available for use.  This also includes checking to see if
 | |
|     /// aliased registers are all free...
 | |
|     ///
 | |
|     bool isPhysRegAvailable(unsigned PhysReg) const;
 | |
| 
 | |
|     /// getFreeReg - Look to see if there is a free register available in the
 | |
|     /// specified register class.  If not, return 0.
 | |
|     ///
 | |
|     unsigned getFreeReg(const TargetRegisterClass *RC);
 | |
| 
 | |
|     /// getReg - Find a physical register to hold the specified virtual
 | |
|     /// register.  If all compatible physical registers are used, this method
 | |
|     /// spills the last used virtual register to the stack, and uses that
 | |
|     /// register. If NoFree is true, that means the caller knows there isn't
 | |
|     /// a free register, do not call getFreeReg().
 | |
|     unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | |
|                     unsigned VirtReg, bool NoFree = false);
 | |
| 
 | |
|     /// reloadVirtReg - This method transforms the specified virtual
 | |
|     /// register use to refer to a physical register.  This method may do this
 | |
|     /// in one of several ways: if the register is available in a physical
 | |
|     /// register already, it uses that physical register.  If the value is not
 | |
|     /// in a physical register, and if there are physical registers available,
 | |
|     /// it loads it into a register.  If register pressure is high, and it is
 | |
|     /// possible, it tries to fold the load of the virtual register into the
 | |
|     /// instruction itself.  It avoids doing this if register pressure is low to
 | |
|     /// improve the chance that subsequent instructions can use the reloaded
 | |
|     /// value.  This method returns the modified instruction.
 | |
|     ///
 | |
|     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | |
|                                 unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
 | |
| 
 | |
|     /// ComputeLocalLiveness - Computes liveness of registers within a basic
 | |
|     /// block, setting the killed/dead flags as appropriate.
 | |
|     void ComputeLocalLiveness(MachineBasicBlock& MBB);
 | |
| 
 | |
|     void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
 | |
|                        unsigned PhysReg);
 | |
|   };
 | |
|   char RALocal::ID = 0;
 | |
| }
 | |
| 
 | |
| /// getStackSpaceFor - This allocates space for the specified virtual register
 | |
| /// to be held on the stack.
 | |
| int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
 | |
|   // Find the location Reg would belong...
 | |
|   int SS = StackSlotForVirtReg[VirtReg];
 | |
|   if (SS != -1)
 | |
|     return SS;          // Already has space allocated?
 | |
| 
 | |
|   // Allocate a new stack object for this spill location...
 | |
|   int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
 | |
|                                                        RC->getAlignment());
 | |
| 
 | |
|   // Assign the slot...
 | |
|   StackSlotForVirtReg[VirtReg] = FrameIdx;
 | |
|   return FrameIdx;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// removePhysReg - This method marks the specified physical register as no
 | |
| /// longer being in use.
 | |
| ///
 | |
| void RALocal::removePhysReg(unsigned PhysReg) {
 | |
|   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
 | |
| 
 | |
|   std::vector<unsigned>::iterator It =
 | |
|     std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
 | |
|   if (It != PhysRegsUseOrder.end())
 | |
|     PhysRegsUseOrder.erase(It);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// spillVirtReg - This method spills the value specified by PhysReg into the
 | |
| /// virtual register slot specified by VirtReg.  It then updates the RA data
 | |
| /// structures to indicate the fact that PhysReg is now available.
 | |
| ///
 | |
| void RALocal::spillVirtReg(MachineBasicBlock &MBB,
 | |
|                            MachineBasicBlock::iterator I,
 | |
|                            unsigned VirtReg, unsigned PhysReg) {
 | |
|   assert(VirtReg && "Spilling a physical register is illegal!"
 | |
|          " Must not have appropriate kill for the register or use exists beyond"
 | |
|          " the intended one.");
 | |
|   DEBUG(errs() << "  Spilling register " << TRI->getName(PhysReg)
 | |
|                << " containing %reg" << VirtReg);
 | |
|   
 | |
|   if (!isVirtRegModified(VirtReg)) {
 | |
|     DEBUG(errs() << " which has not been modified, so no store necessary!");
 | |
|     std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
 | |
|     if (LastUse.first)
 | |
|       LastUse.first->getOperand(LastUse.second).setIsKill();
 | |
|   } else {
 | |
|     // Otherwise, there is a virtual register corresponding to this physical
 | |
|     // register.  We only need to spill it into its stack slot if it has been
 | |
|     // modified.
 | |
|     const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | |
|     int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | |
|     DEBUG(errs() << " to stack slot #" << FrameIndex);
 | |
|     // If the instruction reads the register that's spilled, (e.g. this can
 | |
|     // happen if it is a move to a physical register), then the spill
 | |
|     // instruction is not a kill.
 | |
|     bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
 | |
|     TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
 | |
|     ++NumStores;   // Update statistics
 | |
|   }
 | |
| 
 | |
|   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
 | |
| 
 | |
|   DEBUG(errs() << '\n');
 | |
|   removePhysReg(PhysReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// spillPhysReg - This method spills the specified physical register into the
 | |
| /// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
 | |
| /// then the request is ignored if the physical register does not contain a
 | |
| /// virtual register.
 | |
| ///
 | |
| void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | |
|                            unsigned PhysReg, bool OnlyVirtRegs) {
 | |
|   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
 | |
|     assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
 | |
|     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
 | |
|       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
 | |
|   } else {
 | |
|     // If the selected register aliases any other registers, we must make
 | |
|     // sure that one of the aliases isn't alive.
 | |
|     for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | |
|          *AliasSet; ++AliasSet)
 | |
|       if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
 | |
|           PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
 | |
|           if (PhysRegsUsed[*AliasSet])
 | |
|             spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// assignVirtToPhysReg - This method updates local state so that we know
 | |
| /// that PhysReg is the proper container for VirtReg now.  The physical
 | |
| /// register must not be used for anything else when this is called.
 | |
| ///
 | |
| void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
 | |
|   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
 | |
|   // Update information to note the fact that this register was just used, and
 | |
|   // it holds VirtReg.
 | |
|   PhysRegsUsed[PhysReg] = VirtReg;
 | |
|   getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
 | |
|   AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isPhysRegAvailable - Return true if the specified physical register is free
 | |
| /// and available for use.  This also includes checking to see if aliased
 | |
| /// registers are all free...
 | |
| ///
 | |
| bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
 | |
|   if (PhysRegsUsed[PhysReg] != -1) return false;
 | |
| 
 | |
|   // If the selected register aliases any other allocated registers, it is
 | |
|   // not free!
 | |
|   for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | |
|        *AliasSet; ++AliasSet)
 | |
|     if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
 | |
|       return false;                    // Can't use this reg then.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getFreeReg - Look to see if there is a free register available in the
 | |
| /// specified register class.  If not, return 0.
 | |
| ///
 | |
| unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
 | |
|   // Get iterators defining the range of registers that are valid to allocate in
 | |
|   // this class, which also specifies the preferred allocation order.
 | |
|   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
 | |
|   TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
 | |
| 
 | |
|   for (; RI != RE; ++RI)
 | |
|     if (isPhysRegAvailable(*RI)) {       // Is reg unused?
 | |
|       assert(*RI != 0 && "Cannot use register!");
 | |
|       return *RI; // Found an unused register!
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getReg - Find a physical register to hold the specified virtual
 | |
| /// register.  If all compatible physical registers are used, this method spills
 | |
| /// the last used virtual register to the stack, and uses that register.
 | |
| ///
 | |
| unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
 | |
|                          unsigned VirtReg, bool NoFree) {
 | |
|   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | |
| 
 | |
|   // First check to see if we have a free register of the requested type...
 | |
|   unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
 | |
| 
 | |
|   // If we didn't find an unused register, scavenge one now!
 | |
|   if (PhysReg == 0) {
 | |
|     assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
 | |
| 
 | |
|     // Loop over all of the preallocated registers from the least recently used
 | |
|     // to the most recently used.  When we find one that is capable of holding
 | |
|     // our register, use it.
 | |
|     for (unsigned i = 0; PhysReg == 0; ++i) {
 | |
|       assert(i != PhysRegsUseOrder.size() &&
 | |
|              "Couldn't find a register of the appropriate class!");
 | |
| 
 | |
|       unsigned R = PhysRegsUseOrder[i];
 | |
| 
 | |
|       // We can only use this register if it holds a virtual register (ie, it
 | |
|       // can be spilled).  Do not use it if it is an explicitly allocated
 | |
|       // physical register!
 | |
|       assert(PhysRegsUsed[R] != -1 &&
 | |
|              "PhysReg in PhysRegsUseOrder, but is not allocated?");
 | |
|       if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
 | |
|         // If the current register is compatible, use it.
 | |
|         if (RC->contains(R)) {
 | |
|           PhysReg = R;
 | |
|           break;
 | |
|         } else {
 | |
|           // If one of the registers aliased to the current register is
 | |
|           // compatible, use it.
 | |
|           for (const unsigned *AliasIt = TRI->getAliasSet(R);
 | |
|                *AliasIt; ++AliasIt) {
 | |
|             if (RC->contains(*AliasIt) &&
 | |
|                 // If this is pinned down for some reason, don't use it.  For
 | |
|                 // example, if CL is pinned, and we run across CH, don't use
 | |
|                 // CH as justification for using scavenging ECX (which will
 | |
|                 // fail).
 | |
|                 PhysRegsUsed[*AliasIt] != 0 &&
 | |
|                 
 | |
|                 // Make sure the register is allocatable.  Don't allocate SIL on
 | |
|                 // x86-32.
 | |
|                 PhysRegsUsed[*AliasIt] != -2) {
 | |
|               PhysReg = *AliasIt;    // Take an aliased register
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(PhysReg && "Physical register not assigned!?!?");
 | |
| 
 | |
|     // At this point PhysRegsUseOrder[i] is the least recently used register of
 | |
|     // compatible register class.  Spill it to memory and reap its remains.
 | |
|     spillPhysReg(MBB, I, PhysReg);
 | |
|   }
 | |
| 
 | |
|   // Now that we know which register we need to assign this to, do it now!
 | |
|   assignVirtToPhysReg(VirtReg, PhysReg);
 | |
|   return PhysReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// reloadVirtReg - This method transforms the specified virtual
 | |
| /// register use to refer to a physical register.  This method may do this in
 | |
| /// one of several ways: if the register is available in a physical register
 | |
| /// already, it uses that physical register.  If the value is not in a physical
 | |
| /// register, and if there are physical registers available, it loads it into a
 | |
| /// register.  If register pressure is high, and it is possible, it tries to
 | |
| /// fold the load of the virtual register into the instruction itself.  It
 | |
| /// avoids doing this if register pressure is low to improve the chance that
 | |
| /// subsequent instructions can use the reloaded value.  This method returns the
 | |
| /// modified instruction.
 | |
| ///
 | |
| MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | |
|                                      unsigned OpNum,
 | |
|                                      SmallSet<unsigned, 4> &ReloadedRegs) {
 | |
|   unsigned VirtReg = MI->getOperand(OpNum).getReg();
 | |
| 
 | |
|   // If the virtual register is already available, just update the instruction
 | |
|   // and return.
 | |
|   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
 | |
|     MarkPhysRegRecentlyUsed(PR);       // Already have this value available!
 | |
|     MI->getOperand(OpNum).setReg(PR);  // Assign the input register
 | |
|     getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we need to fold it into the current instruction, or reload it.
 | |
|   // If we have registers available to hold the value, use them.
 | |
|   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | |
|   unsigned PhysReg = getFreeReg(RC);
 | |
|   int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | |
| 
 | |
|   if (PhysReg) {   // Register is available, allocate it!
 | |
|     assignVirtToPhysReg(VirtReg, PhysReg);
 | |
|   } else {         // No registers available.
 | |
|     // Force some poor hapless value out of the register file to
 | |
|     // make room for the new register, and reload it.
 | |
|     PhysReg = getReg(MBB, MI, VirtReg, true);
 | |
|   }
 | |
| 
 | |
|   markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded
 | |
| 
 | |
|   DEBUG(errs() << "  Reloading %reg" << VirtReg << " into "
 | |
|                << TRI->getName(PhysReg) << "\n");
 | |
| 
 | |
|   // Add move instruction(s)
 | |
|   TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
 | |
|   ++NumLoads;    // Update statistics
 | |
| 
 | |
|   MF->getRegInfo().setPhysRegUsed(PhysReg);
 | |
|   MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
 | |
|   getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
 | |
| 
 | |
|   if (!ReloadedRegs.insert(PhysReg)) {
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "Ran out of registers during register allocation!";
 | |
|     if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
 | |
|       Msg << "\nPlease check your inline asm statement for invalid "
 | |
|            << "constraints:\n";
 | |
|       MI->print(Msg, TM);
 | |
|     }
 | |
|     llvm_report_error(Msg.str());
 | |
|   }
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
 | |
|        *SubRegs; ++SubRegs) {
 | |
|     if (!ReloadedRegs.insert(*SubRegs)) {
 | |
|       std::string msg;
 | |
|       raw_string_ostream Msg(msg);
 | |
|       Msg << "Ran out of registers during register allocation!";
 | |
|       if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
 | |
|         Msg << "\nPlease check your inline asm statement for invalid "
 | |
|              << "constraints:\n";
 | |
|         MI->print(Msg, TM);
 | |
|       }
 | |
|       llvm_report_error(Msg.str());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| /// isReadModWriteImplicitKill - True if this is an implicit kill for a
 | |
| /// read/mod/write register, i.e. update partial register.
 | |
| static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand& MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | |
|         MO.isDef() && !MO.isDead())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isReadModWriteImplicitDef - True if this is an implicit def for a
 | |
| /// read/mod/write register, i.e. update partial register.
 | |
| static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand& MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | |
|         !MO.isDef() && MO.isKill())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // precedes - Helper function to determine with MachineInstr A
 | |
| // precedes MachineInstr B within the same MBB.
 | |
| static bool precedes(MachineBasicBlock::iterator A,
 | |
|                      MachineBasicBlock::iterator B) {
 | |
|   if (A == B)
 | |
|     return false;
 | |
|   
 | |
|   MachineBasicBlock::iterator I = A->getParent()->begin();
 | |
|   while (I != A->getParent()->end()) {
 | |
|     if (I == A)
 | |
|       return true;
 | |
|     else if (I == B)
 | |
|       return false;
 | |
|     
 | |
|     ++I;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ComputeLocalLiveness - Computes liveness of registers within a basic
 | |
| /// block, setting the killed/dead flags as appropriate.
 | |
| void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
 | |
|   MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
 | |
|   // Keep track of the most recently seen previous use or def of each reg, 
 | |
|   // so that we can update them with dead/kill markers.
 | |
|   DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|        I != E; ++I) {
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = I->getOperand(i);
 | |
|       // Uses don't trigger any flags, but we need to save
 | |
|       // them for later.  Also, we have to process these
 | |
|       // _before_ processing the defs, since an instr
 | |
|       // uses regs before it defs them.
 | |
|       if (MO.isReg() && MO.getReg() && MO.isUse()) {
 | |
|         LastUseDef[MO.getReg()] = std::make_pair(I, i);
 | |
|         
 | |
|         
 | |
|         if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
 | |
|         
 | |
|         const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
 | |
|         if (Aliases) {
 | |
|           while (*Aliases) {
 | |
|             DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | |
|               alias = LastUseDef.find(*Aliases);
 | |
|             
 | |
|             if (alias != LastUseDef.end() && alias->second.first != I)
 | |
|               LastUseDef[*Aliases] = std::make_pair(I, i);
 | |
|             
 | |
|             ++Aliases;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = I->getOperand(i);
 | |
|       // Defs others than 2-addr redefs _do_ trigger flag changes:
 | |
|       //   - A def followed by a def is dead
 | |
|       //   - A use followed by a def is a kill
 | |
|       if (MO.isReg() && MO.getReg() && MO.isDef()) {
 | |
|         DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | |
|           last = LastUseDef.find(MO.getReg());
 | |
|         if (last != LastUseDef.end()) {
 | |
|           // Check if this is a two address instruction.  If so, then
 | |
|           // the def does not kill the use.
 | |
|           if (last->second.first == I &&
 | |
|               I->isRegTiedToUseOperand(i))
 | |
|             continue;
 | |
|           
 | |
|           MachineOperand& lastUD =
 | |
|                       last->second.first->getOperand(last->second.second);
 | |
|           if (lastUD.isDef())
 | |
|             lastUD.setIsDead(true);
 | |
|           else
 | |
|             lastUD.setIsKill(true);
 | |
|         }
 | |
|         
 | |
|         LastUseDef[MO.getReg()] = std::make_pair(I, i);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Live-out (of the function) registers contain return values of the function,
 | |
|   // so we need to make sure they are alive at return time.
 | |
|   if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
 | |
|     MachineInstr* Ret = &MBB.back();
 | |
|     for (MachineRegisterInfo::liveout_iterator
 | |
|          I = MF->getRegInfo().liveout_begin(),
 | |
|          E = MF->getRegInfo().liveout_end(); I != E; ++I)
 | |
|       if (!Ret->readsRegister(*I)) {
 | |
|         Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
 | |
|         LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   // Finally, loop over the final use/def of each reg 
 | |
|   // in the block and determine if it is dead.
 | |
|   for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | |
|        I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
 | |
|     MachineInstr* MI = I->second.first;
 | |
|     unsigned idx = I->second.second;
 | |
|     MachineOperand& MO = MI->getOperand(idx);
 | |
|     
 | |
|     bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
 | |
|     
 | |
|     // A crude approximation of "live-out" calculation
 | |
|     bool usedOutsideBlock = isPhysReg ? false :   
 | |
|           UsedInMultipleBlocks.test(MO.getReg() -  
 | |
|                                     TargetRegisterInfo::FirstVirtualRegister);
 | |
|     if (!isPhysReg && !usedOutsideBlock)
 | |
|       for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
 | |
|            UE = MRI.reg_end(); UI != UE; ++UI)
 | |
|         // Two cases:
 | |
|         // - used in another block
 | |
|         // - used in the same block before it is defined (loop)
 | |
|         if (UI->getParent() != &MBB ||
 | |
|             (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
 | |
|           UsedInMultipleBlocks.set(MO.getReg() - 
 | |
|                                    TargetRegisterInfo::FirstVirtualRegister);
 | |
|           usedOutsideBlock = true;
 | |
|           break;
 | |
|         }
 | |
|     
 | |
|     // Physical registers and those that are not live-out of the block
 | |
|     // are killed/dead at their last use/def within this block.
 | |
|     if (isPhysReg || !usedOutsideBlock) {
 | |
|       if (MO.isUse()) {
 | |
|         // Don't mark uses that are tied to defs as kills.
 | |
|         if (!MI->isRegTiedToDefOperand(idx))
 | |
|           MO.setIsKill(true);
 | |
|       } else
 | |
|         MO.setIsDead(true);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
 | |
|   // loop over each instruction
 | |
|   MachineBasicBlock::iterator MII = MBB.begin();
 | |
|   
 | |
|   DEBUG({
 | |
|       const BasicBlock *LBB = MBB.getBasicBlock();
 | |
|       if (LBB)
 | |
|         errs() << "\nStarting RegAlloc of BB: " << LBB->getName();
 | |
|     });
 | |
| 
 | |
|   // Add live-in registers as active.
 | |
|   for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
 | |
|          E = MBB.livein_end(); I != E; ++I) {
 | |
|     unsigned Reg = *I;
 | |
|     MF->getRegInfo().setPhysRegUsed(Reg);
 | |
|     PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | |
|     AddToPhysRegsUseOrder(Reg); 
 | |
|     for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|          *SubRegs; ++SubRegs) {
 | |
|       if (PhysRegsUsed[*SubRegs] != -2) {
 | |
|         AddToPhysRegsUseOrder(*SubRegs); 
 | |
|         PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | |
|         MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   ComputeLocalLiveness(MBB);
 | |
|   
 | |
|   // Otherwise, sequentially allocate each instruction in the MBB.
 | |
|   while (MII != MBB.end()) {
 | |
|     MachineInstr *MI = MII++;
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     DEBUG({
 | |
|         errs() << "\nStarting RegAlloc of: " << *MI;
 | |
|         errs() << "  Regs have values: ";
 | |
|         for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
 | |
|           if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
 | |
|             errs() << "[" << TRI->getName(i)
 | |
|                    << ",%reg" << PhysRegsUsed[i] << "] ";
 | |
|         errs() << '\n';
 | |
|       });
 | |
| 
 | |
|     // Loop over the implicit uses, making sure that they are at the head of the
 | |
|     // use order list, so they don't get reallocated.
 | |
|     if (TID.ImplicitUses) {
 | |
|       for (const unsigned *ImplicitUses = TID.ImplicitUses;
 | |
|            *ImplicitUses; ++ImplicitUses)
 | |
|         MarkPhysRegRecentlyUsed(*ImplicitUses);
 | |
|     }
 | |
| 
 | |
|     SmallVector<unsigned, 8> Kills;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isKill()) {
 | |
|         if (!MO.isImplicit())
 | |
|           Kills.push_back(MO.getReg());
 | |
|         else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
 | |
|           // These are extra physical register kills when a sub-register
 | |
|           // is defined (def of a sub-register is a read/mod/write of the
 | |
|           // larger registers). Ignore.
 | |
|           Kills.push_back(MO.getReg());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If any physical regs are earlyclobber, spill any value they might
 | |
|     // have in them, then mark them unallocatable.
 | |
|     // If any virtual regs are earlyclobber, allocate them now (before
 | |
|     // freeing inputs that are killed).
 | |
|     if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
 | |
|       for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|         MachineOperand& MO = MI->getOperand(i);
 | |
|         if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
 | |
|             MO.getReg()) {
 | |
|           if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|             unsigned DestVirtReg = MO.getReg();
 | |
|             unsigned DestPhysReg;
 | |
| 
 | |
|             // If DestVirtReg already has a value, use it.
 | |
|             if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | |
|               DestPhysReg = getReg(MBB, MI, DestVirtReg);
 | |
|             MF->getRegInfo().setPhysRegUsed(DestPhysReg);
 | |
|             markVirtRegModified(DestVirtReg);
 | |
|             getVirtRegLastUse(DestVirtReg) =
 | |
|                    std::make_pair((MachineInstr*)0, 0);
 | |
|             DEBUG(errs() << "  Assigning " << TRI->getName(DestPhysReg)
 | |
|                          << " to %reg" << DestVirtReg << "\n");
 | |
|             MO.setReg(DestPhysReg);  // Assign the earlyclobber register
 | |
|           } else {
 | |
|             unsigned Reg = MO.getReg();
 | |
|             if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
 | |
|             // These are extra physical register defs when a sub-register
 | |
|             // is defined (def of a sub-register is a read/mod/write of the
 | |
|             // larger registers). Ignore.
 | |
|             if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
 | |
| 
 | |
|             MF->getRegInfo().setPhysRegUsed(Reg);
 | |
|             spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
 | |
|             PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | |
|             AddToPhysRegsUseOrder(Reg); 
 | |
| 
 | |
|             for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|                  *SubRegs; ++SubRegs) {
 | |
|               if (PhysRegsUsed[*SubRegs] != -2) {
 | |
|                 MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | |
|                 PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | |
|                 AddToPhysRegsUseOrder(*SubRegs); 
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Get the used operands into registers.  This has the potential to spill
 | |
|     // incoming values if we are out of registers.  Note that we completely
 | |
|     // ignore physical register uses here.  We assume that if an explicit
 | |
|     // physical register is referenced by the instruction, that it is guaranteed
 | |
|     // to be live-in, or the input is badly hosed.
 | |
|     //
 | |
|     SmallSet<unsigned, 4> ReloadedRegs;
 | |
|     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|       MachineOperand& MO = MI->getOperand(i);
 | |
|       // here we are looking for only used operands (never def&use)
 | |
|       if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
 | |
|           TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|         MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
 | |
|     }
 | |
| 
 | |
|     // If this instruction is the last user of this register, kill the
 | |
|     // value, freeing the register being used, so it doesn't need to be
 | |
|     // spilled to memory.
 | |
|     //
 | |
|     for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
 | |
|       unsigned VirtReg = Kills[i];
 | |
|       unsigned PhysReg = VirtReg;
 | |
|       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | |
|         // If the virtual register was never materialized into a register, it
 | |
|         // might not be in the map, but it won't hurt to zero it out anyway.
 | |
|         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | |
|         PhysReg = PhysRegSlot;
 | |
|         PhysRegSlot = 0;
 | |
|       } else if (PhysRegsUsed[PhysReg] == -2) {
 | |
|         // Unallocatable register dead, ignore.
 | |
|         continue;
 | |
|       } else {
 | |
|         assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
 | |
|                "Silently clearing a virtual register?");
 | |
|       }
 | |
| 
 | |
|       if (PhysReg) {
 | |
|         DEBUG(errs() << "  Last use of " << TRI->getName(PhysReg)
 | |
|                      << "[%reg" << VirtReg <<"], removing it from live set\n");
 | |
|         removePhysReg(PhysReg);
 | |
|         for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
 | |
|              *SubRegs; ++SubRegs) {
 | |
|           if (PhysRegsUsed[*SubRegs] != -2) {
 | |
|             DEBUG(errs()  << "  Last use of "
 | |
|                           << TRI->getName(*SubRegs) << "[%reg" << VirtReg
 | |
|                           <<"], removing it from live set\n");
 | |
|             removePhysReg(*SubRegs);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the operands of the instruction, spilling registers that
 | |
|     // are defined, and marking explicit destinations in the PhysRegsUsed map.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
 | |
|           !MO.isEarlyClobber() &&
 | |
|           TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
 | |
|         // These are extra physical register defs when a sub-register
 | |
|         // is defined (def of a sub-register is a read/mod/write of the
 | |
|         // larger registers). Ignore.
 | |
|         if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
 | |
| 
 | |
|         MF->getRegInfo().setPhysRegUsed(Reg);
 | |
|         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
 | |
|         PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | |
|         AddToPhysRegsUseOrder(Reg); 
 | |
| 
 | |
|         for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|              *SubRegs; ++SubRegs) {
 | |
|           if (PhysRegsUsed[*SubRegs] != -2) {
 | |
|             MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | |
|             PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | |
|             AddToPhysRegsUseOrder(*SubRegs); 
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over the implicit defs, spilling them as well.
 | |
|     if (TID.ImplicitDefs) {
 | |
|       for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
 | |
|            *ImplicitDefs; ++ImplicitDefs) {
 | |
|         unsigned Reg = *ImplicitDefs;
 | |
|         if (PhysRegsUsed[Reg] != -2) {
 | |
|           spillPhysReg(MBB, MI, Reg, true);
 | |
|           AddToPhysRegsUseOrder(Reg); 
 | |
|           PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | |
|         }
 | |
|         MF->getRegInfo().setPhysRegUsed(Reg);
 | |
|         for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|              *SubRegs; ++SubRegs) {
 | |
|           if (PhysRegsUsed[*SubRegs] != -2) {
 | |
|             AddToPhysRegsUseOrder(*SubRegs); 
 | |
|             PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | |
|             MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SmallVector<unsigned, 8> DeadDefs;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDead())
 | |
|         DeadDefs.push_back(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     // Okay, we have allocated all of the source operands and spilled any values
 | |
|     // that would be destroyed by defs of this instruction.  Loop over the
 | |
|     // explicit defs and assign them to a register, spilling incoming values if
 | |
|     // we need to scavenge a register.
 | |
|     //
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDef() && MO.getReg() &&
 | |
|           !MO.isEarlyClobber() &&
 | |
|           TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|         unsigned DestVirtReg = MO.getReg();
 | |
|         unsigned DestPhysReg;
 | |
| 
 | |
|         // If DestVirtReg already has a value, use it.
 | |
|         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | |
|           DestPhysReg = getReg(MBB, MI, DestVirtReg);
 | |
|         MF->getRegInfo().setPhysRegUsed(DestPhysReg);
 | |
|         markVirtRegModified(DestVirtReg);
 | |
|         getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
 | |
|         DEBUG(errs() << "  Assigning " << TRI->getName(DestPhysReg)
 | |
|                      << " to %reg" << DestVirtReg << "\n");
 | |
|         MO.setReg(DestPhysReg);  // Assign the output register
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this instruction defines any registers that are immediately dead,
 | |
|     // kill them now.
 | |
|     //
 | |
|     for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
 | |
|       unsigned VirtReg = DeadDefs[i];
 | |
|       unsigned PhysReg = VirtReg;
 | |
|       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | |
|         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | |
|         PhysReg = PhysRegSlot;
 | |
|         assert(PhysReg != 0);
 | |
|         PhysRegSlot = 0;
 | |
|       } else if (PhysRegsUsed[PhysReg] == -2) {
 | |
|         // Unallocatable register dead, ignore.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (PhysReg) {
 | |
|         DEBUG(errs()  << "  Register " << TRI->getName(PhysReg)
 | |
|                       << " [%reg" << VirtReg
 | |
|                       << "] is never used, removing it from live set\n");
 | |
|         removePhysReg(PhysReg);
 | |
|         for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | |
|              *AliasSet; ++AliasSet) {
 | |
|           if (PhysRegsUsed[*AliasSet] != -2) {
 | |
|             DEBUG(errs()  << "  Register " << TRI->getName(*AliasSet)
 | |
|                           << " [%reg" << *AliasSet
 | |
|                           << "] is never used, removing it from live set\n");
 | |
|             removePhysReg(*AliasSet);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Finally, if this is a noop copy instruction, zap it.  (Except that if
 | |
|     // the copy is dead, it must be kept to avoid messing up liveness info for
 | |
|     // the register scavenger.  See pr4100.)
 | |
|     unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|     if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
 | |
|         SrcReg == DstReg && DeadDefs.empty())
 | |
|       MBB.erase(MI);
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 | |
| 
 | |
|   // Spill all physical registers holding virtual registers now.
 | |
|   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
 | |
|     if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
 | |
|       if (unsigned VirtReg = PhysRegsUsed[i])
 | |
|         spillVirtReg(MBB, MI, VirtReg, i);
 | |
|       else
 | |
|         removePhysReg(i);
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|   // This checking code is very expensive.
 | |
|   bool AllOk = true;
 | |
|   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | |
|            e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
 | |
|     if (unsigned PR = Virt2PhysRegMap[i]) {
 | |
|       cerr << "Register still mapped: " << i << " -> " << PR << "\n";
 | |
|       AllOk = false;
 | |
|     }
 | |
|   assert(AllOk && "Virtual registers still in phys regs?");
 | |
| #endif
 | |
| 
 | |
|   // Clear any physical register which appear live at the end of the basic
 | |
|   // block, but which do not hold any virtual registers.  e.g., the stack
 | |
|   // pointer.
 | |
|   PhysRegsUseOrder.clear();
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
 | |
|   DEBUG(errs() << "Machine Function\n");
 | |
|   MF = &Fn;
 | |
|   TM = &Fn.getTarget();
 | |
|   TRI = TM->getRegisterInfo();
 | |
|   TII = TM->getInstrInfo();
 | |
| 
 | |
|   PhysRegsUsed.assign(TRI->getNumRegs(), -1);
 | |
|   
 | |
|   // At various places we want to efficiently check to see whether a register
 | |
|   // is allocatable.  To handle this, we mark all unallocatable registers as
 | |
|   // being pinned down, permanently.
 | |
|   {
 | |
|     BitVector Allocable = TRI->getAllocatableSet(Fn);
 | |
|     for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
 | |
|       if (!Allocable[i])
 | |
|         PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
 | |
|   }
 | |
| 
 | |
|   // initialize the virtual->physical register map to have a 'null'
 | |
|   // mapping for all virtual registers
 | |
|   unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
 | |
|   StackSlotForVirtReg.grow(LastVirtReg);
 | |
|   Virt2PhysRegMap.grow(LastVirtReg);
 | |
|   Virt2LastUseMap.grow(LastVirtReg);
 | |
|   VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 | |
|   UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 | |
|  
 | |
|   // Loop over all of the basic blocks, eliminating virtual register references
 | |
|   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | |
|        MBB != MBBe; ++MBB)
 | |
|     AllocateBasicBlock(*MBB);
 | |
| 
 | |
|   StackSlotForVirtReg.clear();
 | |
|   PhysRegsUsed.clear();
 | |
|   VirtRegModified.clear();
 | |
|   UsedInMultipleBlocks.clear();
 | |
|   Virt2PhysRegMap.clear();
 | |
|   Virt2LastUseMap.clear();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createLocalRegisterAllocator() {
 | |
|   return new RALocal();
 | |
| }
 |