mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	since functions may contain aggregate constants too. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73220 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1443 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1443 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Bitcode writer implementation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Bitcode/ReaderWriter.h"
 | 
						|
#include "llvm/Bitcode/BitstreamWriter.h"
 | 
						|
#include "llvm/Bitcode/LLVMBitCodes.h"
 | 
						|
#include "ValueEnumerator.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/MDNode.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/TypeSymbolTable.h"
 | 
						|
#include "llvm/ValueSymbolTable.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/System/Program.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// These are manifest constants used by the bitcode writer. They do not need to
 | 
						|
/// be kept in sync with the reader, but need to be consistent within this file.
 | 
						|
enum {
 | 
						|
  CurVersion = 0,
 | 
						|
  
 | 
						|
  // VALUE_SYMTAB_BLOCK abbrev id's.
 | 
						|
  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | 
						|
  VST_ENTRY_7_ABBREV,
 | 
						|
  VST_ENTRY_6_ABBREV,
 | 
						|
  VST_BBENTRY_6_ABBREV,
 | 
						|
  
 | 
						|
  // CONSTANTS_BLOCK abbrev id's.
 | 
						|
  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | 
						|
  CONSTANTS_INTEGER_ABBREV,
 | 
						|
  CONSTANTS_CE_CAST_Abbrev,
 | 
						|
  CONSTANTS_NULL_Abbrev,
 | 
						|
  
 | 
						|
  // FUNCTION_BLOCK abbrev id's.
 | 
						|
  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | 
						|
  FUNCTION_INST_BINOP_ABBREV,
 | 
						|
  FUNCTION_INST_CAST_ABBREV,
 | 
						|
  FUNCTION_INST_RET_VOID_ABBREV,
 | 
						|
  FUNCTION_INST_RET_VAL_ABBREV,
 | 
						|
  FUNCTION_INST_UNREACHABLE_ABBREV
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: assert(0 && "Unknown cast instruction!");
 | 
						|
  case Instruction::Trunc   : return bitc::CAST_TRUNC;
 | 
						|
  case Instruction::ZExt    : return bitc::CAST_ZEXT;
 | 
						|
  case Instruction::SExt    : return bitc::CAST_SEXT;
 | 
						|
  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
 | 
						|
  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
 | 
						|
  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
 | 
						|
  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
 | 
						|
  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
 | 
						|
  case Instruction::FPExt   : return bitc::CAST_FPEXT;
 | 
						|
  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
 | 
						|
  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
 | 
						|
  case Instruction::BitCast : return bitc::CAST_BITCAST;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: assert(0 && "Unknown binary instruction!");
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::FAdd: return bitc::BINOP_ADD;
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::FSub: return bitc::BINOP_SUB;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::FMul: return bitc::BINOP_MUL;
 | 
						|
  case Instruction::UDiv: return bitc::BINOP_UDIV;
 | 
						|
  case Instruction::FDiv:
 | 
						|
  case Instruction::SDiv: return bitc::BINOP_SDIV;
 | 
						|
  case Instruction::URem: return bitc::BINOP_UREM;
 | 
						|
  case Instruction::FRem:
 | 
						|
  case Instruction::SRem: return bitc::BINOP_SREM;
 | 
						|
  case Instruction::Shl:  return bitc::BINOP_SHL;
 | 
						|
  case Instruction::LShr: return bitc::BINOP_LSHR;
 | 
						|
  case Instruction::AShr: return bitc::BINOP_ASHR;
 | 
						|
  case Instruction::And:  return bitc::BINOP_AND;
 | 
						|
  case Instruction::Or:   return bitc::BINOP_OR;
 | 
						|
  case Instruction::Xor:  return bitc::BINOP_XOR;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void WriteStringRecord(unsigned Code, const std::string &Str, 
 | 
						|
                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
 | 
						|
  SmallVector<unsigned, 64> Vals;
 | 
						|
  
 | 
						|
  // Code: [strchar x N]
 | 
						|
  for (unsigned i = 0, e = Str.size(); i != e; ++i)
 | 
						|
    Vals.push_back(Str[i]);
 | 
						|
    
 | 
						|
  // Emit the finished record.
 | 
						|
  Stream.EmitRecord(Code, Vals, AbbrevToUse);
 | 
						|
}
 | 
						|
 | 
						|
// Emit information about parameter attributes.
 | 
						|
static void WriteAttributeTable(const ValueEnumerator &VE, 
 | 
						|
                                BitstreamWriter &Stream) {
 | 
						|
  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
 | 
						|
  if (Attrs.empty()) return;
 | 
						|
  
 | 
						|
  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
 | 
						|
 | 
						|
  SmallVector<uint64_t, 64> Record;
 | 
						|
  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
 | 
						|
    const AttrListPtr &A = Attrs[i];
 | 
						|
    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
 | 
						|
      const AttributeWithIndex &PAWI = A.getSlot(i);
 | 
						|
      Record.push_back(PAWI.Index);
 | 
						|
 | 
						|
      // FIXME: remove in LLVM 3.0
 | 
						|
      // Store the alignment in the bitcode as a 16-bit raw value instead of a
 | 
						|
      // 5-bit log2 encoded value. Shift the bits above the alignment up by
 | 
						|
      // 11 bits.
 | 
						|
      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
 | 
						|
      if (PAWI.Attrs & Attribute::Alignment)
 | 
						|
        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
 | 
						|
      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
 | 
						|
 | 
						|
      Record.push_back(FauxAttr);
 | 
						|
    }
 | 
						|
    
 | 
						|
    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
 | 
						|
    Record.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// WriteTypeTable - Write out the type table for a module.
 | 
						|
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
 | 
						|
  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
 | 
						|
  
 | 
						|
  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
 | 
						|
  SmallVector<uint64_t, 64> TypeVals;
 | 
						|
  
 | 
						|
  // Abbrev for TYPE_CODE_POINTER.
 | 
						|
  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                            Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
 | 
						|
  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  
 | 
						|
  // Abbrev for TYPE_CODE_FUNCTION.
 | 
						|
  Abbv = new BitCodeAbbrev();
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                            Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  
 | 
						|
  // Abbrev for TYPE_CODE_STRUCT.
 | 
						|
  Abbv = new BitCodeAbbrev();
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                            Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
 
 | 
						|
  // Abbrev for TYPE_CODE_ARRAY.
 | 
						|
  Abbv = new BitCodeAbbrev();
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                            Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  
 | 
						|
  // Emit an entry count so the reader can reserve space.
 | 
						|
  TypeVals.push_back(TypeList.size());
 | 
						|
  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
 | 
						|
  TypeVals.clear();
 | 
						|
  
 | 
						|
  // Loop over all of the types, emitting each in turn.
 | 
						|
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
 | 
						|
    const Type *T = TypeList[i].first;
 | 
						|
    int AbbrevToUse = 0;
 | 
						|
    unsigned Code = 0;
 | 
						|
    
 | 
						|
    switch (T->getTypeID()) {
 | 
						|
    default: assert(0 && "Unknown type!");
 | 
						|
    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
 | 
						|
    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
 | 
						|
    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
 | 
						|
    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
 | 
						|
    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
 | 
						|
    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
 | 
						|
    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
 | 
						|
    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
 | 
						|
    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
 | 
						|
    case Type::IntegerTyID:
 | 
						|
      // INTEGER: [width]
 | 
						|
      Code = bitc::TYPE_CODE_INTEGER;
 | 
						|
      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
 | 
						|
      break;
 | 
						|
    case Type::PointerTyID: {
 | 
						|
      const PointerType *PTy = cast<PointerType>(T);
 | 
						|
      // POINTER: [pointee type, address space]
 | 
						|
      Code = bitc::TYPE_CODE_POINTER;
 | 
						|
      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
 | 
						|
      unsigned AddressSpace = PTy->getAddressSpace();
 | 
						|
      TypeVals.push_back(AddressSpace);
 | 
						|
      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Type::FunctionTyID: {
 | 
						|
      const FunctionType *FT = cast<FunctionType>(T);
 | 
						|
      // FUNCTION: [isvararg, attrid, retty, paramty x N]
 | 
						|
      Code = bitc::TYPE_CODE_FUNCTION;
 | 
						|
      TypeVals.push_back(FT->isVarArg());
 | 
						|
      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
 | 
						|
      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
 | 
						|
      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
 | 
						|
        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
 | 
						|
      AbbrevToUse = FunctionAbbrev;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Type::StructTyID: {
 | 
						|
      const StructType *ST = cast<StructType>(T);
 | 
						|
      // STRUCT: [ispacked, eltty x N]
 | 
						|
      Code = bitc::TYPE_CODE_STRUCT;
 | 
						|
      TypeVals.push_back(ST->isPacked());
 | 
						|
      // Output all of the element types.
 | 
						|
      for (StructType::element_iterator I = ST->element_begin(),
 | 
						|
           E = ST->element_end(); I != E; ++I)
 | 
						|
        TypeVals.push_back(VE.getTypeID(*I));
 | 
						|
      AbbrevToUse = StructAbbrev;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Type::ArrayTyID: {
 | 
						|
      const ArrayType *AT = cast<ArrayType>(T);
 | 
						|
      // ARRAY: [numelts, eltty]
 | 
						|
      Code = bitc::TYPE_CODE_ARRAY;
 | 
						|
      TypeVals.push_back(AT->getNumElements());
 | 
						|
      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
 | 
						|
      AbbrevToUse = ArrayAbbrev;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Type::VectorTyID: {
 | 
						|
      const VectorType *VT = cast<VectorType>(T);
 | 
						|
      // VECTOR [numelts, eltty]
 | 
						|
      Code = bitc::TYPE_CODE_VECTOR;
 | 
						|
      TypeVals.push_back(VT->getNumElements());
 | 
						|
      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit the finished record.
 | 
						|
    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
 | 
						|
    TypeVals.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getEncodedLinkage(const GlobalValue *GV) {
 | 
						|
  switch (GV->getLinkage()) {
 | 
						|
  default: assert(0 && "Invalid linkage!");
 | 
						|
  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
 | 
						|
  case GlobalValue::ExternalLinkage:     return 0;
 | 
						|
  case GlobalValue::WeakAnyLinkage:      return 1;
 | 
						|
  case GlobalValue::AppendingLinkage:    return 2;
 | 
						|
  case GlobalValue::InternalLinkage:     return 3;
 | 
						|
  case GlobalValue::LinkOnceAnyLinkage:  return 4;
 | 
						|
  case GlobalValue::DLLImportLinkage:    return 5;
 | 
						|
  case GlobalValue::DLLExportLinkage:    return 6;
 | 
						|
  case GlobalValue::ExternalWeakLinkage: return 7;
 | 
						|
  case GlobalValue::CommonLinkage:       return 8;
 | 
						|
  case GlobalValue::PrivateLinkage:      return 9;
 | 
						|
  case GlobalValue::WeakODRLinkage:      return 10;
 | 
						|
  case GlobalValue::LinkOnceODRLinkage:  return 11;
 | 
						|
  case GlobalValue::AvailableExternallyLinkage:  return 12;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getEncodedVisibility(const GlobalValue *GV) {
 | 
						|
  switch (GV->getVisibility()) {
 | 
						|
  default: assert(0 && "Invalid visibility!");
 | 
						|
  case GlobalValue::DefaultVisibility:   return 0;
 | 
						|
  case GlobalValue::HiddenVisibility:    return 1;
 | 
						|
  case GlobalValue::ProtectedVisibility: return 2;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emit top-level description of module, including target triple, inline asm,
 | 
						|
// descriptors for global variables, and function prototype info.
 | 
						|
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
 | 
						|
                            BitstreamWriter &Stream) {
 | 
						|
  // Emit the list of dependent libraries for the Module.
 | 
						|
  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
 | 
						|
    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
 | 
						|
 | 
						|
  // Emit various pieces of data attached to a module.
 | 
						|
  if (!M->getTargetTriple().empty())
 | 
						|
    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
 | 
						|
                      0/*TODO*/, Stream);
 | 
						|
  if (!M->getDataLayout().empty())
 | 
						|
    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
 | 
						|
                      0/*TODO*/, Stream);
 | 
						|
  if (!M->getModuleInlineAsm().empty())
 | 
						|
    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
 | 
						|
                      0/*TODO*/, Stream);
 | 
						|
 | 
						|
  // Emit information about sections and GC, computing how many there are. Also
 | 
						|
  // compute the maximum alignment value.
 | 
						|
  std::map<std::string, unsigned> SectionMap;
 | 
						|
  std::map<std::string, unsigned> GCMap;
 | 
						|
  unsigned MaxAlignment = 0;
 | 
						|
  unsigned MaxGlobalType = 0;
 | 
						|
  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
 | 
						|
       GV != E; ++GV) {
 | 
						|
    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
 | 
						|
    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
 | 
						|
    
 | 
						|
    if (!GV->hasSection()) continue;
 | 
						|
    // Give section names unique ID's.
 | 
						|
    unsigned &Entry = SectionMap[GV->getSection()];
 | 
						|
    if (Entry != 0) continue;
 | 
						|
    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
 | 
						|
                      0/*TODO*/, Stream);
 | 
						|
    Entry = SectionMap.size();
 | 
						|
  }
 | 
						|
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
 | 
						|
    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
 | 
						|
    if (F->hasSection()) {
 | 
						|
      // Give section names unique ID's.
 | 
						|
      unsigned &Entry = SectionMap[F->getSection()];
 | 
						|
      if (!Entry) {
 | 
						|
        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
 | 
						|
                          0/*TODO*/, Stream);
 | 
						|
        Entry = SectionMap.size();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (F->hasGC()) {
 | 
						|
      // Same for GC names.
 | 
						|
      unsigned &Entry = GCMap[F->getGC()];
 | 
						|
      if (!Entry) {
 | 
						|
        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
 | 
						|
                          0/*TODO*/, Stream);
 | 
						|
        Entry = GCMap.size();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit abbrev for globals, now that we know # sections and max alignment.
 | 
						|
  unsigned SimpleGVarAbbrev = 0;
 | 
						|
  if (!M->global_empty()) { 
 | 
						|
    // Add an abbrev for common globals with no visibility or thread localness.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                              Log2_32_Ceil(MaxGlobalType+1)));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
 | 
						|
    if (MaxAlignment == 0)                                      // Alignment.
 | 
						|
      Abbv->Add(BitCodeAbbrevOp(0));
 | 
						|
    else {
 | 
						|
      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
 | 
						|
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                               Log2_32_Ceil(MaxEncAlignment+1)));
 | 
						|
    }
 | 
						|
    if (SectionMap.empty())                                    // Section.
 | 
						|
      Abbv->Add(BitCodeAbbrevOp(0));
 | 
						|
    else
 | 
						|
      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                               Log2_32_Ceil(SectionMap.size()+1)));
 | 
						|
    // Don't bother emitting vis + thread local.
 | 
						|
    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the global variable information.
 | 
						|
  SmallVector<unsigned, 64> Vals;
 | 
						|
  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
 | 
						|
       GV != E; ++GV) {
 | 
						|
    unsigned AbbrevToUse = 0;
 | 
						|
 | 
						|
    // GLOBALVAR: [type, isconst, initid, 
 | 
						|
    //             linkage, alignment, section, visibility, threadlocal]
 | 
						|
    Vals.push_back(VE.getTypeID(GV->getType()));
 | 
						|
    Vals.push_back(GV->isConstant());
 | 
						|
    Vals.push_back(GV->isDeclaration() ? 0 :
 | 
						|
                   (VE.getValueID(GV->getInitializer()) + 1));
 | 
						|
    Vals.push_back(getEncodedLinkage(GV));
 | 
						|
    Vals.push_back(Log2_32(GV->getAlignment())+1);
 | 
						|
    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
 | 
						|
    if (GV->isThreadLocal() || 
 | 
						|
        GV->getVisibility() != GlobalValue::DefaultVisibility) {
 | 
						|
      Vals.push_back(getEncodedVisibility(GV));
 | 
						|
      Vals.push_back(GV->isThreadLocal());
 | 
						|
    } else {
 | 
						|
      AbbrevToUse = SimpleGVarAbbrev;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
 | 
						|
    Vals.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the function proto information.
 | 
						|
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
 | 
						|
    // FUNCTION:  [type, callingconv, isproto, paramattr,
 | 
						|
    //             linkage, alignment, section, visibility, gc]
 | 
						|
    Vals.push_back(VE.getTypeID(F->getType()));
 | 
						|
    Vals.push_back(F->getCallingConv());
 | 
						|
    Vals.push_back(F->isDeclaration());
 | 
						|
    Vals.push_back(getEncodedLinkage(F));
 | 
						|
    Vals.push_back(VE.getAttributeID(F->getAttributes()));
 | 
						|
    Vals.push_back(Log2_32(F->getAlignment())+1);
 | 
						|
    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
 | 
						|
    Vals.push_back(getEncodedVisibility(F));
 | 
						|
    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
 | 
						|
    
 | 
						|
    unsigned AbbrevToUse = 0;
 | 
						|
    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
 | 
						|
    Vals.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Emit the alias information.
 | 
						|
  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
 | 
						|
       AI != E; ++AI) {
 | 
						|
    Vals.push_back(VE.getTypeID(AI->getType()));
 | 
						|
    Vals.push_back(VE.getValueID(AI->getAliasee()));
 | 
						|
    Vals.push_back(getEncodedLinkage(AI));
 | 
						|
    Vals.push_back(getEncodedVisibility(AI));
 | 
						|
    unsigned AbbrevToUse = 0;
 | 
						|
    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
 | 
						|
    Vals.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
 | 
						|
                           const ValueEnumerator &VE,
 | 
						|
                           BitstreamWriter &Stream, bool isGlobal) {
 | 
						|
  if (FirstVal == LastVal) return;
 | 
						|
  
 | 
						|
  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
 | 
						|
 | 
						|
  unsigned AggregateAbbrev = 0;
 | 
						|
  unsigned String8Abbrev = 0;
 | 
						|
  unsigned CString7Abbrev = 0;
 | 
						|
  unsigned CString6Abbrev = 0;
 | 
						|
  unsigned MDString8Abbrev = 0;
 | 
						|
  unsigned MDString6Abbrev = 0;
 | 
						|
  // If this is a constant pool for the module, emit module-specific abbrevs.
 | 
						|
  if (isGlobal) {
 | 
						|
    // Abbrev for CST_CODE_AGGREGATE.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
 | 
						|
    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
 | 
						|
    // Abbrev for CST_CODE_STRING.
 | 
						|
    Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | 
						|
    String8Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
    // Abbrev for CST_CODE_CSTRING.
 | 
						|
    Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | 
						|
    CString7Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
    // Abbrev for CST_CODE_CSTRING.
 | 
						|
    Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | 
						|
    CString6Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
 | 
						|
    // Abbrev for CST_CODE_MDSTRING.
 | 
						|
    Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | 
						|
    MDString8Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
    // Abbrev for CST_CODE_MDSTRING.
 | 
						|
    Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | 
						|
    MDString6Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  }  
 | 
						|
  
 | 
						|
  SmallVector<uint64_t, 64> Record;
 | 
						|
 | 
						|
  const ValueEnumerator::ValueList &Vals = VE.getValues();
 | 
						|
  const Type *LastTy = 0;
 | 
						|
  for (unsigned i = FirstVal; i != LastVal; ++i) {
 | 
						|
    const Value *V = Vals[i].first;
 | 
						|
    // If we need to switch types, do so now.
 | 
						|
    if (V->getType() != LastTy) {
 | 
						|
      LastTy = V->getType();
 | 
						|
      Record.push_back(VE.getTypeID(LastTy));
 | 
						|
      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
 | 
						|
                        CONSTANTS_SETTYPE_ABBREV);
 | 
						|
      Record.clear();
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | 
						|
      Record.push_back(unsigned(IA->hasSideEffects()));
 | 
						|
      
 | 
						|
      // Add the asm string.
 | 
						|
      const std::string &AsmStr = IA->getAsmString();
 | 
						|
      Record.push_back(AsmStr.size());
 | 
						|
      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
 | 
						|
        Record.push_back(AsmStr[i]);
 | 
						|
      
 | 
						|
      // Add the constraint string.
 | 
						|
      const std::string &ConstraintStr = IA->getConstraintString();
 | 
						|
      Record.push_back(ConstraintStr.size());
 | 
						|
      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
 | 
						|
        Record.push_back(ConstraintStr[i]);
 | 
						|
      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
 | 
						|
      Record.clear();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    const Constant *C = cast<Constant>(V);
 | 
						|
    unsigned Code = -1U;
 | 
						|
    unsigned AbbrevToUse = 0;
 | 
						|
    if (C->isNullValue()) {
 | 
						|
      Code = bitc::CST_CODE_NULL;
 | 
						|
    } else if (isa<UndefValue>(C)) {
 | 
						|
      Code = bitc::CST_CODE_UNDEF;
 | 
						|
    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
 | 
						|
      if (IV->getBitWidth() <= 64) {
 | 
						|
        int64_t V = IV->getSExtValue();
 | 
						|
        if (V >= 0)
 | 
						|
          Record.push_back(V << 1);
 | 
						|
        else
 | 
						|
          Record.push_back((-V << 1) | 1);
 | 
						|
        Code = bitc::CST_CODE_INTEGER;
 | 
						|
        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
 | 
						|
      } else {                             // Wide integers, > 64 bits in size.
 | 
						|
        // We have an arbitrary precision integer value to write whose 
 | 
						|
        // bit width is > 64. However, in canonical unsigned integer 
 | 
						|
        // format it is likely that the high bits are going to be zero.
 | 
						|
        // So, we only write the number of active words.
 | 
						|
        unsigned NWords = IV->getValue().getActiveWords(); 
 | 
						|
        const uint64_t *RawWords = IV->getValue().getRawData();
 | 
						|
        for (unsigned i = 0; i != NWords; ++i) {
 | 
						|
          int64_t V = RawWords[i];
 | 
						|
          if (V >= 0)
 | 
						|
            Record.push_back(V << 1);
 | 
						|
          else
 | 
						|
            Record.push_back((-V << 1) | 1);
 | 
						|
        }
 | 
						|
        Code = bitc::CST_CODE_WIDE_INTEGER;
 | 
						|
      }
 | 
						|
    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
      Code = bitc::CST_CODE_FLOAT;
 | 
						|
      const Type *Ty = CFP->getType();
 | 
						|
      if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
 | 
						|
        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | 
						|
      } else if (Ty == Type::X86_FP80Ty) {
 | 
						|
        // api needed to prevent premature destruction
 | 
						|
        // bits are not in the same order as a normal i80 APInt, compensate.
 | 
						|
        APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
        const uint64_t *p = api.getRawData();
 | 
						|
        Record.push_back((p[1] << 48) | (p[0] >> 16));
 | 
						|
        Record.push_back(p[0] & 0xffffLL);
 | 
						|
      } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
 | 
						|
        APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
        const uint64_t *p = api.getRawData();
 | 
						|
        Record.push_back(p[0]);
 | 
						|
        Record.push_back(p[1]);
 | 
						|
      } else {
 | 
						|
        assert (0 && "Unknown FP type!");
 | 
						|
      }
 | 
						|
    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
 | 
						|
      // Emit constant strings specially.
 | 
						|
      unsigned NumOps = C->getNumOperands();
 | 
						|
      // If this is a null-terminated string, use the denser CSTRING encoding.
 | 
						|
      if (C->getOperand(NumOps-1)->isNullValue()) {
 | 
						|
        Code = bitc::CST_CODE_CSTRING;
 | 
						|
        --NumOps;  // Don't encode the null, which isn't allowed by char6.
 | 
						|
      } else {
 | 
						|
        Code = bitc::CST_CODE_STRING;
 | 
						|
        AbbrevToUse = String8Abbrev;
 | 
						|
      }
 | 
						|
      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
 | 
						|
      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
 | 
						|
      for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
 | 
						|
        Record.push_back(V);
 | 
						|
        isCStr7 &= (V & 128) == 0;
 | 
						|
        if (isCStrChar6) 
 | 
						|
          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (isCStrChar6)
 | 
						|
        AbbrevToUse = CString6Abbrev;
 | 
						|
      else if (isCStr7)
 | 
						|
        AbbrevToUse = CString7Abbrev;
 | 
						|
    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
 | 
						|
               isa<ConstantVector>(V)) {
 | 
						|
      Code = bitc::CST_CODE_AGGREGATE;
 | 
						|
      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(i)));
 | 
						|
      AbbrevToUse = AggregateAbbrev;
 | 
						|
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
      switch (CE->getOpcode()) {
 | 
						|
      default:
 | 
						|
        if (Instruction::isCast(CE->getOpcode())) {
 | 
						|
          Code = bitc::CST_CODE_CE_CAST;
 | 
						|
          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
 | 
						|
          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | 
						|
          Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
 | 
						|
        } else {
 | 
						|
          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
 | 
						|
          Code = bitc::CST_CODE_CE_BINOP;
 | 
						|
          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
 | 
						|
          Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
          Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
        Code = bitc::CST_CODE_CE_GEP;
 | 
						|
        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
 | 
						|
          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
 | 
						|
          Record.push_back(VE.getValueID(C->getOperand(i)));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        Code = bitc::CST_CODE_CE_SELECT;
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(2)));
 | 
						|
        break;
 | 
						|
      case Instruction::ExtractElement:
 | 
						|
        Code = bitc::CST_CODE_CE_EXTRACTELT;
 | 
						|
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        break;
 | 
						|
      case Instruction::InsertElement:
 | 
						|
        Code = bitc::CST_CODE_CE_INSERTELT;
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(2)));
 | 
						|
        break;
 | 
						|
      case Instruction::ShuffleVector:
 | 
						|
        // If the return type and argument types are the same, this is a
 | 
						|
        // standard shufflevector instruction.  If the types are different,
 | 
						|
        // then the shuffle is widening or truncating the input vectors, and
 | 
						|
        // the argument type must also be encoded.
 | 
						|
        if (C->getType() == C->getOperand(0)->getType()) {
 | 
						|
          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
 | 
						|
        } else {
 | 
						|
          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
 | 
						|
          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | 
						|
        }
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(2)));
 | 
						|
        break;
 | 
						|
      case Instruction::ICmp:
 | 
						|
      case Instruction::FCmp:
 | 
						|
      case Instruction::VICmp:
 | 
						|
      case Instruction::VFCmp:
 | 
						|
        if (isa<VectorType>(C->getOperand(0)->getType())
 | 
						|
            && (CE->getOpcode() == Instruction::ICmp
 | 
						|
                || CE->getOpcode() == Instruction::FCmp)) {
 | 
						|
          // compare returning vector of Int1Ty
 | 
						|
          assert(0 && "Unsupported constant!");
 | 
						|
        } else {
 | 
						|
          Code = bitc::CST_CODE_CE_CMP;
 | 
						|
        }
 | 
						|
        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(0)));
 | 
						|
        Record.push_back(VE.getValueID(C->getOperand(1)));
 | 
						|
        Record.push_back(CE->getPredicate());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (const MDString *S = dyn_cast<MDString>(C)) {
 | 
						|
      Code = bitc::CST_CODE_MDSTRING;
 | 
						|
      AbbrevToUse = MDString6Abbrev;
 | 
						|
      for (unsigned i = 0, e = S->size(); i != e; ++i) {
 | 
						|
        char V = S->begin()[i];
 | 
						|
        Record.push_back(V);
 | 
						|
 | 
						|
        if (!BitCodeAbbrevOp::isChar6(V))
 | 
						|
          AbbrevToUse = MDString8Abbrev;
 | 
						|
      }
 | 
						|
    } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
 | 
						|
      Code = bitc::CST_CODE_MDNODE;
 | 
						|
      for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
 | 
						|
        if (N->getElement(i)) {
 | 
						|
          Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
 | 
						|
          Record.push_back(VE.getValueID(N->getElement(i)));
 | 
						|
        } else {
 | 
						|
          Record.push_back(VE.getTypeID(Type::VoidTy));
 | 
						|
          Record.push_back(0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(0 && "Unknown constant!");
 | 
						|
    }
 | 
						|
    Stream.EmitRecord(Code, Record, AbbrevToUse);
 | 
						|
    Record.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
static void WriteModuleConstants(const ValueEnumerator &VE,
 | 
						|
                                 BitstreamWriter &Stream) {
 | 
						|
  const ValueEnumerator::ValueList &Vals = VE.getValues();
 | 
						|
  
 | 
						|
  // Find the first constant to emit, which is the first non-globalvalue value.
 | 
						|
  // We know globalvalues have been emitted by WriteModuleInfo.
 | 
						|
  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
 | 
						|
    if (!isa<GlobalValue>(Vals[i].first)) {
 | 
						|
      WriteConstants(i, Vals.size(), VE, Stream, true);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PushValueAndType - The file has to encode both the value and type id for
 | 
						|
/// many values, because we need to know what type to create for forward
 | 
						|
/// references.  However, most operands are not forward references, so this type
 | 
						|
/// field is not needed.
 | 
						|
///
 | 
						|
/// This function adds V's value ID to Vals.  If the value ID is higher than the
 | 
						|
/// instruction ID, then it is a forward reference, and it also includes the
 | 
						|
/// type ID.
 | 
						|
static bool PushValueAndType(const Value *V, unsigned InstID,
 | 
						|
                             SmallVector<unsigned, 64> &Vals, 
 | 
						|
                             ValueEnumerator &VE) {
 | 
						|
  unsigned ValID = VE.getValueID(V);
 | 
						|
  Vals.push_back(ValID);
 | 
						|
  if (ValID >= InstID) {
 | 
						|
    Vals.push_back(VE.getTypeID(V->getType()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// WriteInstruction - Emit an instruction to the specified stream.
 | 
						|
static void WriteInstruction(const Instruction &I, unsigned InstID,
 | 
						|
                             ValueEnumerator &VE, BitstreamWriter &Stream,
 | 
						|
                             SmallVector<unsigned, 64> &Vals) {
 | 
						|
  unsigned Code = 0;
 | 
						|
  unsigned AbbrevToUse = 0;
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  default:
 | 
						|
    if (Instruction::isCast(I.getOpcode())) {
 | 
						|
      Code = bitc::FUNC_CODE_INST_CAST;
 | 
						|
      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
 | 
						|
        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
 | 
						|
      Vals.push_back(VE.getTypeID(I.getType()));
 | 
						|
      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
 | 
						|
    } else {
 | 
						|
      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
 | 
						|
      Code = bitc::FUNC_CODE_INST_BINOP;
 | 
						|
      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
 | 
						|
        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
 | 
						|
      Vals.push_back(VE.getValueID(I.getOperand(1)));
 | 
						|
      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    Code = bitc::FUNC_CODE_INST_GEP;
 | 
						|
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
 | 
						|
    break;
 | 
						|
  case Instruction::ExtractValue: {
 | 
						|
    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
 | 
						|
    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
 | 
						|
      Vals.push_back(*i);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::InsertValue: {
 | 
						|
    Code = bitc::FUNC_CODE_INST_INSERTVAL;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
 | 
						|
    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
 | 
						|
    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
 | 
						|
      Vals.push_back(*i);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    Code = bitc::FUNC_CODE_INST_VSELECT;
 | 
						|
    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(2)));
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    break;
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(1)));
 | 
						|
    break;
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    Code = bitc::FUNC_CODE_INST_INSERTELT;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(1)));
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(2)));
 | 
						|
    break;
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(1)));
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(2)));
 | 
						|
    break;
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
  case Instruction::VICmp:
 | 
						|
  case Instruction::VFCmp:
 | 
						|
    if (I.getOpcode() == Instruction::ICmp
 | 
						|
        || I.getOpcode() == Instruction::FCmp) {
 | 
						|
      // compare returning Int1Ty or vector of Int1Ty
 | 
						|
      Code = bitc::FUNC_CODE_INST_CMP2;
 | 
						|
    } else {
 | 
						|
      Code = bitc::FUNC_CODE_INST_CMP;
 | 
						|
    }
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(1)));
 | 
						|
    Vals.push_back(cast<CmpInst>(I).getPredicate());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Ret: 
 | 
						|
    {
 | 
						|
      Code = bitc::FUNC_CODE_INST_RET;
 | 
						|
      unsigned NumOperands = I.getNumOperands();
 | 
						|
      if (NumOperands == 0)
 | 
						|
        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
 | 
						|
      else if (NumOperands == 1) {
 | 
						|
        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
 | 
						|
          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0, e = NumOperands; i != e; ++i)
 | 
						|
          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Br:
 | 
						|
    {
 | 
						|
      Code = bitc::FUNC_CODE_INST_BR;
 | 
						|
      BranchInst &II(cast<BranchInst>(I));
 | 
						|
      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
 | 
						|
      if (II.isConditional()) {
 | 
						|
        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
 | 
						|
        Vals.push_back(VE.getValueID(II.getCondition()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Switch:
 | 
						|
    Code = bitc::FUNC_CODE_INST_SWITCH;
 | 
						|
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
 | 
						|
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
      Vals.push_back(VE.getValueID(I.getOperand(i)));
 | 
						|
    break;
 | 
						|
  case Instruction::Invoke: {
 | 
						|
    const InvokeInst *II = cast<InvokeInst>(&I);
 | 
						|
    const Value *Callee(II->getCalledValue());
 | 
						|
    const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
    Code = bitc::FUNC_CODE_INST_INVOKE;
 | 
						|
    
 | 
						|
    Vals.push_back(VE.getAttributeID(II->getAttributes()));
 | 
						|
    Vals.push_back(II->getCallingConv());
 | 
						|
    Vals.push_back(VE.getValueID(II->getNormalDest()));
 | 
						|
    Vals.push_back(VE.getValueID(II->getUnwindDest()));
 | 
						|
    PushValueAndType(Callee, InstID, Vals, VE);
 | 
						|
    
 | 
						|
    // Emit value #'s for the fixed parameters.
 | 
						|
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
 | 
						|
 | 
						|
    // Emit type/value pairs for varargs params.
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
 | 
						|
           i != e; ++i)
 | 
						|
        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Unwind:
 | 
						|
    Code = bitc::FUNC_CODE_INST_UNWIND;
 | 
						|
    break;
 | 
						|
  case Instruction::Unreachable:
 | 
						|
    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
 | 
						|
    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
 | 
						|
    break;
 | 
						|
  
 | 
						|
  case Instruction::PHI:
 | 
						|
    Code = bitc::FUNC_CODE_INST_PHI;
 | 
						|
    Vals.push_back(VE.getTypeID(I.getType()));
 | 
						|
    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
      Vals.push_back(VE.getValueID(I.getOperand(i)));
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Instruction::Malloc:
 | 
						|
    Code = bitc::FUNC_CODE_INST_MALLOC;
 | 
						|
    Vals.push_back(VE.getTypeID(I.getType()));
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
 | 
						|
    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Instruction::Free:
 | 
						|
    Code = bitc::FUNC_CODE_INST_FREE;
 | 
						|
    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Instruction::Alloca:
 | 
						|
    Code = bitc::FUNC_CODE_INST_ALLOCA;
 | 
						|
    Vals.push_back(VE.getTypeID(I.getType()));
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
 | 
						|
    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Instruction::Load:
 | 
						|
    Code = bitc::FUNC_CODE_INST_LOAD;
 | 
						|
    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
 | 
						|
      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
 | 
						|
      
 | 
						|
    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
 | 
						|
    Vals.push_back(cast<LoadInst>(I).isVolatile());
 | 
						|
    break;
 | 
						|
  case Instruction::Store:
 | 
						|
    Code = bitc::FUNC_CODE_INST_STORE2;
 | 
						|
    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
 | 
						|
    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
 | 
						|
    Vals.push_back(cast<StoreInst>(I).isVolatile());
 | 
						|
    break;
 | 
						|
  case Instruction::Call: {
 | 
						|
    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
 | 
						|
    Code = bitc::FUNC_CODE_INST_CALL;
 | 
						|
    
 | 
						|
    const CallInst *CI = cast<CallInst>(&I);
 | 
						|
    Vals.push_back(VE.getAttributeID(CI->getAttributes()));
 | 
						|
    Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
 | 
						|
    PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
 | 
						|
    
 | 
						|
    // Emit value #'s for the fixed parameters.
 | 
						|
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
 | 
						|
      
 | 
						|
    // Emit type/value pairs for varargs params.
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
 | 
						|
      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
 | 
						|
           i != e; ++i)
 | 
						|
        PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::VAArg:
 | 
						|
    Code = bitc::FUNC_CODE_INST_VAARG;
 | 
						|
    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
 | 
						|
    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
 | 
						|
    Vals.push_back(VE.getTypeID(I.getType())); // restype.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Stream.EmitRecord(Code, Vals, AbbrevToUse);
 | 
						|
  Vals.clear();
 | 
						|
}
 | 
						|
 | 
						|
// Emit names for globals/functions etc.
 | 
						|
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
 | 
						|
                                  const ValueEnumerator &VE,
 | 
						|
                                  BitstreamWriter &Stream) {
 | 
						|
  if (VST.empty()) return;
 | 
						|
  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
 | 
						|
 | 
						|
  // FIXME: Set up the abbrev, we know how many values there are!
 | 
						|
  // FIXME: We know if the type names can use 7-bit ascii.
 | 
						|
  SmallVector<unsigned, 64> NameVals;
 | 
						|
  
 | 
						|
  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    
 | 
						|
    const ValueName &Name = *SI;
 | 
						|
    
 | 
						|
    // Figure out the encoding to use for the name.
 | 
						|
    bool is7Bit = true;
 | 
						|
    bool isChar6 = true;
 | 
						|
    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
 | 
						|
         C != E; ++C) {
 | 
						|
      if (isChar6) 
 | 
						|
        isChar6 = BitCodeAbbrevOp::isChar6(*C);
 | 
						|
      if ((unsigned char)*C & 128) {
 | 
						|
        is7Bit = false;
 | 
						|
        break;  // don't bother scanning the rest.
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
 | 
						|
    
 | 
						|
    // VST_ENTRY:   [valueid, namechar x N]
 | 
						|
    // VST_BBENTRY: [bbid, namechar x N]
 | 
						|
    unsigned Code;
 | 
						|
    if (isa<BasicBlock>(SI->getValue())) {
 | 
						|
      Code = bitc::VST_CODE_BBENTRY;
 | 
						|
      if (isChar6)
 | 
						|
        AbbrevToUse = VST_BBENTRY_6_ABBREV;
 | 
						|
    } else {
 | 
						|
      Code = bitc::VST_CODE_ENTRY;
 | 
						|
      if (isChar6)
 | 
						|
        AbbrevToUse = VST_ENTRY_6_ABBREV;
 | 
						|
      else if (is7Bit)
 | 
						|
        AbbrevToUse = VST_ENTRY_7_ABBREV;
 | 
						|
    }
 | 
						|
    
 | 
						|
    NameVals.push_back(VE.getValueID(SI->getValue()));
 | 
						|
    for (const char *P = Name.getKeyData(),
 | 
						|
         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
 | 
						|
      NameVals.push_back((unsigned char)*P);
 | 
						|
    
 | 
						|
    // Emit the finished record.
 | 
						|
    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
 | 
						|
    NameVals.clear();
 | 
						|
  }
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// WriteFunction - Emit a function body to the module stream.
 | 
						|
static void WriteFunction(const Function &F, ValueEnumerator &VE, 
 | 
						|
                          BitstreamWriter &Stream) {
 | 
						|
  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
 | 
						|
  VE.incorporateFunction(F);
 | 
						|
 | 
						|
  SmallVector<unsigned, 64> Vals;
 | 
						|
  
 | 
						|
  // Emit the number of basic blocks, so the reader can create them ahead of
 | 
						|
  // time.
 | 
						|
  Vals.push_back(VE.getBasicBlocks().size());
 | 
						|
  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
 | 
						|
  Vals.clear();
 | 
						|
  
 | 
						|
  // If there are function-local constants, emit them now.
 | 
						|
  unsigned CstStart, CstEnd;
 | 
						|
  VE.getFunctionConstantRange(CstStart, CstEnd);
 | 
						|
  WriteConstants(CstStart, CstEnd, VE, Stream, false);
 | 
						|
  
 | 
						|
  // Keep a running idea of what the instruction ID is. 
 | 
						|
  unsigned InstID = CstEnd;
 | 
						|
  
 | 
						|
  // Finally, emit all the instructions, in order.
 | 
						|
  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      WriteInstruction(*I, InstID, VE, Stream, Vals);
 | 
						|
      if (I->getType() != Type::VoidTy)
 | 
						|
        ++InstID;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Emit names for all the instructions etc.
 | 
						|
  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
 | 
						|
    
 | 
						|
  VE.purgeFunction();
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
 | 
						|
static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
 | 
						|
                                 const ValueEnumerator &VE,
 | 
						|
                                 BitstreamWriter &Stream) {
 | 
						|
  if (TST.empty()) return;
 | 
						|
  
 | 
						|
  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
 | 
						|
  
 | 
						|
  // 7-bit fixed width VST_CODE_ENTRY strings.
 | 
						|
  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                            Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | 
						|
  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
 | 
						|
  
 | 
						|
  SmallVector<unsigned, 64> NameVals;
 | 
						|
  
 | 
						|
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
 | 
						|
       TI != TE; ++TI) {
 | 
						|
    // TST_ENTRY: [typeid, namechar x N]
 | 
						|
    NameVals.push_back(VE.getTypeID(TI->second));
 | 
						|
    
 | 
						|
    const std::string &Str = TI->first;
 | 
						|
    bool is7Bit = true;
 | 
						|
    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
 | 
						|
      NameVals.push_back((unsigned char)Str[i]);
 | 
						|
      if (Str[i] & 128)
 | 
						|
        is7Bit = false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Emit the finished record.
 | 
						|
    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
 | 
						|
    NameVals.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
// Emit blockinfo, which defines the standard abbreviations etc.
 | 
						|
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
 | 
						|
  // We only want to emit block info records for blocks that have multiple
 | 
						|
  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
 | 
						|
  // blocks can defined their abbrevs inline.
 | 
						|
  Stream.EnterBlockInfoBlock(2);
 | 
						|
  
 | 
						|
  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
 | 
						|
                                   Abbv) != VST_ENTRY_8_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  { // 7-bit fixed width VST_ENTRY strings.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
 | 
						|
                                   Abbv) != VST_ENTRY_7_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // 6-bit char6 VST_ENTRY strings.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
 | 
						|
                                   Abbv) != VST_ENTRY_6_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // 6-bit char6 VST_BBENTRY strings.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
 | 
						|
                                   Abbv) != VST_BBENTRY_6_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  
 | 
						|
  { // SETTYPE abbrev for CONSTANTS_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | 
						|
                              Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
 | 
						|
                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  { // INTEGER abbrev for CONSTANTS_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
 | 
						|
                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  { // CE_CAST abbrev for CONSTANTS_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
 | 
						|
                              Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
 | 
						|
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
 | 
						|
                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // NULL abbrev for CONSTANTS_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
 | 
						|
                                   Abbv) != CONSTANTS_NULL_Abbrev)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: This should only use space for first class types!
 | 
						|
 
 | 
						|
  { // INST_LOAD abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // INST_BINOP abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // INST_CAST abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
 | 
						|
                              Log2_32_Ceil(VE.getTypes().size()+1)));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  { // INST_RET abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // INST_RET abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
 | 
						|
    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | 
						|
    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
 | 
						|
    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
 | 
						|
                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
 | 
						|
      assert(0 && "Unexpected abbrev ordering!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WriteModule - Emit the specified module to the bitstream.
 | 
						|
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
 | 
						|
  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
 | 
						|
  
 | 
						|
  // Emit the version number if it is non-zero.
 | 
						|
  if (CurVersion) {
 | 
						|
    SmallVector<unsigned, 1> Vals;
 | 
						|
    Vals.push_back(CurVersion);
 | 
						|
    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Analyze the module, enumerating globals, functions, etc.
 | 
						|
  ValueEnumerator VE(M);
 | 
						|
 | 
						|
  // Emit blockinfo, which defines the standard abbreviations etc.
 | 
						|
  WriteBlockInfo(VE, Stream);
 | 
						|
  
 | 
						|
  // Emit information about parameter attributes.
 | 
						|
  WriteAttributeTable(VE, Stream);
 | 
						|
  
 | 
						|
  // Emit information describing all of the types in the module.
 | 
						|
  WriteTypeTable(VE, Stream);
 | 
						|
  
 | 
						|
  // Emit top-level description of module, including target triple, inline asm,
 | 
						|
  // descriptors for global variables, and function prototype info.
 | 
						|
  WriteModuleInfo(M, VE, Stream);
 | 
						|
  
 | 
						|
  // Emit constants.
 | 
						|
  WriteModuleConstants(VE, Stream);
 | 
						|
  
 | 
						|
  // Emit function bodies.
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    if (!I->isDeclaration())
 | 
						|
      WriteFunction(*I, VE, Stream);
 | 
						|
  
 | 
						|
  // Emit the type symbol table information.
 | 
						|
  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
 | 
						|
  
 | 
						|
  // Emit names for globals/functions etc.
 | 
						|
  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
 | 
						|
  
 | 
						|
  Stream.ExitBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
 | 
						|
/// header and trailer to make it compatible with the system archiver.  To do
 | 
						|
/// this we emit the following header, and then emit a trailer that pads the
 | 
						|
/// file out to be a multiple of 16 bytes.
 | 
						|
/// 
 | 
						|
/// struct bc_header {
 | 
						|
///   uint32_t Magic;         // 0x0B17C0DE
 | 
						|
///   uint32_t Version;       // Version, currently always 0.
 | 
						|
///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
 | 
						|
///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
 | 
						|
///   uint32_t CPUType;       // CPU specifier.
 | 
						|
///   ... potentially more later ...
 | 
						|
/// };
 | 
						|
enum {
 | 
						|
  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
 | 
						|
  DarwinBCHeaderSize = 5*4
 | 
						|
};
 | 
						|
 | 
						|
static void EmitDarwinBCHeader(BitstreamWriter &Stream,
 | 
						|
                               const std::string &TT) {
 | 
						|
  unsigned CPUType = ~0U;
 | 
						|
  
 | 
						|
  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
 | 
						|
  // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
 | 
						|
  // specific constants here because they are implicitly part of the Darwin ABI.
 | 
						|
  enum {
 | 
						|
    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
 | 
						|
    DARWIN_CPU_TYPE_X86        = 7,
 | 
						|
    DARWIN_CPU_TYPE_POWERPC    = 18
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (TT.find("x86_64-") == 0)
 | 
						|
    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
 | 
						|
  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
 | 
						|
           TT[4] == '-' && TT[1] - '3' < 6)
 | 
						|
    CPUType = DARWIN_CPU_TYPE_X86;
 | 
						|
  else if (TT.find("powerpc-") == 0)
 | 
						|
    CPUType = DARWIN_CPU_TYPE_POWERPC;
 | 
						|
  else if (TT.find("powerpc64-") == 0)
 | 
						|
    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
 | 
						|
  
 | 
						|
  // Traditional Bitcode starts after header.
 | 
						|
  unsigned BCOffset = DarwinBCHeaderSize;
 | 
						|
  
 | 
						|
  Stream.Emit(0x0B17C0DE, 32);
 | 
						|
  Stream.Emit(0         , 32);  // Version.
 | 
						|
  Stream.Emit(BCOffset  , 32);
 | 
						|
  Stream.Emit(0         , 32);  // Filled in later.
 | 
						|
  Stream.Emit(CPUType   , 32);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
 | 
						|
/// finalize the header.
 | 
						|
static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
 | 
						|
  // Update the size field in the header.
 | 
						|
  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
 | 
						|
  
 | 
						|
  // If the file is not a multiple of 16 bytes, insert dummy padding.
 | 
						|
  while (BufferSize & 15) {
 | 
						|
    Stream.Emit(0, 8);
 | 
						|
    ++BufferSize;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WriteBitcodeToFile - Write the specified module to the specified output
 | 
						|
/// stream.
 | 
						|
void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
 | 
						|
  raw_os_ostream RawOut(Out);
 | 
						|
  // If writing to stdout, set binary mode.
 | 
						|
  if (llvm::cout == Out)
 | 
						|
    sys::Program::ChangeStdoutToBinary();
 | 
						|
  WriteBitcodeToFile(M, RawOut);
 | 
						|
}
 | 
						|
 | 
						|
/// WriteBitcodeToFile - Write the specified module to the specified output
 | 
						|
/// stream.
 | 
						|
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
 | 
						|
  std::vector<unsigned char> Buffer;
 | 
						|
  BitstreamWriter Stream(Buffer);
 | 
						|
  
 | 
						|
  Buffer.reserve(256*1024);
 | 
						|
 | 
						|
  WriteBitcodeToStream( M, Stream );
 | 
						|
  
 | 
						|
  // If writing to stdout, set binary mode.
 | 
						|
  if (&llvm::outs() == &Out)
 | 
						|
    sys::Program::ChangeStdoutToBinary();
 | 
						|
 | 
						|
  // Write the generated bitstream to "Out".
 | 
						|
  Out.write((char*)&Buffer.front(), Buffer.size());
 | 
						|
  
 | 
						|
  // Make sure it hits disk now.
 | 
						|
  Out.flush();
 | 
						|
}
 | 
						|
 | 
						|
/// WriteBitcodeToStream - Write the specified module to the specified output
 | 
						|
/// stream.
 | 
						|
void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
 | 
						|
  // If this is darwin, emit a file header and trailer if needed.
 | 
						|
  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
 | 
						|
  if (isDarwin)
 | 
						|
    EmitDarwinBCHeader(Stream, M->getTargetTriple());
 | 
						|
  
 | 
						|
  // Emit the file header.
 | 
						|
  Stream.Emit((unsigned)'B', 8);
 | 
						|
  Stream.Emit((unsigned)'C', 8);
 | 
						|
  Stream.Emit(0x0, 4);
 | 
						|
  Stream.Emit(0xC, 4);
 | 
						|
  Stream.Emit(0xE, 4);
 | 
						|
  Stream.Emit(0xD, 4);
 | 
						|
 | 
						|
  // Emit the module.
 | 
						|
  WriteModule(M, Stream);
 | 
						|
 | 
						|
  if (isDarwin)
 | 
						|
    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
 | 
						|
}
 |