mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149967 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1295 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1295 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a MachineCodeEmitter object that is used by the JIT to
 | |
| // write machine code to memory and remember where relocatable values are.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "JIT.h"
 | |
| #include "JITDwarfEmitter.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/CodeGen/JITCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineCodeInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRelocation.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/ExecutionEngine/JITEventListener.h"
 | |
| #include "llvm/ExecutionEngine/JITMemoryManager.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Disassembler.h"
 | |
| #include "llvm/Support/Memory.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/ValueMap.h"
 | |
| #include <algorithm>
 | |
| #ifndef NDEBUG
 | |
| #include <iomanip>
 | |
| #endif
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled");
 | |
| STATISTIC(NumRelos, "Number of relocations applied");
 | |
| STATISTIC(NumRetries, "Number of retries with more memory");
 | |
| 
 | |
| 
 | |
| // A declaration may stop being a declaration once it's fully read from bitcode.
 | |
| // This function returns true if F is fully read and is still a declaration.
 | |
| static bool isNonGhostDeclaration(const Function *F) {
 | |
|   return F->isDeclaration() && !F->isMaterializable();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JIT lazy compilation code.
 | |
| //
 | |
| namespace {
 | |
|   class JITEmitter;
 | |
|   class JITResolverState;
 | |
| 
 | |
|   template<typename ValueTy>
 | |
|   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
 | |
|     typedef JITResolverState *ExtraData;
 | |
|     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
 | |
|       llvm_unreachable("The JIT doesn't know how to handle a"
 | |
|                        " RAUW on a value it has emitted.");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
 | |
|     typedef JITResolverState *ExtraData;
 | |
|     static void onDelete(JITResolverState *JRS, Function *F);
 | |
|   };
 | |
| 
 | |
|   class JITResolverState {
 | |
|   public:
 | |
|     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
 | |
|       FunctionToLazyStubMapTy;
 | |
|     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
 | |
|     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
 | |
|                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
 | |
|     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
 | |
|   private:
 | |
|     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
 | |
|     /// particular function so that we can reuse them if necessary.
 | |
|     FunctionToLazyStubMapTy FunctionToLazyStubMap;
 | |
| 
 | |
|     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
 | |
|     /// site corresponds to, and vice versa.
 | |
|     CallSiteToFunctionMapTy CallSiteToFunctionMap;
 | |
|     FunctionToCallSitesMapTy FunctionToCallSitesMap;
 | |
| 
 | |
|     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
 | |
|     /// particular GlobalVariable so that we can reuse them if necessary.
 | |
|     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
 | |
| 
 | |
|     /// Instance of the JIT this ResolverState serves.
 | |
|     JIT *TheJIT;
 | |
| 
 | |
|   public:
 | |
|     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
 | |
|                                  FunctionToCallSitesMap(this),
 | |
|                                  TheJIT(jit) {}
 | |
| 
 | |
|     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
 | |
|       const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return FunctionToLazyStubMap;
 | |
|     }
 | |
| 
 | |
|     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
 | |
|       assert(lck.holds(TheJIT->lock));
 | |
|       return GlobalToIndirectSymMap;
 | |
|     }
 | |
| 
 | |
|     std::pair<void *, Function *> LookupFunctionFromCallSite(
 | |
|         const MutexGuard &locked, void *CallSite) const {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
| 
 | |
|       // The address given to us for the stub may not be exactly right, it
 | |
|       // might be a little bit after the stub.  As such, use upper_bound to
 | |
|       // find it.
 | |
|       CallSiteToFunctionMapTy::const_iterator I =
 | |
|         CallSiteToFunctionMap.upper_bound(CallSite);
 | |
|       assert(I != CallSiteToFunctionMap.begin() &&
 | |
|              "This is not a known call site!");
 | |
|       --I;
 | |
|       return *I;
 | |
|     }
 | |
| 
 | |
|     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
| 
 | |
|       bool Inserted = CallSiteToFunctionMap.insert(
 | |
|           std::make_pair(CallSite, F)).second;
 | |
|       (void)Inserted;
 | |
|       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
 | |
|       FunctionToCallSitesMap[F].insert(CallSite);
 | |
|     }
 | |
| 
 | |
|     void EraseAllCallSitesForPrelocked(Function *F);
 | |
| 
 | |
|     // Erases _all_ call sites regardless of their function.  This is used to
 | |
|     // unregister the stub addresses from the StubToResolverMap in
 | |
|     // ~JITResolver().
 | |
|     void EraseAllCallSitesPrelocked();
 | |
|   };
 | |
| 
 | |
|   /// JITResolver - Keep track of, and resolve, call sites for functions that
 | |
|   /// have not yet been compiled.
 | |
|   class JITResolver {
 | |
|     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
 | |
|     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
 | |
|     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
 | |
| 
 | |
|     /// LazyResolverFn - The target lazy resolver function that we actually
 | |
|     /// rewrite instructions to use.
 | |
|     TargetJITInfo::LazyResolverFn LazyResolverFn;
 | |
| 
 | |
|     JITResolverState state;
 | |
| 
 | |
|     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
 | |
|     /// for external functions.  TODO: Of course, external functions don't need
 | |
|     /// a lazy stub.  It's actually here to make it more likely that far calls
 | |
|     /// succeed, but no single stub can guarantee that.  I'll remove this in a
 | |
|     /// subsequent checkin when I actually fix far calls.
 | |
|     std::map<void*, void*> ExternalFnToStubMap;
 | |
| 
 | |
|     /// revGOTMap - map addresses to indexes in the GOT
 | |
|     std::map<void*, unsigned> revGOTMap;
 | |
|     unsigned nextGOTIndex;
 | |
| 
 | |
|     JITEmitter &JE;
 | |
| 
 | |
|     /// Instance of JIT corresponding to this Resolver.
 | |
|     JIT *TheJIT;
 | |
| 
 | |
|   public:
 | |
|     explicit JITResolver(JIT &jit, JITEmitter &je)
 | |
|       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
 | |
|       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
 | |
|     }
 | |
| 
 | |
|     ~JITResolver();
 | |
| 
 | |
|     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
 | |
|     /// lazy-compilation stub if it has already been created.
 | |
|     void *getLazyFunctionStubIfAvailable(Function *F);
 | |
| 
 | |
|     /// getLazyFunctionStub - This returns a pointer to a function's
 | |
|     /// lazy-compilation stub, creating one on demand as needed.
 | |
|     void *getLazyFunctionStub(Function *F);
 | |
| 
 | |
|     /// getExternalFunctionStub - Return a stub for the function at the
 | |
|     /// specified address, created lazily on demand.
 | |
|     void *getExternalFunctionStub(void *FnAddr);
 | |
| 
 | |
|     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
 | |
|     /// specified GV address.
 | |
|     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
 | |
| 
 | |
|     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
 | |
|     /// an address.  This function only manages slots, it does not manage the
 | |
|     /// contents of the slots or the memory associated with the GOT.
 | |
|     unsigned getGOTIndexForAddr(void *addr);
 | |
| 
 | |
|     /// JITCompilerFn - This function is called to resolve a stub to a compiled
 | |
|     /// address.  If the LLVM Function corresponding to the stub has not yet
 | |
|     /// been compiled, this function compiles it first.
 | |
|     static void *JITCompilerFn(void *Stub);
 | |
|   };
 | |
| 
 | |
|   class StubToResolverMapTy {
 | |
|     /// Map a stub address to a specific instance of a JITResolver so that
 | |
|     /// lazily-compiled functions can find the right resolver to use.
 | |
|     ///
 | |
|     /// Guarded by Lock.
 | |
|     std::map<void*, JITResolver*> Map;
 | |
| 
 | |
|     /// Guards Map from concurrent accesses.
 | |
|     mutable sys::Mutex Lock;
 | |
| 
 | |
|   public:
 | |
|     /// Registers a Stub to be resolved by Resolver.
 | |
|     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
 | |
|       MutexGuard guard(Lock);
 | |
|       Map.insert(std::make_pair(Stub, Resolver));
 | |
|     }
 | |
|     /// Unregisters the Stub when it's invalidated.
 | |
|     void UnregisterStubResolver(void *Stub) {
 | |
|       MutexGuard guard(Lock);
 | |
|       Map.erase(Stub);
 | |
|     }
 | |
|     /// Returns the JITResolver instance that owns the Stub.
 | |
|     JITResolver *getResolverFromStub(void *Stub) const {
 | |
|       MutexGuard guard(Lock);
 | |
|       // The address given to us for the stub may not be exactly right, it might
 | |
|       // be a little bit after the stub.  As such, use upper_bound to find it.
 | |
|       // This is the same trick as in LookupFunctionFromCallSite from
 | |
|       // JITResolverState.
 | |
|       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
 | |
|       assert(I != Map.begin() && "This is not a known stub!");
 | |
|       --I;
 | |
|       return I->second;
 | |
|     }
 | |
|     /// True if any stubs refer to the given resolver. Only used in an assert().
 | |
|     /// O(N)
 | |
|     bool ResolverHasStubs(JITResolver* Resolver) const {
 | |
|       MutexGuard guard(Lock);
 | |
|       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
 | |
|              E = Map.end(); I != E; ++I) {
 | |
|         if (I->second == Resolver)
 | |
|           return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
|   /// This needs to be static so that a lazy call stub can access it with no
 | |
|   /// context except the address of the stub.
 | |
|   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
 | |
| 
 | |
|   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
 | |
|   /// used to output functions to memory for execution.
 | |
|   class JITEmitter : public JITCodeEmitter {
 | |
|     JITMemoryManager *MemMgr;
 | |
| 
 | |
|     // When outputting a function stub in the context of some other function, we
 | |
|     // save BufferBegin/BufferEnd/CurBufferPtr here.
 | |
|     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
 | |
| 
 | |
|     // When reattempting to JIT a function after running out of space, we store
 | |
|     // the estimated size of the function we're trying to JIT here, so we can
 | |
|     // ask the memory manager for at least this much space.  When we
 | |
|     // successfully emit the function, we reset this back to zero.
 | |
|     uintptr_t SizeEstimate;
 | |
| 
 | |
|     /// Relocations - These are the relocations that the function needs, as
 | |
|     /// emitted.
 | |
|     std::vector<MachineRelocation> Relocations;
 | |
| 
 | |
|     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
 | |
|     /// It is filled in by the StartMachineBasicBlock callback and queried by
 | |
|     /// the getMachineBasicBlockAddress callback.
 | |
|     std::vector<uintptr_t> MBBLocations;
 | |
| 
 | |
|     /// ConstantPool - The constant pool for the current function.
 | |
|     ///
 | |
|     MachineConstantPool *ConstantPool;
 | |
| 
 | |
|     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
 | |
|     ///
 | |
|     void *ConstantPoolBase;
 | |
| 
 | |
|     /// ConstPoolAddresses - Addresses of individual constant pool entries.
 | |
|     ///
 | |
|     SmallVector<uintptr_t, 8> ConstPoolAddresses;
 | |
| 
 | |
|     /// JumpTable - The jump tables for the current function.
 | |
|     ///
 | |
|     MachineJumpTableInfo *JumpTable;
 | |
| 
 | |
|     /// JumpTableBase - A pointer to the first entry in the jump table.
 | |
|     ///
 | |
|     void *JumpTableBase;
 | |
| 
 | |
|     /// Resolver - This contains info about the currently resolved functions.
 | |
|     JITResolver Resolver;
 | |
| 
 | |
|     /// DE - The dwarf emitter for the jit.
 | |
|     OwningPtr<JITDwarfEmitter> DE;
 | |
| 
 | |
|     /// LabelLocations - This vector is a mapping from Label ID's to their
 | |
|     /// address.
 | |
|     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
 | |
| 
 | |
|     /// MMI - Machine module info for exception informations
 | |
|     MachineModuleInfo* MMI;
 | |
| 
 | |
|     // CurFn - The llvm function being emitted.  Only valid during
 | |
|     // finishFunction().
 | |
|     const Function *CurFn;
 | |
| 
 | |
|     /// Information about emitted code, which is passed to the
 | |
|     /// JITEventListeners.  This is reset in startFunction and used in
 | |
|     /// finishFunction.
 | |
|     JITEvent_EmittedFunctionDetails EmissionDetails;
 | |
| 
 | |
|     struct EmittedCode {
 | |
|       void *FunctionBody;  // Beginning of the function's allocation.
 | |
|       void *Code;  // The address the function's code actually starts at.
 | |
|       void *ExceptionTable;
 | |
|       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
 | |
|     };
 | |
|     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
 | |
|       typedef JITEmitter *ExtraData;
 | |
|       static void onDelete(JITEmitter *, const Function*);
 | |
|       static void onRAUW(JITEmitter *, const Function*, const Function*);
 | |
|     };
 | |
|     ValueMap<const Function *, EmittedCode,
 | |
|              EmittedFunctionConfig> EmittedFunctions;
 | |
| 
 | |
|     DebugLoc PrevDL;
 | |
| 
 | |
|     /// Instance of the JIT
 | |
|     JIT *TheJIT;
 | |
| 
 | |
|     bool JITExceptionHandling;
 | |
| 
 | |
|   public:
 | |
|     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
 | |
|       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
 | |
|         EmittedFunctions(this), TheJIT(&jit),
 | |
|         JITExceptionHandling(TM.Options.JITExceptionHandling) {
 | |
|       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
 | |
|       if (jit.getJITInfo().needsGOT()) {
 | |
|         MemMgr->AllocateGOT();
 | |
|         DEBUG(dbgs() << "JIT is managing a GOT\n");
 | |
|       }
 | |
| 
 | |
|       if (JITExceptionHandling) {
 | |
|         DE.reset(new JITDwarfEmitter(jit));
 | |
|       }
 | |
|     }
 | |
|     ~JITEmitter() {
 | |
|       delete MemMgr;
 | |
|     }
 | |
| 
 | |
|     /// classof - Methods for support type inquiry through isa, cast, and
 | |
|     /// dyn_cast:
 | |
|     ///
 | |
|     static inline bool classof(const MachineCodeEmitter*) { return true; }
 | |
| 
 | |
|     JITResolver &getJITResolver() { return Resolver; }
 | |
| 
 | |
|     virtual void startFunction(MachineFunction &F);
 | |
|     virtual bool finishFunction(MachineFunction &F);
 | |
| 
 | |
|     void emitConstantPool(MachineConstantPool *MCP);
 | |
|     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
|     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
| 
 | |
|     void startGVStub(const GlobalValue* GV,
 | |
|                      unsigned StubSize, unsigned Alignment = 1);
 | |
|     void startGVStub(void *Buffer, unsigned StubSize);
 | |
|     void finishGVStub();
 | |
|     virtual void *allocIndirectGV(const GlobalValue *GV,
 | |
|                                   const uint8_t *Buffer, size_t Size,
 | |
|                                   unsigned Alignment);
 | |
| 
 | |
|     /// allocateSpace - Reserves space in the current block if any, or
 | |
|     /// allocate a new one of the given size.
 | |
|     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
 | |
| 
 | |
|     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
 | |
|     /// this method does not allocate memory in the current output buffer,
 | |
|     /// because a global may live longer than the current function.
 | |
|     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
 | |
| 
 | |
|     virtual void addRelocation(const MachineRelocation &MR) {
 | |
|       Relocations.push_back(MR);
 | |
|     }
 | |
| 
 | |
|     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
 | |
|       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
 | |
|         MBBLocations.resize((MBB->getNumber()+1)*2);
 | |
|       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
 | |
|       if (MBB->hasAddressTaken())
 | |
|         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
 | |
|                                        (void*)getCurrentPCValue());
 | |
|       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
 | |
|                    << (void*) getCurrentPCValue() << "]\n");
 | |
|     }
 | |
| 
 | |
|     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
 | |
|     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
 | |
| 
 | |
|     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
 | |
|       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
 | |
|              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
 | |
|       return MBBLocations[MBB->getNumber()];
 | |
|     }
 | |
| 
 | |
|     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
 | |
|     /// given function.  Increase the minimum allocation size so that we get
 | |
|     /// more memory next time.
 | |
|     void retryWithMoreMemory(MachineFunction &F);
 | |
| 
 | |
|     /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
|     /// function body.
 | |
|     void deallocateMemForFunction(const Function *F);
 | |
| 
 | |
|     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
 | |
| 
 | |
|     virtual void emitLabel(MCSymbol *Label) {
 | |
|       LabelLocations[Label] = getCurrentPCValue();
 | |
|     }
 | |
| 
 | |
|     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
 | |
|       return &LabelLocations;
 | |
|     }
 | |
| 
 | |
|     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
 | |
|       assert(LabelLocations.count(Label) && "Label not emitted!");
 | |
|       return LabelLocations.find(Label)->second;
 | |
|     }
 | |
| 
 | |
|     virtual void setModuleInfo(MachineModuleInfo* Info) {
 | |
|       MMI = Info;
 | |
|       if (DE.get()) DE->setModuleInfo(Info);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
 | |
|                              bool MayNeedFarStub);
 | |
|     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
 | |
|   JRS->EraseAllCallSitesForPrelocked(F);
 | |
| }
 | |
| 
 | |
| void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
 | |
|   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
 | |
|   if (F2C == FunctionToCallSitesMap.end())
 | |
|     return;
 | |
|   StubToResolverMapTy &S2RMap = *StubToResolverMap;
 | |
|   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
 | |
|          E = F2C->second.end(); I != E; ++I) {
 | |
|     S2RMap.UnregisterStubResolver(*I);
 | |
|     bool Erased = CallSiteToFunctionMap.erase(*I);
 | |
|     (void)Erased;
 | |
|     assert(Erased && "Missing call site->function mapping");
 | |
|   }
 | |
|   FunctionToCallSitesMap.erase(F2C);
 | |
| }
 | |
| 
 | |
| void JITResolverState::EraseAllCallSitesPrelocked() {
 | |
|   StubToResolverMapTy &S2RMap = *StubToResolverMap;
 | |
|   for (CallSiteToFunctionMapTy::const_iterator
 | |
|          I = CallSiteToFunctionMap.begin(),
 | |
|          E = CallSiteToFunctionMap.end(); I != E; ++I) {
 | |
|     S2RMap.UnregisterStubResolver(I->first);
 | |
|   }
 | |
|   CallSiteToFunctionMap.clear();
 | |
|   FunctionToCallSitesMap.clear();
 | |
| }
 | |
| 
 | |
| JITResolver::~JITResolver() {
 | |
|   // No need to lock because we're in the destructor, and state isn't shared.
 | |
|   state.EraseAllCallSitesPrelocked();
 | |
|   assert(!StubToResolverMap->ResolverHasStubs(this) &&
 | |
|          "Resolver destroyed with stubs still alive.");
 | |
| }
 | |
| 
 | |
| /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
 | |
| /// if it has already been created.
 | |
| void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   return state.getFunctionToLazyStubMap(locked).lookup(F);
 | |
| }
 | |
| 
 | |
| /// getFunctionStub - This returns a pointer to a function stub, creating
 | |
| /// one on demand as needed.
 | |
| void *JITResolver::getLazyFunctionStub(Function *F) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a lazy stub for this function, recycle it.
 | |
|   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
 | |
|   // must resolve the symbol now.
 | |
|   void *Actual = TheJIT->isCompilingLazily()
 | |
|     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
 | |
| 
 | |
|   // If this is an external declaration, attempt to resolve the address now
 | |
|   // to place in the stub.
 | |
|   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
 | |
|     Actual = TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|     // If we resolved the symbol to a null address (eg. a weak external)
 | |
|     // don't emit a stub. Return a null pointer to the application.
 | |
|     if (!Actual) return 0;
 | |
|   }
 | |
| 
 | |
|   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
 | |
|   JE.startGVStub(F, SL.Size, SL.Alignment);
 | |
|   // Codegen a new stub, calling the lazy resolver or the actual address of the
 | |
|   // external function, if it was resolved.
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
 | |
|   JE.finishGVStub();
 | |
| 
 | |
|   if (Actual != (void*)(intptr_t)LazyResolverFn) {
 | |
|     // If we are getting the stub for an external function, we really want the
 | |
|     // address of the stub in the GlobalAddressMap for the JIT, not the address
 | |
|     // of the external function.
 | |
|     TheJIT->updateGlobalMapping(F, Stub);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
 | |
|         << F->getName() << "'\n");
 | |
| 
 | |
|   if (TheJIT->isCompilingLazily()) {
 | |
|     // Register this JITResolver as the one corresponding to this call site so
 | |
|     // JITCompilerFn will be able to find it.
 | |
|     StubToResolverMap->RegisterStubResolver(Stub, this);
 | |
| 
 | |
|     // Finally, keep track of the stub-to-Function mapping so that the
 | |
|     // JITCompilerFn knows which function to compile!
 | |
|     state.AddCallSite(locked, Stub, F);
 | |
|   } else if (!Actual) {
 | |
|     // If we are JIT'ing non-lazily but need to call a function that does not
 | |
|     // exist yet, add it to the JIT's work list so that we can fill in the
 | |
|     // stub address later.
 | |
|     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
 | |
|            "'Actual' should have been set above.");
 | |
|     TheJIT->addPendingFunction(F);
 | |
|   }
 | |
| 
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
 | |
| /// GV address.
 | |
| void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this global variable, recycle it.
 | |
|   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
 | |
|   if (IndirectSym) return IndirectSym;
 | |
| 
 | |
|   // Otherwise, codegen a new indirect symbol.
 | |
|   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
 | |
|                                                                 JE);
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
 | |
|         << "] for GV '" << GV->getName() << "'\n");
 | |
| 
 | |
|   return IndirectSym;
 | |
| }
 | |
| 
 | |
| /// getExternalFunctionStub - Return a stub for the function at the
 | |
| /// specified address, created lazily on demand.
 | |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) {
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = ExternalFnToStubMap[FnAddr];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
 | |
|   JE.startGVStub(0, SL.Size, SL.Alignment);
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
 | |
|   JE.finishGVStub();
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
 | |
|                << "] for external function at '" << FnAddr << "'\n");
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) {
 | |
|   unsigned idx = revGOTMap[addr];
 | |
|   if (!idx) {
 | |
|     idx = ++nextGOTIndex;
 | |
|     revGOTMap[addr] = idx;
 | |
|     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
 | |
|                  << addr << "]\n");
 | |
|   }
 | |
|   return idx;
 | |
| }
 | |
| 
 | |
| /// JITCompilerFn - This function is called when a lazy compilation stub has
 | |
| /// been entered.  It looks up which function this stub corresponds to, compiles
 | |
| /// it if necessary, then returns the resultant function pointer.
 | |
| void *JITResolver::JITCompilerFn(void *Stub) {
 | |
|   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
 | |
|   assert(JR && "Unable to find the corresponding JITResolver to the call site");
 | |
| 
 | |
|   Function* F = 0;
 | |
|   void* ActualPtr = 0;
 | |
| 
 | |
|   {
 | |
|     // Only lock for getting the Function. The call getPointerToFunction made
 | |
|     // in this function might trigger function materializing, which requires
 | |
|     // JIT lock to be unlocked.
 | |
|     MutexGuard locked(JR->TheJIT->lock);
 | |
| 
 | |
|     // The address given to us for the stub may not be exactly right, it might
 | |
|     // be a little bit after the stub.  As such, use upper_bound to find it.
 | |
|     std::pair<void*, Function*> I =
 | |
|       JR->state.LookupFunctionFromCallSite(locked, Stub);
 | |
|     F = I.second;
 | |
|     ActualPtr = I.first;
 | |
|   }
 | |
| 
 | |
|   // If we have already code generated the function, just return the address.
 | |
|   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
 | |
| 
 | |
|   if (!Result) {
 | |
|     // Otherwise we don't have it, do lazy compilation now.
 | |
| 
 | |
|     // If lazy compilation is disabled, emit a useful error message and abort.
 | |
|     if (!JR->TheJIT->isCompilingLazily()) {
 | |
|       report_fatal_error("LLVM JIT requested to do lazy compilation of"
 | |
|                          " function '"
 | |
|                         + F->getName() + "' when lazy compiles are disabled!");
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
 | |
|           << "' In stub ptr = " << Stub << " actual ptr = "
 | |
|           << ActualPtr << "\n");
 | |
|     (void)ActualPtr;
 | |
| 
 | |
|     Result = JR->TheJIT->getPointerToFunction(F);
 | |
|   }
 | |
| 
 | |
|   // Reacquire the lock to update the GOT map.
 | |
|   MutexGuard locked(JR->TheJIT->lock);
 | |
| 
 | |
|   // We might like to remove the call site from the CallSiteToFunction map, but
 | |
|   // we can't do that! Multiple threads could be stuck, waiting to acquire the
 | |
|   // lock above. As soon as the 1st function finishes compiling the function,
 | |
|   // the next one will be released, and needs to be able to find the function it
 | |
|   // needs to call.
 | |
| 
 | |
|   // FIXME: We could rewrite all references to this stub if we knew them.
 | |
| 
 | |
|   // What we will do is set the compiled function address to map to the
 | |
|   // same GOT entry as the stub so that later clients may update the GOT
 | |
|   // if they see it still using the stub address.
 | |
|   // Note: this is done so the Resolver doesn't have to manage GOT memory
 | |
|   // Do this without allocating map space if the target isn't using a GOT
 | |
|   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
 | |
|     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JITEmitter code.
 | |
| //
 | |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
 | |
|                                      bool MayNeedFarStub) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return TheJIT->getOrEmitGlobalVariable(GV);
 | |
| 
 | |
|   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
 | |
| 
 | |
|   // If we have already compiled the function, return a pointer to its body.
 | |
|   Function *F = cast<Function>(V);
 | |
| 
 | |
|   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
 | |
|   if (FnStub) {
 | |
|     // Return the function stub if it's already created.  We do this first so
 | |
|     // that we're returning the same address for the function as any previous
 | |
|     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
 | |
|     // close enough to call.
 | |
|     return FnStub;
 | |
|   }
 | |
| 
 | |
|   // If we know the target can handle arbitrary-distance calls, try to
 | |
|   // return a direct pointer.
 | |
|   if (!MayNeedFarStub) {
 | |
|     // If we have code, go ahead and return that.
 | |
|     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
 | |
|     if (ResultPtr) return ResultPtr;
 | |
| 
 | |
|     // If this is an external function pointer, we can force the JIT to
 | |
|     // 'compile' it, which really just adds it to the map.
 | |
|     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
 | |
|       return TheJIT->getPointerToFunction(F);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
 | |
|   // so.  Note that it's possible to return null from getLazyFunctionStub in the
 | |
|   // case of a weak extern that fails to resolve.
 | |
|   return Resolver.getLazyFunctionStub(F);
 | |
| }
 | |
| 
 | |
| void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
 | |
|   // Make sure GV is emitted first, and create a stub containing the fully
 | |
|   // resolved address.
 | |
|   void *GVAddress = getPointerToGlobal(V, Reference, false);
 | |
|   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
 | |
|   return StubAddr;
 | |
| }
 | |
| 
 | |
| void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
 | |
|   if (DL.isUnknown()) return;
 | |
|   if (!BeforePrintingInsn) return;
 | |
| 
 | |
|   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
 | |
| 
 | |
|   if (DL.getScope(Context) != 0 && PrevDL != DL) {
 | |
|     JITEvent_EmittedFunctionDetails::LineStart NextLine;
 | |
|     NextLine.Address = getCurrentPCValue();
 | |
|     NextLine.Loc = DL;
 | |
|     EmissionDetails.LineStarts.push_back(NextLine);
 | |
|   }
 | |
| 
 | |
|   PrevDL = DL;
 | |
| }
 | |
| 
 | |
| static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
 | |
|                                            const TargetData *TD) {
 | |
|   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | |
|   if (Constants.empty()) return 0;
 | |
| 
 | |
|   unsigned Size = 0;
 | |
|   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | |
|     MachineConstantPoolEntry CPE = Constants[i];
 | |
|     unsigned AlignMask = CPE.getAlignment() - 1;
 | |
|     Size = (Size + AlignMask) & ~AlignMask;
 | |
|     Type *Ty = CPE.getType();
 | |
|     Size += TD->getTypeAllocSize(Ty);
 | |
|   }
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| void JITEmitter::startFunction(MachineFunction &F) {
 | |
|   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
 | |
|         << F.getFunction()->getName() << "\n");
 | |
| 
 | |
|   uintptr_t ActualSize = 0;
 | |
|   // Set the memory writable, if it's not already
 | |
|   MemMgr->setMemoryWritable();
 | |
| 
 | |
|   if (SizeEstimate > 0) {
 | |
|     // SizeEstimate will be non-zero on reallocation attempts.
 | |
|     ActualSize = SizeEstimate;
 | |
|   }
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
 | |
|                                                          ActualSize);
 | |
|   BufferEnd = BufferBegin+ActualSize;
 | |
|   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
 | |
| 
 | |
|   // Ensure the constant pool/jump table info is at least 4-byte aligned.
 | |
|   emitAlignment(16);
 | |
| 
 | |
|   emitConstantPool(F.getConstantPool());
 | |
|   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
 | |
|     initJumpTableInfo(MJTI);
 | |
| 
 | |
|   // About to start emitting the machine code for the function.
 | |
|   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
 | |
|   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
 | |
|   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
 | |
| 
 | |
|   MBBLocations.clear();
 | |
| 
 | |
|   EmissionDetails.MF = &F;
 | |
|   EmissionDetails.LineStarts.clear();
 | |
| }
 | |
| 
 | |
| bool JITEmitter::finishFunction(MachineFunction &F) {
 | |
|   if (CurBufferPtr == BufferEnd) {
 | |
|     // We must call endFunctionBody before retrying, because
 | |
|     // deallocateMemForFunction requires it.
 | |
|     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
 | |
|     retryWithMoreMemory(F);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
 | |
|     emitJumpTableInfo(MJTI);
 | |
| 
 | |
|   // FnStart is the start of the text, not the start of the constant pool and
 | |
|   // other per-function data.
 | |
|   uint8_t *FnStart =
 | |
|     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
 | |
| 
 | |
|   // FnEnd is the end of the function's machine code.
 | |
|   uint8_t *FnEnd = CurBufferPtr;
 | |
| 
 | |
|   if (!Relocations.empty()) {
 | |
|     CurFn = F.getFunction();
 | |
|     NumRelos += Relocations.size();
 | |
| 
 | |
|     // Resolve the relocations to concrete pointers.
 | |
|     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | |
|       MachineRelocation &MR = Relocations[i];
 | |
|       void *ResultPtr = 0;
 | |
|       if (!MR.letTargetResolve()) {
 | |
|         if (MR.isExternalSymbol()) {
 | |
|           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
 | |
|                                                         false);
 | |
|           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
 | |
|                        << ResultPtr << "]\n");
 | |
| 
 | |
|           // If the target REALLY wants a stub for this function, emit it now.
 | |
|           if (MR.mayNeedFarStub()) {
 | |
|             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
 | |
|           }
 | |
|         } else if (MR.isGlobalValue()) {
 | |
|           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
 | |
|                                          BufferBegin+MR.getMachineCodeOffset(),
 | |
|                                          MR.mayNeedFarStub());
 | |
|         } else if (MR.isIndirectSymbol()) {
 | |
|           ResultPtr = getPointerToGVIndirectSym(
 | |
|               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
 | |
|         } else if (MR.isBasicBlock()) {
 | |
|           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
 | |
|         } else if (MR.isConstantPoolIndex()) {
 | |
|           ResultPtr =
 | |
|             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
 | |
|         } else {
 | |
|           assert(MR.isJumpTableIndex());
 | |
|           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
 | |
|         }
 | |
| 
 | |
|         MR.setResultPointer(ResultPtr);
 | |
|       }
 | |
| 
 | |
|       // if we are managing the GOT and the relocation wants an index,
 | |
|       // give it one
 | |
|       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
 | |
|         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
 | |
|         MR.setGOTIndex(idx);
 | |
|         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
 | |
|           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
 | |
|                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
 | |
|                        << "\n");
 | |
|           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CurFn = 0;
 | |
|     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
 | |
|                                   Relocations.size(), MemMgr->getGOTBase());
 | |
|   }
 | |
| 
 | |
|   // Update the GOT entry for F to point to the new code.
 | |
|   if (MemMgr->isManagingGOT()) {
 | |
|     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
 | |
|     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
 | |
|       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
 | |
|                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
 | |
|                    << "\n");
 | |
|       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
 | |
|   // global variables that were referenced in the relocations.
 | |
|   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
 | |
| 
 | |
|   if (CurBufferPtr == BufferEnd) {
 | |
|     retryWithMoreMemory(F);
 | |
|     return true;
 | |
|   } else {
 | |
|     // Now that we've succeeded in emitting the function, reset the
 | |
|     // SizeEstimate back down to zero.
 | |
|     SizeEstimate = 0;
 | |
|   }
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = 0;
 | |
|   NumBytes += FnEnd-FnStart;
 | |
| 
 | |
|   // Invalidate the icache if necessary.
 | |
|   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
 | |
| 
 | |
|   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
 | |
|                                 EmissionDetails);
 | |
| 
 | |
|   // Reset the previous debug location.
 | |
|   PrevDL = DebugLoc();
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
 | |
|         << "] Function: " << F.getFunction()->getName()
 | |
|         << ": " << (FnEnd-FnStart) << " bytes of text, "
 | |
|         << Relocations.size() << " relocations\n");
 | |
| 
 | |
|   Relocations.clear();
 | |
|   ConstPoolAddresses.clear();
 | |
| 
 | |
|   // Mark code region readable and executable if it's not so already.
 | |
|   MemMgr->setMemoryExecutable();
 | |
| 
 | |
|   DEBUG({
 | |
|       if (sys::hasDisassembler()) {
 | |
|         dbgs() << "JIT: Disassembled code:\n";
 | |
|         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
 | |
|                                          (uintptr_t)FnStart);
 | |
|       } else {
 | |
|         dbgs() << "JIT: Binary code:\n";
 | |
|         uint8_t* q = FnStart;
 | |
|         for (int i = 0; q < FnEnd; q += 4, ++i) {
 | |
|           if (i == 4)
 | |
|             i = 0;
 | |
|           if (i == 0)
 | |
|             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
 | |
|           bool Done = false;
 | |
|           for (int j = 3; j >= 0; --j) {
 | |
|             if (q + j >= FnEnd)
 | |
|               Done = true;
 | |
|             else
 | |
|               dbgs() << (unsigned short)q[j];
 | |
|           }
 | |
|           if (Done)
 | |
|             break;
 | |
|           dbgs() << ' ';
 | |
|           if (i == 3)
 | |
|             dbgs() << '\n';
 | |
|         }
 | |
|         dbgs()<< '\n';
 | |
|       }
 | |
|     });
 | |
| 
 | |
|   if (JITExceptionHandling) {
 | |
|     uintptr_t ActualSize = 0;
 | |
|     SavedBufferBegin = BufferBegin;
 | |
|     SavedBufferEnd = BufferEnd;
 | |
|     SavedCurBufferPtr = CurBufferPtr;
 | |
| 
 | |
|     BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
 | |
|                                                              ActualSize);
 | |
|     BufferEnd = BufferBegin+ActualSize;
 | |
|     EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
 | |
|     uint8_t *EhStart;
 | |
|     uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
 | |
|                                                 EhStart);
 | |
|     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
 | |
|                               FrameRegister);
 | |
|     BufferBegin = SavedBufferBegin;
 | |
|     BufferEnd = SavedBufferEnd;
 | |
|     CurBufferPtr = SavedCurBufferPtr;
 | |
| 
 | |
|     if (JITExceptionHandling) {
 | |
|       TheJIT->RegisterTable(F.getFunction(), FrameRegister);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MMI)
 | |
|     MMI->EndFunction();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
 | |
|   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
 | |
|   Relocations.clear();  // Clear the old relocations or we'll reapply them.
 | |
|   ConstPoolAddresses.clear();
 | |
|   ++NumRetries;
 | |
|   deallocateMemForFunction(F.getFunction());
 | |
|   // Try again with at least twice as much free space.
 | |
|   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
 | |
| 
 | |
|   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
 | |
|     if (MBB->hasAddressTaken())
 | |
|       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
| /// function body.  Also drop any references the function has to stubs.
 | |
| /// May be called while the Function is being destroyed inside ~Value().
 | |
| void JITEmitter::deallocateMemForFunction(const Function *F) {
 | |
|   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
 | |
|     Emitted = EmittedFunctions.find(F);
 | |
|   if (Emitted != EmittedFunctions.end()) {
 | |
|     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
 | |
|     MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
 | |
|     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
 | |
| 
 | |
|     EmittedFunctions.erase(Emitted);
 | |
|   }
 | |
| 
 | |
|   if (JITExceptionHandling) {
 | |
|     TheJIT->DeregisterTable(F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
 | |
|   if (BufferBegin)
 | |
|     return JITCodeEmitter::allocateSpace(Size, Alignment);
 | |
| 
 | |
|   // create a new memory block if there is no active one.
 | |
|   // care must be taken so that BufferBegin is invalidated when a
 | |
|   // block is trimmed
 | |
|   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
 | |
|   BufferEnd = BufferBegin+Size;
 | |
|   return CurBufferPtr;
 | |
| }
 | |
| 
 | |
| void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
 | |
|   // Delegate this call through the memory manager.
 | |
|   return MemMgr->allocateGlobal(Size, Alignment);
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
 | |
|   if (TheJIT->getJITInfo().hasCustomConstantPool())
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | |
|   if (Constants.empty()) return;
 | |
| 
 | |
|   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
 | |
|   unsigned Align = MCP->getConstantPoolAlignment();
 | |
|   ConstantPoolBase = allocateSpace(Size, Align);
 | |
|   ConstantPool = MCP;
 | |
| 
 | |
|   if (ConstantPoolBase == 0) return;  // Buffer overflow.
 | |
| 
 | |
|   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
 | |
|                << "] (size: " << Size << ", alignment: " << Align << ")\n");
 | |
| 
 | |
|   // Initialize the memory for all of the constant pool entries.
 | |
|   unsigned Offset = 0;
 | |
|   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | |
|     MachineConstantPoolEntry CPE = Constants[i];
 | |
|     unsigned AlignMask = CPE.getAlignment() - 1;
 | |
|     Offset = (Offset + AlignMask) & ~AlignMask;
 | |
| 
 | |
|     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
 | |
|     ConstPoolAddresses.push_back(CAddr);
 | |
|     if (CPE.isMachineConstantPoolEntry()) {
 | |
|       // FIXME: add support to lower machine constant pool values into bytes!
 | |
|       report_fatal_error("Initialize memory with machine specific constant pool"
 | |
|                         "entry has not been implemented!");
 | |
|     }
 | |
|     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
 | |
|     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
 | |
|           dbgs().write_hex(CAddr) << "]\n");
 | |
| 
 | |
|     Type *Ty = CPE.Val.ConstVal->getType();
 | |
|     Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   if (TheJIT->getJITInfo().hasCustomJumpTables())
 | |
|     return;
 | |
|   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return;
 | |
| 
 | |
|   unsigned NumEntries = 0;
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i)
 | |
|     NumEntries += JT[i].MBBs.size();
 | |
| 
 | |
|   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
 | |
| 
 | |
|   // Just allocate space for all the jump tables now.  We will fix up the actual
 | |
|   // MBB entries in the tables after we emit the code for each block, since then
 | |
|   // we will know the final locations of the MBBs in memory.
 | |
|   JumpTable = MJTI;
 | |
|   JumpTableBase = allocateSpace(NumEntries * EntrySize,
 | |
|                              MJTI->getEntryAlignment(*TheJIT->getTargetData()));
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   if (TheJIT->getJITInfo().hasCustomJumpTables())
 | |
|     return;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty() || JumpTableBase == 0) return;
 | |
| 
 | |
| 
 | |
|   switch (MJTI->getEntryKind()) {
 | |
|   case MachineJumpTableInfo::EK_Inline:
 | |
|     return;
 | |
|   case MachineJumpTableInfo::EK_BlockAddress: {
 | |
|     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
 | |
|     //     .word LBB123
 | |
|     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
 | |
|            "Cross JIT'ing?");
 | |
| 
 | |
|     // For each jump table, map each target in the jump table to the address of
 | |
|     // an emitted MachineBasicBlock.
 | |
|     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the address of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
 | |
|         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MachineJumpTableInfo::EK_Custom32:
 | |
|   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
 | |
|   case MachineJumpTableInfo::EK_LabelDifference32: {
 | |
|     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
 | |
|     // For each jump table, place the offset from the beginning of the table
 | |
|     // to the target address.
 | |
|     int *SlotPtr = (int*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the offset of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       uintptr_t Base = (uintptr_t)SlotPtr;
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
 | |
|         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
 | |
|         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
 | |
|         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
 | |
|     llvm_unreachable(
 | |
|            "JT Info emission not implemented for GPRel64BlockAddress yet.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::startGVStub(const GlobalValue* GV,
 | |
|                              unsigned StubSize, unsigned Alignment) {
 | |
|   SavedBufferBegin = BufferBegin;
 | |
|   SavedBufferEnd = BufferEnd;
 | |
|   SavedCurBufferPtr = CurBufferPtr;
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
 | |
|   BufferEnd = BufferBegin+StubSize+1;
 | |
| }
 | |
| 
 | |
| void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
 | |
|   SavedBufferBegin = BufferBegin;
 | |
|   SavedBufferEnd = BufferEnd;
 | |
|   SavedCurBufferPtr = CurBufferPtr;
 | |
| 
 | |
|   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
 | |
|   BufferEnd = BufferBegin+StubSize+1;
 | |
| }
 | |
| 
 | |
| void JITEmitter::finishGVStub() {
 | |
|   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
 | |
|   NumBytes += getCurrentPCOffset();
 | |
|   BufferBegin = SavedBufferBegin;
 | |
|   BufferEnd = SavedBufferEnd;
 | |
|   CurBufferPtr = SavedCurBufferPtr;
 | |
| }
 | |
| 
 | |
| void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
 | |
|                                   const uint8_t *Buffer, size_t Size,
 | |
|                                   unsigned Alignment) {
 | |
|   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
 | |
|   memcpy(IndGV, Buffer, Size);
 | |
|   return IndGV;
 | |
| }
 | |
| 
 | |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
 | |
| // in the constant pool that was last emitted with the 'emitConstantPool'
 | |
| // method.
 | |
| //
 | |
| uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
 | |
|   assert(ConstantNum < ConstantPool->getConstants().size() &&
 | |
|          "Invalid ConstantPoolIndex!");
 | |
|   return ConstPoolAddresses[ConstantNum];
 | |
| }
 | |
| 
 | |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index
 | |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
 | |
| //
 | |
| uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
 | |
|   assert(Index < JT.size() && "Invalid jump table index!");
 | |
| 
 | |
|   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
 | |
| 
 | |
|   unsigned Offset = 0;
 | |
|   for (unsigned i = 0; i < Index; ++i)
 | |
|     Offset += JT[i].MBBs.size();
 | |
| 
 | |
|    Offset *= EntrySize;
 | |
| 
 | |
|   return (uintptr_t)((char *)JumpTableBase + Offset);
 | |
| }
 | |
| 
 | |
| void JITEmitter::EmittedFunctionConfig::onDelete(
 | |
|   JITEmitter *Emitter, const Function *F) {
 | |
|   Emitter->deallocateMemForFunction(F);
 | |
| }
 | |
| void JITEmitter::EmittedFunctionConfig::onRAUW(
 | |
|   JITEmitter *, const Function*, const Function*) {
 | |
|   llvm_unreachable("The JIT doesn't know how to handle a"
 | |
|                    " RAUW on a value it has emitted.");
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Public interface to this file
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
 | |
|                                    TargetMachine &tm) {
 | |
|   return new JITEmitter(jit, JMM, tm);
 | |
| }
 | |
| 
 | |
| // getPointerToFunctionOrStub - If the specified function has been
 | |
| // code-gen'd, return a pointer to the function.  If not, compile it, or use
 | |
| // a stub to implement lazy compilation if available.
 | |
| //
 | |
| void *JIT::getPointerToFunctionOrStub(Function *F) {
 | |
|   // If we have already code generated the function, just return the address.
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;
 | |
| 
 | |
|   // Get a stub if the target supports it.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | |
|   return JE->getJITResolver().getLazyFunctionStub(F);
 | |
| }
 | |
| 
 | |
| void JIT::updateFunctionStub(Function *F) {
 | |
|   // Get the empty stub we generated earlier.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | |
|   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr != Stub && "Function must have non-stub address to be updated.");
 | |
| 
 | |
|   // Tell the target jit info to rewrite the stub at the specified address,
 | |
|   // rather than creating a new one.
 | |
|   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
 | |
|   JE->startGVStub(Stub, layout.Size);
 | |
|   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
 | |
|   JE->finishGVStub();
 | |
| }
 | |
| 
 | |
| /// freeMachineCodeForFunction - release machine code memory for given Function.
 | |
| ///
 | |
| void JIT::freeMachineCodeForFunction(Function *F) {
 | |
|   // Delete translation for this from the ExecutionEngine, so it will get
 | |
|   // retranslated next time it is used.
 | |
|   updateGlobalMapping(F, 0);
 | |
| 
 | |
|   // Free the actual memory for the function body and related stuff.
 | |
|   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | |
|   cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
 | |
| }
 |