mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			498 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			498 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the declarations of classes that represent "derived 
 | |
| // types".  These are things like "arrays of x" or "structure of x, y, z" or
 | |
| // "method returning x taking (y,z) as parameters", etc...
 | |
| //
 | |
| // The implementations of these classes live in the Type.cpp file.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_DERIVED_TYPES_H
 | |
| #define LLVM_DERIVED_TYPES_H
 | |
| 
 | |
| #include "llvm/Type.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<class ValType, class TypeClass> class TypeMap;
 | |
| class FunctionValType;
 | |
| class ArrayValType;
 | |
| class StructValType;
 | |
| class PointerValType;
 | |
| 
 | |
| class DerivedType : public Type, public AbstractTypeUser {
 | |
|   /// RefCount - This counts the number of PATypeHolders that are pointing to
 | |
|   /// this type.  When this number falls to zero, if the type is abstract and
 | |
|   /// has no AbstractTypeUsers, the type is deleted.
 | |
|   ///
 | |
|   mutable unsigned RefCount;
 | |
|   
 | |
|   // AbstractTypeUsers - Implement a list of the users that need to be notified
 | |
|   // if I am a type, and I get resolved into a more concrete type.
 | |
|   //
 | |
|   ///// FIXME: kill mutable nonsense when Type's are not const
 | |
|   mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
 | |
| 
 | |
| protected:
 | |
|   DerivedType(PrimitiveID id) : Type("", id), RefCount(0) {
 | |
|   }
 | |
|   ~DerivedType() {
 | |
|     assert(AbstractTypeUsers.empty());
 | |
|   }
 | |
| 
 | |
|   /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
 | |
|   /// that the current type has transitioned from being abstract to being
 | |
|   /// concrete.
 | |
|   ///
 | |
|   void notifyUsesThatTypeBecameConcrete();
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses() = 0;
 | |
|   
 | |
| public:
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Abstract Type handling methods - These types have special lifetimes, which
 | |
|   // are managed by (add|remove)AbstractTypeUser. See comments in
 | |
|   // AbstractTypeUser.h for more information.
 | |
| 
 | |
|   // addAbstractTypeUser - Notify an abstract type that there is a new user of
 | |
|   // it.  This function is called primarily by the PATypeHandle class.
 | |
|   //
 | |
|   void addAbstractTypeUser(AbstractTypeUser *U) const {
 | |
|     assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
 | |
|     AbstractTypeUsers.push_back(U);
 | |
|   }
 | |
| 
 | |
|   // removeAbstractTypeUser - Notify an abstract type that a user of the class
 | |
|   // no longer has a handle to the type.  This function is called primarily by
 | |
|   // the PATypeHandle class.  When there are no users of the abstract type, it
 | |
|   // is annihilated, because there is no way to get a reference to it ever
 | |
|   // again.
 | |
|   //
 | |
|   void removeAbstractTypeUser(AbstractTypeUser *U) const;
 | |
| 
 | |
|   // refineAbstractTypeTo - This function is used to when it is discovered that
 | |
|   // the 'this' abstract type is actually equivalent to the NewType specified.
 | |
|   // This causes all users of 'this' to switch to reference the more concrete
 | |
|   // type NewType and for 'this' to be deleted.
 | |
|   //
 | |
|   void refineAbstractTypeTo(const Type *NewType);
 | |
| 
 | |
|   void addRef() const {
 | |
|     assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
 | |
|     ++RefCount;
 | |
|   }
 | |
| 
 | |
|   void dropRef() const {
 | |
|     assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
 | |
|     assert(RefCount && "No objects are currently referencing this object!");
 | |
| 
 | |
|     // If this is the last PATypeHolder using this object, and there are no
 | |
|     // PATypeHandles using it, the type is dead, delete it now.
 | |
|     if (--RefCount == 0 && AbstractTypeUsers.empty())
 | |
|       delete this;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void dump() const { Value::dump(); }
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const DerivedType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->isDerivedType();
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| struct FunctionType : public DerivedType {
 | |
|   typedef std::vector<PATypeHandle> ParamTypes;
 | |
|   friend class TypeMap<FunctionValType, FunctionType>;
 | |
| private:
 | |
|   PATypeHandle ResultType;
 | |
|   ParamTypes ParamTys;
 | |
|   bool isVarArgs;
 | |
| 
 | |
|   FunctionType(const FunctionType &);                   // Do not implement
 | |
|   const FunctionType &operator=(const FunctionType &);  // Do not implement
 | |
| protected:
 | |
|   // This should really be private, but it squelches a bogus warning
 | |
|   // from GCC to make them protected:  warning: `class FunctionType' only 
 | |
|   // defines private constructors and has no friends
 | |
| 
 | |
|   // Private ctor - Only can be created by a static member...
 | |
|   FunctionType(const Type *Result, const std::vector<const Type*> &Params, 
 | |
|                bool IsVarArgs);
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses();
 | |
| 
 | |
| public:
 | |
|   /// FunctionType::get - This static method is the primary way of constructing
 | |
|   /// a FunctionType
 | |
|   static FunctionType *get(const Type *Result,
 | |
|                            const std::vector<const Type*> &Params,
 | |
|                            bool isVarArg);
 | |
| 
 | |
|   inline bool isVarArg() const { return isVarArgs; }
 | |
|   inline const Type *getReturnType() const { return ResultType; }
 | |
|   inline const ParamTypes &getParamTypes() const { return ParamTys; }
 | |
| 
 | |
|   // Parameter type accessors...
 | |
|   const Type *getParamType(unsigned i) const { return ParamTys[i]; }
 | |
| 
 | |
|   // getNumParams - Return the number of fixed parameters this function type
 | |
|   // requires.  This does not consider varargs.
 | |
|   //
 | |
|   unsigned getNumParams() const { return ParamTys.size(); }
 | |
| 
 | |
| 
 | |
|   virtual const Type *getContainedType(unsigned i) const {
 | |
|     return i == 0 ? ResultType.get() : ParamTys[i-1].get();
 | |
|   }
 | |
|   virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
|   
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const FunctionType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == FunctionTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // CompositeType - Common super class of ArrayType, StructType, and PointerType
 | |
| //
 | |
| class CompositeType : public DerivedType {
 | |
| protected:
 | |
|   inline CompositeType(PrimitiveID id) : DerivedType(id) { }
 | |
| public:
 | |
| 
 | |
|   // getTypeAtIndex - Given an index value into the type, return the type of the
 | |
|   // element.
 | |
|   //
 | |
|   virtual const Type *getTypeAtIndex(const Value *V) const = 0;
 | |
|   virtual bool indexValid(const Value *V) const = 0;
 | |
| 
 | |
|   // getIndexType - Return the type required of indices for this composite.
 | |
|   // For structures, this is ubyte, for arrays, this is uint
 | |
|   //
 | |
|   virtual const Type *getIndexType() const = 0;
 | |
| 
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const CompositeType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == ArrayTyID || 
 | |
|            T->getPrimitiveID() == StructTyID ||
 | |
|            T->getPrimitiveID() == PointerTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| struct StructType : public CompositeType {
 | |
|   friend class TypeMap<StructValType, StructType>;
 | |
|   typedef std::vector<PATypeHandle> ElementTypes;
 | |
| 
 | |
| private:
 | |
|   ElementTypes ETypes;                              // Element types of struct
 | |
| 
 | |
|   StructType(const StructType &);                   // Do not implement
 | |
|   const StructType &operator=(const StructType &);  // Do not implement
 | |
| 
 | |
| protected:
 | |
|   // This should really be private, but it squelches a bogus warning
 | |
|   // from GCC to make them protected:  warning: `class StructType' only 
 | |
|   // defines private constructors and has no friends
 | |
| 
 | |
|   // Private ctor - Only can be created by a static member...
 | |
|   StructType(const std::vector<const Type*> &Types);
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses();
 | |
|   
 | |
| public:
 | |
|   /// StructType::get - This static method is the primary way to create a
 | |
|   /// StructType.
 | |
|   static StructType *get(const std::vector<const Type*> &Params);
 | |
| 
 | |
|   inline const ElementTypes &getElementTypes() const { return ETypes; }
 | |
| 
 | |
|   virtual const Type *getContainedType(unsigned i) const { 
 | |
|     return ETypes[i].get();
 | |
|   }
 | |
|   virtual unsigned getNumContainedTypes() const { return ETypes.size(); }
 | |
| 
 | |
|   // getTypeAtIndex - Given an index value into the type, return the type of the
 | |
|   // element.  For a structure type, this must be a constant value...
 | |
|   //
 | |
|   virtual const Type *getTypeAtIndex(const Value *V) const ;
 | |
|   virtual bool indexValid(const Value *V) const;
 | |
| 
 | |
|   // getIndexType - Return the type required of indices for this composite.
 | |
|   // For structures, this is ubyte, for arrays, this is uint
 | |
|   //
 | |
|   virtual const Type *getIndexType() const { return Type::UByteTy; }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const StructType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == StructTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // SequentialType - This is the superclass of the array and pointer type
 | |
| // classes.  Both of these represent "arrays" in memory.  The array type
 | |
| // represents a specifically sized array, pointer types are unsized/unknown size
 | |
| // arrays.  SequentialType holds the common features of both, which stem from
 | |
| // the fact that both lay their components out in memory identically.
 | |
| //
 | |
| class SequentialType : public CompositeType {
 | |
|   SequentialType(const SequentialType &);                  // Do not implement!
 | |
|   const SequentialType &operator=(const SequentialType &); // Do not implement!
 | |
| protected:
 | |
|   PATypeHandle ElementType;
 | |
| 
 | |
|   SequentialType(PrimitiveID TID, const Type *ElType)
 | |
|     : CompositeType(TID), ElementType(PATypeHandle(ElType, this)) {
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   inline const Type *getElementType() const { return ElementType; }
 | |
| 
 | |
|   virtual const Type *getContainedType(unsigned i) const { 
 | |
|     return ElementType.get();
 | |
|   }
 | |
|   virtual unsigned getNumContainedTypes() const { return 1; }
 | |
| 
 | |
|   // getTypeAtIndex - Given an index value into the type, return the type of the
 | |
|   // element.  For sequential types, there is only one subtype...
 | |
|   //
 | |
|   virtual const Type *getTypeAtIndex(const Value *V) const {
 | |
|     return ElementType.get();
 | |
|   }
 | |
|   virtual bool indexValid(const Value *V) const {
 | |
|     return V->getType() == Type::LongTy;   // Must be a 'long' index
 | |
|   }
 | |
| 
 | |
|   // getIndexType() - Return the type required of indices for this composite.
 | |
|   // For structures, this is ubyte, for arrays, this is uint
 | |
|   //
 | |
|   virtual const Type *getIndexType() const { return Type::LongTy; }
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const SequentialType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == ArrayTyID ||
 | |
|            T->getPrimitiveID() == PointerTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class ArrayType : public SequentialType {
 | |
|   friend class TypeMap<ArrayValType, ArrayType>;
 | |
|   unsigned NumElements;
 | |
| 
 | |
|   ArrayType(const ArrayType &);                   // Do not implement
 | |
|   const ArrayType &operator=(const ArrayType &);  // Do not implement
 | |
| protected:
 | |
|   // This should really be private, but it squelches a bogus warning
 | |
|   // from GCC to make them protected:  warning: `class ArrayType' only 
 | |
|   // defines private constructors and has no friends
 | |
| 
 | |
|   // Private ctor - Only can be created by a static member...
 | |
|   ArrayType(const Type *ElType, unsigned NumEl);
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses();
 | |
| 
 | |
| public:
 | |
|   /// ArrayType::get - This static method is the primary way to construct an
 | |
|   /// ArrayType
 | |
|   static ArrayType *get(const Type *ElementType, unsigned NumElements);
 | |
| 
 | |
|   inline unsigned    getNumElements() const { return NumElements; }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const ArrayType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == ArrayTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| class PointerType : public SequentialType {
 | |
|   friend class TypeMap<PointerValType, PointerType>;
 | |
|   PointerType(const PointerType &);                   // Do not implement
 | |
|   const PointerType &operator=(const PointerType &);  // Do not implement
 | |
| protected:
 | |
|   // This should really be private, but it squelches a bogus warning
 | |
|   // from GCC to make them protected:  warning: `class PointerType' only 
 | |
|   // defines private constructors and has no friends
 | |
| 
 | |
|   // Private ctor - Only can be created by a static member...
 | |
|   PointerType(const Type *ElType);
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses();
 | |
| public:
 | |
|   /// PointerType::get - This is the only way to construct a new pointer type.
 | |
|   static PointerType *get(const Type *ElementType);
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Implement support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const PointerType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == PointerTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class OpaqueType : public DerivedType {
 | |
|   OpaqueType(const OpaqueType &);                   // DO NOT IMPLEMENT
 | |
|   const OpaqueType &operator=(const OpaqueType &);  // DO NOT IMPLEMENT
 | |
| protected:
 | |
|   // This should really be private, but it squelches a bogus warning
 | |
|   // from GCC to make them protected:  warning: `class OpaqueType' only 
 | |
|   // defines private constructors and has no friends
 | |
| 
 | |
|   // Private ctor - Only can be created by a static member...
 | |
|   OpaqueType();
 | |
| 
 | |
|   // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   // another (more concrete) type, we must eliminate all references to other
 | |
|   // types, to avoid some circular reference problems.
 | |
|   virtual void dropAllTypeUses() {
 | |
|     // FIXME: THIS IS NOT AN ABSTRACT TYPE USER!
 | |
|   }  // No type uses
 | |
| 
 | |
| public:
 | |
|   // OpaqueType::get - Static factory method for the OpaqueType class...
 | |
|   static OpaqueType *get() {
 | |
|     return new OpaqueType();           // All opaque types are distinct
 | |
|   }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|     abort();   // FIXME: this is not really an AbstractTypeUser!
 | |
|   }
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|     abort();   // FIXME: this is not really an AbstractTypeUser!
 | |
|   }
 | |
| 
 | |
|   // Implement support for type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const OpaqueType *T) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getPrimitiveID() == OpaqueTyID;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Type>(V) && classof(cast<Type>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
 | |
| // These are defined here because they MUST be inlined, yet are dependent on 
 | |
| // the definition of the Type class.  Of course Type derives from Value, which
 | |
| // contains an AbstractTypeUser instance, so there is no good way to factor out
 | |
| // the code.  Hence this bit of uglyness.
 | |
| //
 | |
| inline void PATypeHandle::addUser() {
 | |
|   assert(Ty && "Type Handle has a null type!");
 | |
|   if (Ty->isAbstract())
 | |
|     cast<DerivedType>(Ty)->addAbstractTypeUser(User);
 | |
| }
 | |
| inline void PATypeHandle::removeUser() {
 | |
|   if (Ty->isAbstract())
 | |
|     cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
 | |
| }
 | |
| 
 | |
| inline void PATypeHandle::removeUserFromConcrete() {
 | |
|   if (!Ty->isAbstract())
 | |
|     cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
 | |
| }
 | |
| 
 | |
| // Define inline methods for PATypeHolder...
 | |
| 
 | |
| inline void PATypeHolder::addRef() {
 | |
|   if (Ty->isAbstract())
 | |
|     cast<DerivedType>(Ty)->addRef();
 | |
| }
 | |
| 
 | |
| inline void PATypeHolder::dropRef() {
 | |
|   if (Ty->isAbstract())
 | |
|     cast<DerivedType>(Ty)->dropRef();
 | |
| }
 | |
| 
 | |
| /// get - This implements the forwarding part of the union-find algorithm for
 | |
| /// abstract types.  Before every access to the Type*, we check to see if the
 | |
| /// type we are pointing to is forwarding to a new type.  If so, we drop our
 | |
| /// reference to the type.
 | |
| inline const Type* PATypeHolder::get() const {
 | |
|   const Type *NewTy = Ty->getForwardedType();
 | |
|   if (!NewTy) return Ty;
 | |
|   return *const_cast<PATypeHolder*>(this) = NewTy;
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |