mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17375 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2027 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2027 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DataStructure.cpp - Implement the core data structure analysis -----===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the core data structure functionality.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DataStructure/DSGraphTraits.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumFolds          ("dsa", "Number of nodes completely folded");
 | |
|   Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged");
 | |
|   Statistic<> NumNodeAllocated  ("dsa", "Number of nodes allocated");
 | |
|   Statistic<> NumDNE            ("dsa", "Number of nodes removed by reachability");
 | |
|   Statistic<> NumTrivialDNE     ("dsa", "Number of nodes trivially removed");
 | |
|   Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
 | |
| };
 | |
| 
 | |
| #if 1
 | |
| #define TIME_REGION(VARNAME, DESC) \
 | |
|    NamedRegionTimer VARNAME(DESC)
 | |
| #else
 | |
| #define TIME_REGION(VARNAME, DESC)
 | |
| #endif
 | |
| 
 | |
| using namespace DS;
 | |
| 
 | |
| /// isForwarding - Return true if this NodeHandle is forwarding to another
 | |
| /// one.
 | |
| bool DSNodeHandle::isForwarding() const {
 | |
|   return N && N->isForwarding();
 | |
| }
 | |
| 
 | |
| DSNode *DSNodeHandle::HandleForwarding() const {
 | |
|   assert(N->isForwarding() && "Can only be invoked if forwarding!");
 | |
| 
 | |
|   // Handle node forwarding here!
 | |
|   DSNode *Next = N->ForwardNH.getNode();  // Cause recursive shrinkage
 | |
|   Offset += N->ForwardNH.getOffset();
 | |
| 
 | |
|   if (--N->NumReferrers == 0) {
 | |
|     // Removing the last referrer to the node, sever the forwarding link
 | |
|     N->stopForwarding();
 | |
|   }
 | |
| 
 | |
|   N = Next;
 | |
|   N->NumReferrers++;
 | |
|   if (N->Size <= Offset) {
 | |
|     assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
 | |
|     Offset = 0;
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSNode Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSNode::DSNode(const Type *T, DSGraph *G)
 | |
|   : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
 | |
|   // Add the type entry if it is specified...
 | |
|   if (T) mergeTypeInfo(T, 0);
 | |
|   if (G) G->addNode(this);
 | |
|   ++NumNodeAllocated;
 | |
| }
 | |
| 
 | |
| // DSNode copy constructor... do not copy over the referrers list!
 | |
| DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
 | |
|   : NumReferrers(0), Size(N.Size), ParentGraph(G),
 | |
|     Ty(N.Ty), NodeType(N.NodeType) {
 | |
|   if (!NullLinks) {
 | |
|     Links = N.Links;
 | |
|     Globals = N.Globals;
 | |
|   } else
 | |
|     Links.resize(N.Links.size()); // Create the appropriate number of null links
 | |
|   G->addNode(this);
 | |
|   ++NumNodeAllocated;
 | |
| }
 | |
| 
 | |
| /// getTargetData - Get the target data object used to construct this node.
 | |
| ///
 | |
| const TargetData &DSNode::getTargetData() const {
 | |
|   return ParentGraph->getTargetData();
 | |
| }
 | |
| 
 | |
| void DSNode::assertOK() const {
 | |
|   assert((Ty != Type::VoidTy ||
 | |
|           Ty == Type::VoidTy && (Size == 0 ||
 | |
|                                  (NodeType & DSNode::Array))) &&
 | |
|          "Node not OK!");
 | |
| 
 | |
|   assert(ParentGraph && "Node has no parent?");
 | |
|   const DSScalarMap &SM = ParentGraph->getScalarMap();
 | |
|   for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
 | |
|     assert(SM.count(Globals[i]));
 | |
|     assert(SM.find(Globals[i])->second.getNode() == this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// forwardNode - Mark this node as being obsolete, and all references to it
 | |
| /// should be forwarded to the specified node and offset.
 | |
| ///
 | |
| void DSNode::forwardNode(DSNode *To, unsigned Offset) {
 | |
|   assert(this != To && "Cannot forward a node to itself!");
 | |
|   assert(ForwardNH.isNull() && "Already forwarding from this node!");
 | |
|   if (To->Size <= 1) Offset = 0;
 | |
|   assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
 | |
|          "Forwarded offset is wrong!");
 | |
|   ForwardNH.setTo(To, Offset);
 | |
|   NodeType = DEAD;
 | |
|   Size = 0;
 | |
|   Ty = Type::VoidTy;
 | |
| 
 | |
|   // Remove this node from the parent graph's Nodes list.
 | |
|   ParentGraph->unlinkNode(this);  
 | |
|   ParentGraph = 0;
 | |
| }
 | |
| 
 | |
| // addGlobal - Add an entry for a global value to the Globals list.  This also
 | |
| // marks the node with the 'G' flag if it does not already have it.
 | |
| //
 | |
| void DSNode::addGlobal(GlobalValue *GV) {
 | |
|   // Keep the list sorted.
 | |
|   std::vector<GlobalValue*>::iterator I =
 | |
|     std::lower_bound(Globals.begin(), Globals.end(), GV);
 | |
| 
 | |
|   if (I == Globals.end() || *I != GV) {
 | |
|     //assert(GV->getType()->getElementType() == Ty);
 | |
|     Globals.insert(I, GV);
 | |
|     NodeType |= GlobalNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// foldNodeCompletely - If we determine that this node has some funny
 | |
| /// behavior happening to it that we cannot represent, we fold it down to a
 | |
| /// single, completely pessimistic, node.  This node is represented as a
 | |
| /// single byte with a single TypeEntry of "void".
 | |
| ///
 | |
| void DSNode::foldNodeCompletely() {
 | |
|   if (isNodeCompletelyFolded()) return;  // If this node is already folded...
 | |
| 
 | |
|   ++NumFolds;
 | |
| 
 | |
|   // If this node has a size that is <= 1, we don't need to create a forwarding
 | |
|   // node.
 | |
|   if (getSize() <= 1) {
 | |
|     NodeType |= DSNode::Array;
 | |
|     Ty = Type::VoidTy;
 | |
|     Size = 1;
 | |
|     assert(Links.size() <= 1 && "Size is 1, but has more links?");
 | |
|     Links.resize(1);
 | |
|   } else {
 | |
|     // Create the node we are going to forward to.  This is required because
 | |
|     // some referrers may have an offset that is > 0.  By forcing them to
 | |
|     // forward, the forwarder has the opportunity to correct the offset.
 | |
|     DSNode *DestNode = new DSNode(0, ParentGraph);
 | |
|     DestNode->NodeType = NodeType|DSNode::Array;
 | |
|     DestNode->Ty = Type::VoidTy;
 | |
|     DestNode->Size = 1;
 | |
|     DestNode->Globals.swap(Globals);
 | |
|     
 | |
|     // Start forwarding to the destination node...
 | |
|     forwardNode(DestNode, 0);
 | |
|     
 | |
|     if (!Links.empty()) {
 | |
|       DestNode->Links.reserve(1);
 | |
|       
 | |
|       DSNodeHandle NH(DestNode);
 | |
|       DestNode->Links.push_back(Links[0]);
 | |
|       
 | |
|       // If we have links, merge all of our outgoing links together...
 | |
|       for (unsigned i = Links.size()-1; i != 0; --i)
 | |
|         NH.getNode()->Links[0].mergeWith(Links[i]);
 | |
|       Links.clear();
 | |
|     } else {
 | |
|       DestNode->Links.resize(1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isNodeCompletelyFolded - Return true if this node has been completely
 | |
| /// folded down to something that can never be expanded, effectively losing
 | |
| /// all of the field sensitivity that may be present in the node.
 | |
| ///
 | |
| bool DSNode::isNodeCompletelyFolded() const {
 | |
|   return getSize() == 1 && Ty == Type::VoidTy && isArray();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// TypeElementWalker Class - Used for implementation of physical subtyping...
 | |
|   ///
 | |
|   class TypeElementWalker {
 | |
|     struct StackState {
 | |
|       const Type *Ty;
 | |
|       unsigned Offset;
 | |
|       unsigned Idx;
 | |
|       StackState(const Type *T, unsigned Off = 0)
 | |
|         : Ty(T), Offset(Off), Idx(0) {}
 | |
|     };
 | |
| 
 | |
|     std::vector<StackState> Stack;
 | |
|     const TargetData &TD;
 | |
|   public:
 | |
|     TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
 | |
|       Stack.push_back(T);
 | |
|       StepToLeaf();
 | |
|     }
 | |
| 
 | |
|     bool isDone() const { return Stack.empty(); }
 | |
|     const Type *getCurrentType()   const { return Stack.back().Ty;     }
 | |
|     unsigned    getCurrentOffset() const { return Stack.back().Offset; }
 | |
| 
 | |
|     void StepToNextType() {
 | |
|       PopStackAndAdvance();
 | |
|       StepToLeaf();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// PopStackAndAdvance - Pop the current element off of the stack and
 | |
|     /// advance the underlying element to the next contained member.
 | |
|     void PopStackAndAdvance() {
 | |
|       assert(!Stack.empty() && "Cannot pop an empty stack!");
 | |
|       Stack.pop_back();
 | |
|       while (!Stack.empty()) {
 | |
|         StackState &SS = Stack.back();
 | |
|         if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
 | |
|           ++SS.Idx;
 | |
|           if (SS.Idx != ST->getNumElements()) {
 | |
|             const StructLayout *SL = TD.getStructLayout(ST);
 | |
|             SS.Offset += SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1];
 | |
|             return;
 | |
|           }
 | |
|           Stack.pop_back();  // At the end of the structure
 | |
|         } else {
 | |
|           const ArrayType *AT = cast<ArrayType>(SS.Ty);
 | |
|           ++SS.Idx;
 | |
|           if (SS.Idx != AT->getNumElements()) {
 | |
|             SS.Offset += TD.getTypeSize(AT->getElementType());
 | |
|             return;
 | |
|           }
 | |
|           Stack.pop_back();  // At the end of the array
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// StepToLeaf - Used by physical subtyping to move to the first leaf node
 | |
|     /// on the type stack.
 | |
|     void StepToLeaf() {
 | |
|       if (Stack.empty()) return;
 | |
|       while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
 | |
|         StackState &SS = Stack.back();
 | |
|         if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
 | |
|           if (ST->getNumElements() == 0) {
 | |
|             assert(SS.Idx == 0);
 | |
|             PopStackAndAdvance();
 | |
|           } else {
 | |
|             // Step into the structure...
 | |
|             assert(SS.Idx < ST->getNumElements());
 | |
|             const StructLayout *SL = TD.getStructLayout(ST);
 | |
|             Stack.push_back(StackState(ST->getElementType(SS.Idx),
 | |
|                                        SS.Offset+SL->MemberOffsets[SS.Idx]));
 | |
|           }
 | |
|         } else {
 | |
|           const ArrayType *AT = cast<ArrayType>(SS.Ty);
 | |
|           if (AT->getNumElements() == 0) {
 | |
|             assert(SS.Idx == 0);
 | |
|             PopStackAndAdvance();
 | |
|           } else {
 | |
|             // Step into the array...
 | |
|             assert(SS.Idx < AT->getNumElements());
 | |
|             Stack.push_back(StackState(AT->getElementType(),
 | |
|                                        SS.Offset+SS.Idx*
 | |
|                                        TD.getTypeSize(AT->getElementType())));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// ElementTypesAreCompatible - Check to see if the specified types are
 | |
| /// "physically" compatible.  If so, return true, else return false.  We only
 | |
| /// have to check the fields in T1: T2 may be larger than T1.  If AllowLargerT1
 | |
| /// is true, then we also allow a larger T1.
 | |
| ///
 | |
| static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
 | |
|                                       bool AllowLargerT1, const TargetData &TD){
 | |
|   TypeElementWalker T1W(T1, TD), T2W(T2, TD);
 | |
|   
 | |
|   while (!T1W.isDone() && !T2W.isDone()) {
 | |
|     if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
 | |
|       return false;
 | |
| 
 | |
|     const Type *T1 = T1W.getCurrentType();
 | |
|     const Type *T2 = T2W.getCurrentType();
 | |
|     if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2))
 | |
|       return false;
 | |
|     
 | |
|     T1W.StepToNextType();
 | |
|     T2W.StepToNextType();
 | |
|   }
 | |
|   
 | |
|   return AllowLargerT1 || T1W.isDone();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// mergeTypeInfo - This method merges the specified type into the current node
 | |
| /// at the specified offset.  This may update the current node's type record if
 | |
| /// this gives more information to the node, it may do nothing to the node if
 | |
| /// this information is already known, or it may merge the node completely (and
 | |
| /// return true) if the information is incompatible with what is already known.
 | |
| ///
 | |
| /// This method returns true if the node is completely folded, otherwise false.
 | |
| ///
 | |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
 | |
|                            bool FoldIfIncompatible) {
 | |
|   const TargetData &TD = getTargetData();
 | |
|   // Check to make sure the Size member is up-to-date.  Size can be one of the
 | |
|   // following:
 | |
|   //  Size = 0, Ty = Void: Nothing is known about this node.
 | |
|   //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
 | |
|   //  Size = 1, Ty = Void, Array = 1: The node is collapsed
 | |
|   //  Otherwise, sizeof(Ty) = Size
 | |
|   //
 | |
|   assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (Size == 1 && Ty == Type::VoidTy && isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (TD.getTypeSize(Ty) == Size)) &&
 | |
|          "Size member of DSNode doesn't match the type structure!");
 | |
|   assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
 | |
| 
 | |
|   if (Offset == 0 && NewTy == Ty)
 | |
|     return false;  // This should be a common case, handle it efficiently
 | |
| 
 | |
|   // Return true immediately if the node is completely folded.
 | |
|   if (isNodeCompletelyFolded()) return true;
 | |
| 
 | |
|   // If this is an array type, eliminate the outside arrays because they won't
 | |
|   // be used anyway.  This greatly reduces the size of large static arrays used
 | |
|   // as global variables, for example.
 | |
|   //
 | |
|   bool WillBeArray = false;
 | |
|   while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
 | |
|     // FIXME: we might want to keep small arrays, but must be careful about
 | |
|     // things like: [2 x [10000 x int*]]
 | |
|     NewTy = AT->getElementType();
 | |
|     WillBeArray = true;
 | |
|   }
 | |
| 
 | |
|   // Figure out how big the new type we're merging in is...
 | |
|   unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
 | |
| 
 | |
|   // Otherwise check to see if we can fold this type into the current node.  If
 | |
|   // we can't, we fold the node completely, if we can, we potentially update our
 | |
|   // internal state.
 | |
|   //
 | |
|   if (Ty == Type::VoidTy) {
 | |
|     // If this is the first type that this node has seen, just accept it without
 | |
|     // question....
 | |
|     assert(Offset == 0 && !isArray() &&
 | |
|            "Cannot have an offset into a void node!");
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Calculate the number of outgoing links from this node.
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle node expansion case here...
 | |
|   if (Offset+NewTySize > Size) {
 | |
|     // It is illegal to grow this node if we have treated it as an array of
 | |
|     // objects...
 | |
|     if (isArray()) {
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Offset) {  // We could handle this case, but we don't for now...
 | |
|       std::cerr << "UNIMP: Trying to merge a growth type into "
 | |
|                 << "offset != 0: Collapsing!\n";
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Okay, the situation is nice and simple, we are trying to merge a type in
 | |
|     // at offset 0 that is bigger than our current type.  Implement this by
 | |
|     // switching to the new type and then merge in the smaller one, which should
 | |
|     // hit the other code path here.  If the other code path decides it's not
 | |
|     // ok, it will collapse the node as appropriate.
 | |
|     //
 | |
|     const Type *OldTy = Ty;
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Must grow links to be the appropriate size...
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
| 
 | |
|     // Merge in the old type now... which is guaranteed to be smaller than the
 | |
|     // "current" type.
 | |
|     return mergeTypeInfo(OldTy, 0);
 | |
|   }
 | |
| 
 | |
|   assert(Offset <= Size &&
 | |
|          "Cannot merge something into a part of our type that doesn't exist!");
 | |
| 
 | |
|   // Find the section of Ty that NewTy overlaps with... first we find the
 | |
|   // type that starts at offset Offset.
 | |
|   //
 | |
|   unsigned O = 0;
 | |
|   const Type *SubType = Ty;
 | |
|   while (O < Offset) {
 | |
|     assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
 | |
| 
 | |
|     switch (SubType->getTypeID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
| 
 | |
|       unsigned i = 0, e = SL.MemberOffsets.size();
 | |
|       for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
 | |
|         /* empty */;
 | |
| 
 | |
|       // The offset we are looking for must be in the i'th element...
 | |
|       SubType = STy->getElementType(i);
 | |
|       O += SL.MemberOffsets[i];
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID: {
 | |
|       SubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       unsigned ElSize = TD.getTypeSize(SubType);
 | |
|       unsigned Remainder = (Offset-O) % ElSize;
 | |
|       O = Offset-Remainder;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(O == Offset && "Could not achieve the correct offset!");
 | |
| 
 | |
|   // If we found our type exactly, early exit
 | |
|   if (SubType == NewTy) return false;
 | |
| 
 | |
|   // Differing function types don't require us to merge.  They are not values
 | |
|   // anyway.
 | |
|   if (isa<FunctionType>(SubType) &&
 | |
|       isa<FunctionType>(NewTy)) return false;
 | |
| 
 | |
|   unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
 | |
| 
 | |
|   // Ok, we are getting desperate now.  Check for physical subtyping, where we
 | |
|   // just require each element in the node to be compatible.
 | |
|   if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
 | |
|       SubTypeSize && SubTypeSize < 256 && 
 | |
|       ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
 | |
|     return false;
 | |
| 
 | |
|   // Okay, so we found the leader type at the offset requested.  Search the list
 | |
|   // of types that starts at this offset.  If SubType is currently an array or
 | |
|   // structure, the type desired may actually be the first element of the
 | |
|   // composite type...
 | |
|   //
 | |
|   unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
 | |
|   while (SubType != NewTy) {
 | |
|     const Type *NextSubType = 0;
 | |
|     unsigned NextSubTypeSize = 0;
 | |
|     unsigned NextPadSize = 0;
 | |
|     switch (SubType->getTypeID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
|       if (SL.MemberOffsets.size() > 1)
 | |
|         NextPadSize = SL.MemberOffsets[1];
 | |
|       else
 | |
|         NextPadSize = SubTypeSize;
 | |
|       NextSubType = STy->getElementType(0);
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID:
 | |
|       NextSubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       NextPadSize = NextSubTypeSize;
 | |
|       break;
 | |
|     default: ;
 | |
|       // fall out 
 | |
|     }
 | |
| 
 | |
|     if (NextSubType == 0)
 | |
|       break;   // In the default case, break out of the loop
 | |
| 
 | |
|     if (NextPadSize < NewTySize)
 | |
|       break;   // Don't allow shrinking to a smaller type than NewTySize
 | |
|     SubType = NextSubType;
 | |
|     SubTypeSize = NextSubTypeSize;
 | |
|     PadSize = NextPadSize;
 | |
|   }
 | |
| 
 | |
|   // If we found the type exactly, return it...
 | |
|   if (SubType == NewTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if we have a compatible, but different type...
 | |
|   if (NewTySize == SubTypeSize) {
 | |
|     // Check to see if this type is obviously convertible... int -> uint f.e.
 | |
|     if (NewTy->isLosslesslyConvertibleTo(SubType))
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if we have a pointer & integer mismatch going on here,
 | |
|     // loading a pointer as a long, for example.
 | |
|     //
 | |
|     if (SubType->isInteger() && isa<PointerType>(NewTy) ||
 | |
|         NewTy->isInteger() && isa<PointerType>(SubType))
 | |
|       return false;
 | |
|   } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
 | |
|     // We are accessing the field, plus some structure padding.  Ignore the
 | |
|     // structure padding.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Module *M = 0;
 | |
|   if (getParentGraph()->getReturnNodes().size())
 | |
|     M = getParentGraph()->getReturnNodes().begin()->first->getParent();
 | |
|   DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: ";
 | |
|         WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:";
 | |
|         WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n"
 | |
|                   << "SubType: ";
 | |
|         WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n");
 | |
| 
 | |
|   if (FoldIfIncompatible) foldNodeCompletely();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// addEdgeTo - Add an edge from the current node to the specified node.  This
 | |
| /// can cause merging of nodes in the graph.
 | |
| ///
 | |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
 | |
|   if (NH.isNull()) return;       // Nothing to do
 | |
| 
 | |
|   DSNodeHandle &ExistingEdge = getLink(Offset);
 | |
|   if (!ExistingEdge.isNull()) {
 | |
|     // Merge the two nodes...
 | |
|     ExistingEdge.mergeWith(NH);
 | |
|   } else {                             // No merging to perform...
 | |
|     setLink(Offset, NH);               // Just force a link in there...
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MergeSortedVectors - Efficiently merge a vector into another vector where
 | |
| /// duplicates are not allowed and both are sorted.  This assumes that 'T's are
 | |
| /// efficiently copyable and have sane comparison semantics.
 | |
| ///
 | |
| static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
 | |
|                                const std::vector<GlobalValue*> &Src) {
 | |
|   // By far, the most common cases will be the simple ones.  In these cases,
 | |
|   // avoid having to allocate a temporary vector...
 | |
|   //
 | |
|   if (Src.empty()) {             // Nothing to merge in...
 | |
|     return;
 | |
|   } else if (Dest.empty()) {     // Just copy the result in...
 | |
|     Dest = Src;
 | |
|   } else if (Src.size() == 1) {  // Insert a single element...
 | |
|     const GlobalValue *V = Src[0];
 | |
|     std::vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), V);
 | |
|     if (I == Dest.end() || *I != Src[0])  // If not already contained...
 | |
|       Dest.insert(I, Src[0]);
 | |
|   } else if (Dest.size() == 1) {
 | |
|     GlobalValue *Tmp = Dest[0];           // Save value in temporary...
 | |
|     Dest = Src;                           // Copy over list...
 | |
|     std::vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), Tmp);
 | |
|     if (I == Dest.end() || *I != Tmp)     // If not already contained...
 | |
|       Dest.insert(I, Tmp);
 | |
| 
 | |
|   } else {
 | |
|     // Make a copy to the side of Dest...
 | |
|     std::vector<GlobalValue*> Old(Dest);
 | |
|     
 | |
|     // Make space for all of the type entries now...
 | |
|     Dest.resize(Dest.size()+Src.size());
 | |
|     
 | |
|     // Merge the two sorted ranges together... into Dest.
 | |
|     std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
 | |
|     
 | |
|     // Now erase any duplicate entries that may have accumulated into the 
 | |
|     // vectors (because they were in both of the input sets)
 | |
|     Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
 | |
|   MergeSortedVectors(Globals, RHS);
 | |
| }
 | |
| 
 | |
| // MergeNodes - Helper function for DSNode::mergeWith().
 | |
| // This function does the hard work of merging two nodes, CurNodeH
 | |
| // and NH after filtering out trivial cases and making sure that
 | |
| // CurNodeH.offset >= NH.offset.
 | |
| // 
 | |
| // ***WARNING***
 | |
| // Since merging may cause either node to go away, we must always
 | |
| // use the node-handles to refer to the nodes.  These node handles are
 | |
| // automatically updated during merging, so will always provide access
 | |
| // to the correct node after a merge.
 | |
| //
 | |
| void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
 | |
|   assert(CurNodeH.getOffset() >= NH.getOffset() &&
 | |
|          "This should have been enforced in the caller.");
 | |
|   assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
 | |
|          "Cannot merge two nodes that are not in the same graph!");
 | |
| 
 | |
|   // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
 | |
|   // respect to NH.Offset) is now zero.  NOffset is the distance from the base
 | |
|   // of our object that N starts from.
 | |
|   //
 | |
|   unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
 | |
|   unsigned NSize = NH.getNode()->getSize();
 | |
| 
 | |
|   // If the two nodes are of different size, and the smaller node has the array
 | |
|   // bit set, collapse!
 | |
|   if (NSize != CurNodeH.getNode()->getSize()) {
 | |
|     if (NSize < CurNodeH.getNode()->getSize()) {
 | |
|       if (NH.getNode()->isArray())
 | |
|         NH.getNode()->foldNodeCompletely();
 | |
|     } else if (CurNodeH.getNode()->isArray()) {
 | |
|       NH.getNode()->foldNodeCompletely();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge the type entries of the two nodes together...    
 | |
|   if (NH.getNode()->Ty != Type::VoidTy)
 | |
|     CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // If we are merging a node with a completely folded node, then both nodes are
 | |
|   // now completely folded.
 | |
|   //
 | |
|   if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
 | |
|     if (!NH.getNode()->isNodeCompletelyFolded()) {
 | |
|       NH.getNode()->foldNodeCompletely();
 | |
|       assert(NH.getNode() && NH.getOffset() == 0 &&
 | |
|              "folding did not make offset 0?");
 | |
|       NOffset = NH.getOffset();
 | |
|       NSize = NH.getNode()->getSize();
 | |
|       assert(NOffset == 0 && NSize == 1);
 | |
|     }
 | |
|   } else if (NH.getNode()->isNodeCompletelyFolded()) {
 | |
|     CurNodeH.getNode()->foldNodeCompletely();
 | |
|     assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
 | |
|            "folding did not make offset 0?");
 | |
|     NSize = NH.getNode()->getSize();
 | |
|     NOffset = NH.getOffset();
 | |
|     assert(NOffset == 0 && NSize == 1);
 | |
|   }
 | |
| 
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (CurNodeH.getNode() == N || N == 0) return;
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // Merge the NodeType information.
 | |
|   CurNodeH.getNode()->NodeType |= N->NodeType;
 | |
| 
 | |
|   // Start forwarding to the new node!
 | |
|   N->forwardNode(CurNodeH.getNode(), NOffset);
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // Make all of the outgoing links of N now be outgoing links of CurNodeH.
 | |
|   //
 | |
|   for (unsigned i = 0; i < N->getNumLinks(); ++i) {
 | |
|     DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
 | |
|     if (Link.getNode()) {
 | |
|       // Compute the offset into the current node at which to
 | |
|       // merge this link.  In the common case, this is a linear
 | |
|       // relation to the offset in the original node (with
 | |
|       // wrapping), but if the current node gets collapsed due to
 | |
|       // recursive merging, we must make sure to merge in all remaining
 | |
|       // links at offset zero.
 | |
|       unsigned MergeOffset = 0;
 | |
|       DSNode *CN = CurNodeH.getNode();
 | |
|       if (CN->Size != 1)
 | |
|         MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
 | |
|       CN->addEdgeTo(MergeOffset, Link);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that there are no outgoing edges, all of the Links are dead.
 | |
|   N->Links.clear();
 | |
| 
 | |
|   // Merge the globals list...
 | |
|   if (!N->Globals.empty()) {
 | |
|     CurNodeH.getNode()->mergeGlobals(N->Globals);
 | |
| 
 | |
|     // Delete the globals from the old node...
 | |
|     std::vector<GlobalValue*>().swap(N->Globals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// mergeWith - Merge this node and the specified node, moving all links to and
 | |
| /// from the argument node into the current node, deleting the node argument.
 | |
| /// Offset indicates what offset the specified node is to be merged into the
 | |
| /// current node.
 | |
| ///
 | |
| /// The specified node may be a null pointer (in which case, we update it to
 | |
| /// point to this node).
 | |
| ///
 | |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (N == this && NH.getOffset() == Offset)
 | |
|     return;  // Noop
 | |
| 
 | |
|   // If the RHS is a null node, make it point to this node!
 | |
|   if (N == 0) {
 | |
|     NH.mergeWith(DSNodeHandle(this, Offset));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!N->isDeadNode() && !isDeadNode());
 | |
|   assert(!hasNoReferrers() && "Should not try to fold a useless node!");
 | |
| 
 | |
|   if (N == this) {
 | |
|     // We cannot merge two pieces of the same node together, collapse the node
 | |
|     // completely.
 | |
|     DEBUG(std::cerr << "Attempting to merge two chunks of"
 | |
|                     << " the same node together!\n");
 | |
|     foldNodeCompletely();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If both nodes are not at offset 0, make sure that we are merging the node
 | |
|   // at an later offset into the node with the zero offset.
 | |
|   //
 | |
|   if (Offset < NH.getOffset()) {
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
 | |
|     // If the offsets are the same, merge the smaller node into the bigger node
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ok, now we can merge the two nodes.  Use a static helper that works with
 | |
|   // two node handles, since "this" may get merged away at intermediate steps.
 | |
|   DSNodeHandle CurNodeH(this, Offset);
 | |
|   DSNodeHandle NHCopy(NH);
 | |
|   DSNode::MergeNodes(CurNodeH, NHCopy);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ReachabilityCloner Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) {
 | |
|   if (SrcNH.isNull()) return DSNodeHandle();
 | |
|   const DSNode *SN = SrcNH.getNode();
 | |
| 
 | |
|   DSNodeHandle &NH = NodeMap[SN];
 | |
|   if (!NH.isNull()) {   // Node already mapped?
 | |
|     DSNode *NHN = NH.getNode();
 | |
|     return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
 | |
|   }
 | |
| 
 | |
|   // If SrcNH has globals and the destination graph has one of the same globals,
 | |
|   // merge this node with the destination node, which is much more efficient.
 | |
|   if (SN->global_begin() != SN->global_end()) {
 | |
|     DSScalarMap &DestSM = Dest.getScalarMap();
 | |
|     for (DSNode::global_iterator I = SN->global_begin(), E = SN->global_end();
 | |
|          I != E; ++I) {
 | |
|       GlobalValue *GV = *I;
 | |
|       DSScalarMap::iterator GI = DestSM.find(GV);
 | |
|       if (GI != DestSM.end() && !GI->second.isNull()) {
 | |
|         // We found one, use merge instead!
 | |
|         merge(GI->second, Src.getNodeForValue(GV));
 | |
|         assert(!NH.isNull() && "Didn't merge node!");
 | |
|         DSNode *NHN = NH.getNode();
 | |
|         return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */);
 | |
|   DN->maskNodeTypes(BitsToKeep);
 | |
|   NH = DN;
 | |
|   
 | |
|   // Next, recursively clone all outgoing links as necessary.  Note that
 | |
|   // adding these links can cause the node to collapse itself at any time, and
 | |
|   // the current node may be merged with arbitrary other nodes.  For this
 | |
|   // reason, we must always go through NH.
 | |
|   DN = 0;
 | |
|   for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
 | |
|     const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
 | |
|     if (!SrcEdge.isNull()) {
 | |
|       const DSNodeHandle &DestEdge = getClonedNH(SrcEdge);
 | |
|       // Compute the offset into the current node at which to
 | |
|       // merge this link.  In the common case, this is a linear
 | |
|       // relation to the offset in the original node (with
 | |
|       // wrapping), but if the current node gets collapsed due to
 | |
|       // recursive merging, we must make sure to merge in all remaining
 | |
|       // links at offset zero.
 | |
|       unsigned MergeOffset = 0;
 | |
|       DSNode *CN = NH.getNode();
 | |
|       if (CN->getSize() != 1)
 | |
|         MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize();
 | |
|       CN->addEdgeTo(MergeOffset, DestEdge);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this node contains any globals, make sure they end up in the scalar
 | |
|   // map with the correct offset.
 | |
|   for (DSNode::global_iterator I = SN->global_begin(), E = SN->global_end();
 | |
|        I != E; ++I) {
 | |
|     GlobalValue *GV = *I;
 | |
|     const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
 | |
|     DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
 | |
|     assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent");
 | |
|     Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
 | |
|                                        DestGNH.getOffset()+SrcGNH.getOffset()));
 | |
|     
 | |
|     if (CloneFlags & DSGraph::UpdateInlinedGlobals)
 | |
|       Dest.getInlinedGlobals().insert(GV);
 | |
|   }
 | |
|   NH.getNode()->mergeGlobals(SN->getGlobals());
 | |
| 
 | |
|   return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset());
 | |
| }
 | |
| 
 | |
| void ReachabilityCloner::merge(const DSNodeHandle &NH,
 | |
|                                const DSNodeHandle &SrcNH) {
 | |
|   if (SrcNH.isNull()) return;  // Noop
 | |
|   if (NH.isNull()) {
 | |
|     // If there is no destination node, just clone the source and assign the
 | |
|     // destination node to be it.
 | |
|     NH.mergeWith(getClonedNH(SrcNH));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, at this point, we know that we have both a destination and a source
 | |
|   // node that need to be merged.  Check to see if the source node has already
 | |
|   // been cloned.
 | |
|   const DSNode *SN = SrcNH.getNode();
 | |
|   DSNodeHandle &SCNH = NodeMap[SN];  // SourceClonedNodeHandle
 | |
|   if (!SCNH.isNull()) {   // Node already cloned?
 | |
|     DSNode *SCNHN = SCNH.getNode();
 | |
|     NH.mergeWith(DSNodeHandle(SCNHN,
 | |
|                               SCNH.getOffset()+SrcNH.getOffset()));
 | |
|     return;  // Nothing to do!
 | |
|   }
 | |
|   
 | |
|   // Okay, so the source node has not already been cloned.  Instead of creating
 | |
|   // a new DSNode, only to merge it into the one we already have, try to perform
 | |
|   // the merge in-place.  The only case we cannot handle here is when the offset
 | |
|   // into the existing node is less than the offset into the virtual node we are
 | |
|   // merging in.  In this case, we have to extend the existing node, which
 | |
|   // requires an allocation anyway.
 | |
|   DSNode *DN = NH.getNode();   // Make sure the Offset is up-to-date
 | |
|   if (NH.getOffset() >= SrcNH.getOffset()) {
 | |
|     if (!DN->isNodeCompletelyFolded()) {
 | |
|       // Make sure the destination node is folded if the source node is folded.
 | |
|       if (SN->isNodeCompletelyFolded()) {
 | |
|         DN->foldNodeCompletely();
 | |
|         DN = NH.getNode();
 | |
|       } else if (SN->getSize() != DN->getSize()) {
 | |
|         // If the two nodes are of different size, and the smaller node has the
 | |
|         // array bit set, collapse!
 | |
|         if (SN->getSize() < DN->getSize()) {
 | |
|           if (SN->isArray()) {
 | |
|             DN->foldNodeCompletely();
 | |
|             DN = NH.getNode();
 | |
|           }
 | |
|         } else if (DN->isArray()) {
 | |
|           DN->foldNodeCompletely();
 | |
|           DN = NH.getNode();
 | |
|         }
 | |
|       }
 | |
|     
 | |
|       // Merge the type entries of the two nodes together...    
 | |
|       if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) {
 | |
|         DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset());
 | |
|         DN = NH.getNode();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(!DN->isDeadNode());
 | |
|     
 | |
|     // Merge the NodeType information.
 | |
|     DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep);
 | |
| 
 | |
|     // Before we start merging outgoing links and updating the scalar map, make
 | |
|     // sure it is known that this is the representative node for the src node.
 | |
|     SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset());
 | |
| 
 | |
|     // If the source node contains any globals, make sure they end up in the
 | |
|     // scalar map with the correct offset.
 | |
|     if (SN->global_begin() != SN->global_end()) {
 | |
|       // Update the globals in the destination node itself.
 | |
|       DN->mergeGlobals(SN->getGlobals());
 | |
| 
 | |
|       // Update the scalar map for the graph we are merging the source node
 | |
|       // into.
 | |
|       for (DSNode::global_iterator I = SN->global_begin(), E = SN->global_end();
 | |
|            I != E; ++I) {
 | |
|         GlobalValue *GV = *I;
 | |
|         const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
 | |
|         DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
 | |
|         assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
 | |
|         Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
 | |
|                                       DestGNH.getOffset()+SrcGNH.getOffset()));
 | |
|         
 | |
|         if (CloneFlags & DSGraph::UpdateInlinedGlobals)
 | |
|           Dest.getInlinedGlobals().insert(GV);
 | |
|       }
 | |
|       NH.getNode()->mergeGlobals(SN->getGlobals());
 | |
|     }
 | |
|   } else {
 | |
|     // We cannot handle this case without allocating a temporary node.  Fall
 | |
|     // back on being simple.
 | |
|     DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */);
 | |
|     NewDN->maskNodeTypes(BitsToKeep);
 | |
| 
 | |
|     unsigned NHOffset = NH.getOffset();
 | |
|     NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset()));
 | |
| 
 | |
|     assert(NH.getNode() &&
 | |
|            (NH.getOffset() > NHOffset ||
 | |
|             (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) &&
 | |
|            "Merging did not adjust the offset!");
 | |
| 
 | |
|     // Before we start merging outgoing links and updating the scalar map, make
 | |
|     // sure it is known that this is the representative node for the src node.
 | |
|     SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset());
 | |
| 
 | |
|     // If the source node contained any globals, make sure to create entries 
 | |
|     // in the scalar map for them!
 | |
|     for (DSNode::global_iterator I = SN->global_begin(), E = SN->global_end();
 | |
|          I != E; ++I) {
 | |
|       GlobalValue *GV = *I;
 | |
|       const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
 | |
|       DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
 | |
|       assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
 | |
|       assert(SrcGNH.getNode() == SN && "Global mapping inconsistent");
 | |
|       Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
 | |
|                                     DestGNH.getOffset()+SrcGNH.getOffset()));
 | |
|       
 | |
|       if (CloneFlags & DSGraph::UpdateInlinedGlobals)
 | |
|         Dest.getInlinedGlobals().insert(GV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Next, recursively merge all outgoing links as necessary.  Note that
 | |
|   // adding these links can cause the destination node to collapse itself at
 | |
|   // any time, and the current node may be merged with arbitrary other nodes.
 | |
|   // For this reason, we must always go through NH.
 | |
|   DN = 0;
 | |
|   for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
 | |
|     const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
 | |
|     if (!SrcEdge.isNull()) {
 | |
|       // Compute the offset into the current node at which to
 | |
|       // merge this link.  In the common case, this is a linear
 | |
|       // relation to the offset in the original node (with
 | |
|       // wrapping), but if the current node gets collapsed due to
 | |
|       // recursive merging, we must make sure to merge in all remaining
 | |
|       // links at offset zero.
 | |
|       DSNode *CN = SCNH.getNode();
 | |
|       unsigned MergeOffset =
 | |
|         ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize();
 | |
|       
 | |
|       DSNodeHandle Tmp = CN->getLink(MergeOffset);
 | |
|       if (!Tmp.isNull()) {
 | |
|         // Perform the recursive merging.  Make sure to create a temporary NH,
 | |
|         // because the Link can disappear in the process of recursive merging.
 | |
|         merge(Tmp, SrcEdge);
 | |
|       } else {
 | |
|         Tmp.mergeWith(getClonedNH(SrcEdge));
 | |
|         // Merging this could cause all kinds of recursive things to happen,
 | |
|         // culminating in the current node being eliminated.  Since this is
 | |
|         // possible, make sure to reaquire the link from 'CN'.
 | |
| 
 | |
|         unsigned MergeOffset = 0;
 | |
|         CN = SCNH.getNode();
 | |
|         MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize();
 | |
|         CN->getLink(MergeOffset).mergeWith(Tmp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// mergeCallSite - Merge the nodes reachable from the specified src call
 | |
| /// site into the nodes reachable from DestCS.
 | |
| void ReachabilityCloner::mergeCallSite(const DSCallSite &DestCS,
 | |
|                                        const DSCallSite &SrcCS) {
 | |
|   merge(DestCS.getRetVal(), SrcCS.getRetVal());
 | |
|   unsigned MinArgs = DestCS.getNumPtrArgs();
 | |
|   if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs();
 | |
|   
 | |
|   for (unsigned a = 0; a != MinArgs; ++a)
 | |
|     merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a));
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSCallSite Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
 | |
| Function &DSCallSite::getCaller() const {
 | |
|   return *Site.getInstruction()->getParent()->getParent();
 | |
| }
 | |
| 
 | |
| void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
 | |
|                         ReachabilityCloner &RC) {
 | |
|   NH = RC.getClonedNH(Src);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getFunctionNames - Return a space separated list of the name of the
 | |
| /// functions in this graph (if any)
 | |
| std::string DSGraph::getFunctionNames() const {
 | |
|   switch (getReturnNodes().size()) {
 | |
|   case 0: return "Globals graph";
 | |
|   case 1: return getReturnNodes().begin()->first->getName();
 | |
|   default:
 | |
|     std::string Return;
 | |
|     for (DSGraph::ReturnNodesTy::const_iterator I = getReturnNodes().begin();
 | |
|          I != getReturnNodes().end(); ++I)
 | |
|       Return += I->first->getName() + " ";
 | |
|     Return.erase(Return.end()-1, Return.end());   // Remove last space character
 | |
|     return Return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G) : GlobalsGraph(0), TD(G.TD) {
 | |
|   PrintAuxCalls = false;
 | |
|   NodeMapTy NodeMap;
 | |
|   cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G, NodeMapTy &NodeMap)
 | |
|   : GlobalsGraph(0), TD(G.TD) {
 | |
|   PrintAuxCalls = false;
 | |
|   cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::~DSGraph() {
 | |
|   FunctionCalls.clear();
 | |
|   AuxFunctionCalls.clear();
 | |
|   InlinedGlobals.clear();
 | |
|   ScalarMap.clear();
 | |
|   ReturnNodes.clear();
 | |
| 
 | |
|   // Drop all intra-node references, so that assertions don't fail...
 | |
|   for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
 | |
|     (*NI)->dropAllReferences();
 | |
| 
 | |
|   // Free all of the nodes.
 | |
|   Nodes.clear();
 | |
| }
 | |
| 
 | |
| // dump - Allow inspection of graph in a debugger.
 | |
| void DSGraph::dump() const { print(std::cerr); }
 | |
| 
 | |
| 
 | |
| /// remapLinks - Change all of the Links in the current node according to the
 | |
| /// specified mapping.
 | |
| ///
 | |
| void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
 | |
|   for (unsigned i = 0, e = Links.size(); i != e; ++i)
 | |
|     if (DSNode *N = Links[i].getNode()) {
 | |
|       DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N);
 | |
|       if (ONMI != OldNodeMap.end()) {
 | |
|         DSNode *ONMIN = ONMI->second.getNode();
 | |
|         Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset());
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// updateFromGlobalGraph - This function rematerializes global nodes and
 | |
| /// nodes reachable from them from the globals graph into the current graph.
 | |
| /// It uses the vector InlinedGlobals to avoid cloning and merging globals that
 | |
| /// are already up-to-date in the current graph.  In practice, in the TD pass,
 | |
| /// this is likely to be a large fraction of the live global nodes in each
 | |
| /// function (since most live nodes are likely to have been brought up-to-date
 | |
| /// in at _some_ caller or callee).
 | |
| /// 
 | |
| void DSGraph::updateFromGlobalGraph() {
 | |
|   TIME_REGION(X, "updateFromGlobalGraph");
 | |
|   ReachabilityCloner RC(*this, *GlobalsGraph, 0);
 | |
| 
 | |
|   // Clone the non-up-to-date global nodes into this graph.
 | |
|   for (DSScalarMap::global_iterator I = getScalarMap().global_begin(),
 | |
|          E = getScalarMap().global_end(); I != E; ++I)
 | |
|     if (InlinedGlobals.count(*I) == 0) { // GNode is not up-to-date
 | |
|       DSScalarMap::iterator It = GlobalsGraph->ScalarMap.find(*I);
 | |
|       if (It != GlobalsGraph->ScalarMap.end())
 | |
|         RC.merge(getNodeForValue(*I), It->second);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// cloneInto - Clone the specified DSGraph into the current graph.  The
 | |
| /// translated ScalarMap for the old function is filled into the OldValMap
 | |
| /// member, and the translated ReturnNodes map is returned into ReturnNodes.
 | |
| ///
 | |
| /// The CloneFlags member controls various aspects of the cloning process.
 | |
| ///
 | |
| void DSGraph::cloneInto(const DSGraph &G, DSScalarMap &OldValMap,
 | |
|                         ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap,
 | |
|                         unsigned CloneFlags) {
 | |
|   TIME_REGION(X, "cloneInto");
 | |
|   assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
 | |
|   assert(&G != this && "Cannot clone graph into itself!");
 | |
| 
 | |
|   // Remove alloca or mod/ref bits as specified...
 | |
|   unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
 | |
|     | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
 | |
|     | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
 | |
|   BitsToClear |= DSNode::DEAD;  // Clear dead flag...
 | |
| 
 | |
|   for (node_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) {
 | |
|     assert(!(*I)->isForwarding() &&
 | |
|            "Forward nodes shouldn't be in node list!");
 | |
|     DSNode *New = new DSNode(**I, this);
 | |
|     New->maskNodeTypes(~BitsToClear);
 | |
|     OldNodeMap[*I] = New;
 | |
|   }
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   Timer::addPeakMemoryMeasurement();
 | |
| #endif
 | |
|   
 | |
|   // Rewrite the links in the new nodes to point into the current graph now.
 | |
|   // Note that we don't loop over the node's list to do this.  The problem is
 | |
|   // that remaping links can cause recursive merging to happen, which means
 | |
|   // that node_iterator's can get easily invalidated!  Because of this, we
 | |
|   // loop over the OldNodeMap, which contains all of the new nodes as the
 | |
|   // .second element of the map elements.  Also note that if we remap a node
 | |
|   // more than once, we won't break anything.
 | |
|   for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end();
 | |
|        I != E; ++I)
 | |
|     I->second.getNode()->remapLinks(OldNodeMap);
 | |
| 
 | |
|   // Copy the scalar map... merging all of the global nodes...
 | |
|   for (DSScalarMap::const_iterator I = G.ScalarMap.begin(),
 | |
|          E = G.ScalarMap.end(); I != E; ++I) {
 | |
|     DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
 | |
|     DSNodeHandle &H = OldValMap[I->first];
 | |
|     DSNode *MappedNodeN = MappedNode.getNode();
 | |
|     H.mergeWith(DSNodeHandle(MappedNodeN,
 | |
|                              I->second.getOffset()+MappedNode.getOffset()));
 | |
| 
 | |
|     // If this is a global, add the global to this fn or merge if already exists
 | |
|     if (GlobalValue* GV = dyn_cast<GlobalValue>(I->first)) {
 | |
|       ScalarMap[GV].mergeWith(H);
 | |
|       if (CloneFlags & DSGraph::UpdateInlinedGlobals)
 | |
|         InlinedGlobals.insert(GV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneCallNodes)) {
 | |
|     // Copy the function calls list...
 | |
|     unsigned FC = FunctionCalls.size();  // FirstCall
 | |
|     FunctionCalls.reserve(FC+G.FunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
 | |
|       FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneAuxCallNodes)) {
 | |
|     // Copy the auxiliary function calls list...
 | |
|     unsigned FC = AuxFunctionCalls.size();  // FirstCall
 | |
|     AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
 | |
|       AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   // Map the return node pointers over...
 | |
|   for (ReturnNodesTy::const_iterator I = G.getReturnNodes().begin(),
 | |
|          E = G.getReturnNodes().end(); I != E; ++I) {
 | |
|     const DSNodeHandle &Ret = I->second;
 | |
|     DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
 | |
|     DSNode *MappedRetN = MappedRet.getNode();
 | |
|     OldReturnNodes.insert(std::make_pair(I->first,
 | |
|                           DSNodeHandle(MappedRetN,
 | |
|                                        MappedRet.getOffset()+Ret.getOffset())));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool PathExistsToClonedNode(const DSNode *N, ReachabilityCloner &RC) {
 | |
|   if (N)
 | |
|     for (df_iterator<const DSNode*> I = df_begin(N), E = df_end(N); I != E; ++I)
 | |
|       if (RC.hasClonedNode(*I))
 | |
|         return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool PathExistsToClonedNode(const DSCallSite &CS,
 | |
|                                    ReachabilityCloner &RC) {
 | |
|   if (PathExistsToClonedNode(CS.getRetVal().getNode(), RC))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
 | |
|     if (PathExistsToClonedNode(CS.getPtrArg(i).getNode(), RC))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// mergeInGraph - The method is used for merging graphs together.  If the
 | |
| /// argument graph is not *this, it makes a clone of the specified graph, then
 | |
| /// merges the nodes specified in the call site with the formal arguments in the
 | |
| /// graph.
 | |
| ///
 | |
| void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
 | |
|                            const DSGraph &Graph, unsigned CloneFlags) {
 | |
|   TIME_REGION(X, "mergeInGraph");
 | |
| 
 | |
|   // Fastpath for a noop inline.
 | |
|   if (CS.getNumPtrArgs() == 0 && CS.getRetVal().isNull())
 | |
|     return;
 | |
| 
 | |
|   // If this is not a recursive call, clone the graph into this graph...
 | |
|   if (&Graph != this) {
 | |
|     // Clone the callee's graph into the current graph, keeping track of where
 | |
|     // scalars in the old graph _used_ to point, and of the new nodes matching
 | |
|     // nodes of the old graph.
 | |
|     ReachabilityCloner RC(*this, Graph, CloneFlags);
 | |
|     
 | |
|     // Set up argument bindings
 | |
|     Function::aiterator AI = F.abegin();
 | |
|     for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
 | |
|       // Advance the argument iterator to the first pointer argument...
 | |
|       while (AI != F.aend() && !isPointerType(AI->getType())) {
 | |
|         ++AI;
 | |
| #ifndef NDEBUG  // FIXME: We should merge vararg arguments!
 | |
|         if (AI == F.aend() && !F.getFunctionType()->isVarArg())
 | |
|           std::cerr << "Bad call to Function: " << F.getName() << "\n";
 | |
| #endif
 | |
|       }
 | |
|       if (AI == F.aend()) break;
 | |
|       
 | |
|       // Add the link from the argument scalar to the provided value.
 | |
|       RC.merge(CS.getPtrArg(i), Graph.getNodeForValue(AI));
 | |
|     }
 | |
|     
 | |
|     // Map the return node pointer over.
 | |
|     if (!CS.getRetVal().isNull())
 | |
|       RC.merge(CS.getRetVal(), Graph.getReturnNodeFor(F));
 | |
| 
 | |
|     // If requested, copy all of the calls.
 | |
|     if (!(CloneFlags & DontCloneCallNodes)) {
 | |
|       // Copy the function calls list...
 | |
|       FunctionCalls.reserve(FunctionCalls.size()+Graph.FunctionCalls.size());
 | |
|       for (unsigned i = 0, ei = Graph.FunctionCalls.size(); i != ei; ++i)
 | |
|         FunctionCalls.push_back(DSCallSite(Graph.FunctionCalls[i], RC));
 | |
|     }
 | |
| 
 | |
|     // If the user has us copying aux calls (the normal case), set up a data
 | |
|     // structure to keep track of which ones we've copied over.
 | |
|     std::vector<bool> CopiedAuxCall;
 | |
|     if (!(CloneFlags & DontCloneAuxCallNodes)) {
 | |
|       AuxFunctionCalls.reserve(AuxFunctionCalls.size()+
 | |
|                                Graph.AuxFunctionCalls.size());
 | |
|       CopiedAuxCall.resize(Graph.AuxFunctionCalls.size());
 | |
|     }
 | |
|     
 | |
|     // Clone over all globals that appear in the caller and callee graphs.
 | |
|     hash_set<GlobalVariable*> NonCopiedGlobals;
 | |
|     for (DSScalarMap::global_iterator GI = Graph.getScalarMap().global_begin(),
 | |
|            E = Graph.getScalarMap().global_end(); GI != E; ++GI)
 | |
|       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*GI))
 | |
|         if (ScalarMap.count(GV))
 | |
|           RC.merge(ScalarMap[GV], Graph.getNodeForValue(GV));
 | |
|         else
 | |
|           NonCopiedGlobals.insert(GV);
 | |
|     
 | |
|     // If the global does not appear in the callers graph we generally don't
 | |
|     // want to copy the node.  However, if there is a path from the node global
 | |
|     // node to a node that we did copy in the graph, we *must* copy it to
 | |
|     // maintain the connection information.  Every time we decide to include a
 | |
|     // new global, this might make other globals live, so we must iterate
 | |
|     // unfortunately.
 | |
|     bool MadeChange = true;
 | |
|     while (MadeChange) {
 | |
|       MadeChange = false;
 | |
|       for (hash_set<GlobalVariable*>::iterator I = NonCopiedGlobals.begin();
 | |
|            I != NonCopiedGlobals.end();) {
 | |
|         DSNode *GlobalNode = Graph.getNodeForValue(*I).getNode();
 | |
|         if (RC.hasClonedNode(GlobalNode)) {
 | |
|           // Already cloned it, remove from set.
 | |
|           NonCopiedGlobals.erase(I++);
 | |
|           MadeChange = true;
 | |
|         } else if (PathExistsToClonedNode(GlobalNode, RC)) {
 | |
|           RC.getClonedNH(Graph.getNodeForValue(*I));
 | |
|           NonCopiedGlobals.erase(I++);
 | |
|           MadeChange = true;
 | |
|         } else {
 | |
|           ++I;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If requested, copy any aux calls that can reach copied nodes.
 | |
|       if (!(CloneFlags & DontCloneAuxCallNodes)) {
 | |
|         for (unsigned i = 0, ei = Graph.AuxFunctionCalls.size(); i != ei; ++i)
 | |
|           if (!CopiedAuxCall[i] &&
 | |
|               PathExistsToClonedNode(Graph.AuxFunctionCalls[i], RC)) {
 | |
|             AuxFunctionCalls.push_back(DSCallSite(Graph.AuxFunctionCalls[i],
 | |
|                                                   RC));
 | |
|             CopiedAuxCall[i] = true;
 | |
|             MadeChange = true;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     DSNodeHandle RetVal = getReturnNodeFor(F);
 | |
| 
 | |
|     // Merge the return value with the return value of the context...
 | |
|     RetVal.mergeWith(CS.getRetVal());
 | |
|     
 | |
|     // Resolve all of the function arguments...
 | |
|     Function::aiterator AI = F.abegin();
 | |
|     
 | |
|     for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
 | |
|       // Advance the argument iterator to the first pointer argument...
 | |
|       while (AI != F.aend() && !isPointerType(AI->getType())) {
 | |
|         ++AI;
 | |
| #ifndef NDEBUG // FIXME: We should merge varargs arguments!!
 | |
|         if (AI == F.aend() && !F.getFunctionType()->isVarArg())
 | |
|           std::cerr << "Bad call to Function: " << F.getName() << "\n";
 | |
| #endif
 | |
|       }
 | |
|       if (AI == F.aend()) break;
 | |
|       
 | |
|       // Add the link from the argument scalar to the provided value
 | |
|       DSNodeHandle &NH = getNodeForValue(AI);
 | |
|       assert(!NH.isNull() && "Pointer argument without scalarmap entry?");
 | |
|       NH.mergeWith(CS.getPtrArg(i));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCallSiteForArguments - Get the arguments and return value bindings for
 | |
| /// the specified function in the current graph.
 | |
| ///
 | |
| DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
 | |
|   std::vector<DSNodeHandle> Args;
 | |
| 
 | |
|   for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
 | |
|     if (isPointerType(I->getType()))
 | |
|       Args.push_back(getNodeForValue(I));
 | |
| 
 | |
|   return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
 | |
| }
 | |
| 
 | |
| /// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
 | |
| /// the context of this graph, return the DSCallSite for it.
 | |
| DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const {
 | |
|   DSNodeHandle RetVal;
 | |
|   Instruction *I = CS.getInstruction();
 | |
|   if (isPointerType(I->getType()))
 | |
|     RetVal = getNodeForValue(I);
 | |
| 
 | |
|   std::vector<DSNodeHandle> Args;
 | |
|   Args.reserve(CS.arg_end()-CS.arg_begin());
 | |
| 
 | |
|   // Calculate the arguments vector...
 | |
|   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
 | |
|     if (isPointerType((*I)->getType()))
 | |
|       Args.push_back(getNodeForValue(*I));
 | |
| 
 | |
|   // Add a new function call entry...
 | |
|   if (Function *F = CS.getCalledFunction())
 | |
|     return DSCallSite(CS, RetVal, F, Args);
 | |
|   else
 | |
|     return DSCallSite(CS, RetVal,
 | |
|                       getNodeForValue(CS.getCalledValue()).getNode(), Args);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // markIncompleteNodes - Mark the specified node as having contents that are not
 | |
| // known with the current analysis we have performed.  Because a node makes all
 | |
| // of the nodes it can reach incomplete if the node itself is incomplete, we
 | |
| // must recursively traverse the data structure graph, marking all reachable
 | |
| // nodes as incomplete.
 | |
| //
 | |
| static void markIncompleteNode(DSNode *N) {
 | |
|   // Stop recursion if no node, or if node already marked...
 | |
|   if (N == 0 || N->isIncomplete()) return;
 | |
| 
 | |
|   // Actually mark the node
 | |
|   N->setIncompleteMarker();
 | |
| 
 | |
|   // Recursively process children...
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (DSNode *DSN = N->getLink(i).getNode())
 | |
|       markIncompleteNode(DSN);
 | |
| }
 | |
| 
 | |
| static void markIncomplete(DSCallSite &Call) {
 | |
|   // Then the return value is certainly incomplete!
 | |
|   markIncompleteNode(Call.getRetVal().getNode());
 | |
| 
 | |
|   // All objects pointed to by function arguments are incomplete!
 | |
|   for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
 | |
|     markIncompleteNode(Call.getPtrArg(i).getNode());
 | |
| }
 | |
| 
 | |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be
 | |
| // modified by other functions that have not been resolved yet.  This marks
 | |
| // nodes that are reachable through three sources of "unknownness":
 | |
| //
 | |
| //  Global Variables, Function Calls, and Incoming Arguments
 | |
| //
 | |
| // For any node that may have unknown components (because something outside the
 | |
| // scope of current analysis may have modified it), the 'Incomplete' flag is
 | |
| // added to the NodeType.
 | |
| //
 | |
| void DSGraph::markIncompleteNodes(unsigned Flags) {
 | |
|   // Mark any incoming arguments as incomplete...
 | |
|   if (Flags & DSGraph::MarkFormalArgs)
 | |
|     for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
 | |
|          FI != E; ++FI) {
 | |
|       Function &F = *FI->first;
 | |
|       if (F.getName() != "main")
 | |
|         for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
 | |
|           if (isPointerType(I->getType()))
 | |
|             markIncompleteNode(getNodeForValue(I).getNode());
 | |
|     }
 | |
| 
 | |
|   // Mark stuff passed into functions calls as being incomplete...
 | |
|   if (!shouldPrintAuxCalls())
 | |
|     for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(FunctionCalls[i]);
 | |
|   else
 | |
|     for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(AuxFunctionCalls[i]);
 | |
|     
 | |
| 
 | |
|   // Mark all global nodes as incomplete...
 | |
|   if ((Flags & DSGraph::IgnoreGlobals) == 0)
 | |
|     for (DSScalarMap::global_iterator I = ScalarMap.global_begin(),
 | |
|            E = ScalarMap.global_end(); I != E; ++I)
 | |
|       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
 | |
|         if (!GV->isConstant() || !GV->hasInitializer())
 | |
|           markIncompleteNode(ScalarMap[GV].getNode());
 | |
| }
 | |
| 
 | |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) {
 | |
|   if (DSNode *N = Edge.getNode())  // Is there an edge?
 | |
|     if (N->getNumReferrers() == 1)  // Does it point to a lonely node?
 | |
|       // No interesting info?
 | |
|       if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
 | |
|           N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
 | |
|         Edge.setTo(0, 0);  // Kill the edge!
 | |
| }
 | |
| 
 | |
| static inline bool nodeContainsExternalFunction(const DSNode *N) {
 | |
|   const std::vector<GlobalValue*> &Globals = N->getGlobals();
 | |
|   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
 | |
|     if (Globals[i]->isExternal() && isa<Function>(Globals[i]))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void removeIdenticalCalls(std::vector<DSCallSite> &Calls) {
 | |
|   // Remove trivially identical function calls
 | |
|   unsigned NumFns = Calls.size();
 | |
|   std::sort(Calls.begin(), Calls.end());  // Sort by callee as primary key!
 | |
| 
 | |
| #if 1
 | |
|   // Scan the call list cleaning it up as necessary...
 | |
|   DSNode   *LastCalleeNode = 0;
 | |
|   Function *LastCalleeFunc = 0;
 | |
|   unsigned NumDuplicateCalls = 0;
 | |
|   bool LastCalleeContainsExternalFunction = false;
 | |
| 
 | |
|   std::vector<unsigned> CallsToDelete;
 | |
| 
 | |
|   for (unsigned i = 0; i != Calls.size(); ++i) {
 | |
|     DSCallSite &CS = Calls[i];
 | |
| 
 | |
|     // If the Callee is a useless edge, this must be an unreachable call site,
 | |
|     // eliminate it.
 | |
|     if (CS.isIndirectCall() && CS.getCalleeNode()->getNumReferrers() == 1 &&
 | |
|         CS.getCalleeNode()->isComplete() &&
 | |
|         CS.getCalleeNode()->getGlobals().empty()) {  // No useful info?
 | |
| #ifndef NDEBUG
 | |
|       std::cerr << "WARNING: Useless call site found.\n";
 | |
| #endif
 | |
|       CallsToDelete.push_back(i);
 | |
|     } else {
 | |
|       // If the return value or any arguments point to a void node with no
 | |
|       // information at all in it, and the call node is the only node to point
 | |
|       // to it, remove the edge to the node (killing the node).
 | |
|       //
 | |
|       killIfUselessEdge(CS.getRetVal());
 | |
|       for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
 | |
|         killIfUselessEdge(CS.getPtrArg(a));
 | |
|       
 | |
|       // If this call site calls the same function as the last call site, and if
 | |
|       // the function pointer contains an external function, this node will
 | |
|       // never be resolved.  Merge the arguments of the call node because no
 | |
|       // information will be lost.
 | |
|       //
 | |
|       if ((CS.isDirectCall()   && CS.getCalleeFunc() == LastCalleeFunc) ||
 | |
|           (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
 | |
|         ++NumDuplicateCalls;
 | |
|         if (NumDuplicateCalls == 1) {
 | |
|           if (LastCalleeNode)
 | |
|             LastCalleeContainsExternalFunction =
 | |
|               nodeContainsExternalFunction(LastCalleeNode);
 | |
|           else
 | |
|             LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
 | |
|         }
 | |
|      
 | |
|         // It is not clear why, but enabling this code makes DSA really
 | |
|         // sensitive to node forwarding.  Basically, with this enabled, DSA
 | |
|         // performs different number of inlinings based on which nodes are
 | |
|         // forwarding or not.  This is clearly a problem, so this code is
 | |
|         // disabled until this can be resolved.
 | |
| #if 1
 | |
|         if (LastCalleeContainsExternalFunction
 | |
| #if 0
 | |
|             ||
 | |
|             // This should be more than enough context sensitivity!
 | |
|             // FIXME: Evaluate how many times this is tripped!
 | |
|             NumDuplicateCalls > 20
 | |
| #endif
 | |
|             ) {
 | |
|           DSCallSite &OCS = Calls[i-1];
 | |
|           OCS.mergeWith(CS);
 | |
|           
 | |
|           // No need to keep this call anymore.
 | |
|           CallsToDelete.push_back(i);
 | |
|         }
 | |
| #endif
 | |
|       } else {
 | |
|         if (CS.isDirectCall()) {
 | |
|           LastCalleeFunc = CS.getCalleeFunc();
 | |
|           LastCalleeNode = 0;
 | |
|         } else {
 | |
|           LastCalleeNode = CS.getCalleeNode();
 | |
|           LastCalleeFunc = 0;
 | |
|         }
 | |
|         NumDuplicateCalls = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   unsigned NumDeleted = 0;
 | |
|   for (unsigned i = 0, e = CallsToDelete.size(); i != e; ++i)
 | |
|     Calls.erase(Calls.begin()+CallsToDelete[i]-NumDeleted++);
 | |
| 
 | |
|   Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end());
 | |
| 
 | |
|   // Track the number of call nodes merged away...
 | |
|   NumCallNodesMerged += NumFns-Calls.size();
 | |
| 
 | |
|   DEBUG(if (NumFns != Calls.size())
 | |
|           std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes.\n";);
 | |
| }
 | |
| 
 | |
| 
 | |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method
 | |
| // removes all unreachable nodes that are created because they got merged with
 | |
| // other nodes in the graph.  These nodes will all be trivially unreachable, so
 | |
| // we don't have to perform any non-trivial analysis here.
 | |
| //
 | |
| void DSGraph::removeTriviallyDeadNodes() {
 | |
|   TIME_REGION(X, "removeTriviallyDeadNodes");
 | |
| 
 | |
| #if 0
 | |
|   /// NOTE: This code is disabled.  This slows down DSA on 177.mesa
 | |
|   /// substantially!
 | |
| 
 | |
|   // Loop over all of the nodes in the graph, calling getNode on each field.
 | |
|   // This will cause all nodes to update their forwarding edges, causing
 | |
|   // forwarded nodes to be delete-able.
 | |
|   { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate");
 | |
|   for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) {
 | |
|     DSNode *N = *NI;
 | |
|     for (unsigned l = 0, e = N->getNumLinks(); l != e; ++l)
 | |
|       N->getLink(l*N->getPointerSize()).getNode();
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // NOTE: This code is disabled.  Though it should, in theory, allow us to
 | |
|   // remove more nodes down below, the scan of the scalar map is incredibly
 | |
|   // expensive for certain programs (with large SCCs).  In the future, if we can
 | |
|   // make the scalar map scan more efficient, then we can reenable this.
 | |
|   { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap");
 | |
| 
 | |
|   // Likewise, forward any edges from the scalar nodes.  While we are at it,
 | |
|   // clean house a bit.
 | |
|   for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){
 | |
|     I->second.getNode();
 | |
|     ++I;
 | |
|   }
 | |
|   }
 | |
| #endif
 | |
|   bool isGlobalsGraph = !GlobalsGraph;
 | |
| 
 | |
|   for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) {
 | |
|     DSNode &Node = *NI;
 | |
| 
 | |
|     // Do not remove *any* global nodes in the globals graph.
 | |
|     // This is a special case because such nodes may not have I, M, R flags set.
 | |
|     if (Node.isGlobalNode() && isGlobalsGraph) {
 | |
|       ++NI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Node.isComplete() && !Node.isModified() && !Node.isRead()) {
 | |
|       // This is a useless node if it has no mod/ref info (checked above),
 | |
|       // outgoing edges (which it cannot, as it is not modified in this
 | |
|       // context), and it has no incoming edges.  If it is a global node it may
 | |
|       // have all of these properties and still have incoming edges, due to the
 | |
|       // scalar map, so we check those now.
 | |
|       //
 | |
|       if (Node.getNumReferrers() == Node.getGlobals().size()) {
 | |
|         const std::vector<GlobalValue*> &Globals = Node.getGlobals();
 | |
| 
 | |
|         // Loop through and make sure all of the globals are referring directly
 | |
|         // to the node...
 | |
|         for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
 | |
|           DSNode *N = getNodeForValue(Globals[j]).getNode();
 | |
|           assert(N == &Node && "ScalarMap doesn't match globals list!");
 | |
|         }
 | |
| 
 | |
|         // Make sure NumReferrers still agrees, if so, the node is truly dead.
 | |
|         if (Node.getNumReferrers() == Globals.size()) {
 | |
|           for (unsigned j = 0, e = Globals.size(); j != e; ++j)
 | |
|             ScalarMap.erase(Globals[j]);
 | |
|           Node.makeNodeDead();
 | |
|           ++NumTrivialGlobalDNE;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) {
 | |
|       // This node is dead!
 | |
|       NI = Nodes.erase(NI);    // Erase & remove from node list.
 | |
|       ++NumTrivialDNE;
 | |
|     } else {
 | |
|       ++NI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   removeIdenticalCalls(FunctionCalls);
 | |
|   removeIdenticalCalls(AuxFunctionCalls);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// markReachableNodes - This method recursively traverses the specified
 | |
| /// DSNodes, marking any nodes which are reachable.  All reachable nodes it adds
 | |
| /// to the set, which allows it to only traverse visited nodes once.
 | |
| ///
 | |
| void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) {
 | |
|   if (this == 0) return;
 | |
|   assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
 | |
|   if (ReachableNodes.insert(this).second)        // Is newly reachable?
 | |
|     for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize)
 | |
|       getLink(i).getNode()->markReachableNodes(ReachableNodes);
 | |
| }
 | |
| 
 | |
| void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) {
 | |
|   getRetVal().getNode()->markReachableNodes(Nodes);
 | |
|   if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
 | |
|   
 | |
|   for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
 | |
|     getPtrArg(i).getNode()->markReachableNodes(Nodes);
 | |
| }
 | |
| 
 | |
| // CanReachAliveNodes - Simple graph walker that recursively traverses the graph
 | |
| // looking for a node that is marked alive.  If an alive node is found, return
 | |
| // true, otherwise return false.  If an alive node is reachable, this node is
 | |
| // marked as alive...
 | |
| //
 | |
| static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive,
 | |
|                                hash_set<DSNode*> &Visited,
 | |
|                                bool IgnoreGlobals) {
 | |
|   if (N == 0) return false;
 | |
|   assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");
 | |
| 
 | |
|   // If this is a global node, it will end up in the globals graph anyway, so we
 | |
|   // don't need to worry about it.
 | |
|   if (IgnoreGlobals && N->isGlobalNode()) return false;
 | |
| 
 | |
|   // If we know that this node is alive, return so!
 | |
|   if (Alive.count(N)) return true;
 | |
| 
 | |
|   // Otherwise, we don't think the node is alive yet, check for infinite
 | |
|   // recursion.
 | |
|   if (Visited.count(N)) return false;  // Found a cycle
 | |
|   Visited.insert(N);   // No recursion, insert into Visited...
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited,
 | |
|                            IgnoreGlobals)) {
 | |
|       N->markReachableNodes(Alive);
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // CallSiteUsesAliveArgs - Return true if the specified call site can reach any
 | |
| // alive nodes.
 | |
| //
 | |
| static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive,
 | |
|                                   hash_set<DSNode*> &Visited,
 | |
|                                   bool IgnoreGlobals) {
 | |
|   if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
 | |
|                          IgnoreGlobals))
 | |
|     return true;
 | |
|   if (CS.isIndirectCall() &&
 | |
|       CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
 | |
|     if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
 | |
|                            IgnoreGlobals))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate
 | |
| // subgraphs that are unreachable.  This often occurs because the data
 | |
| // structure doesn't "escape" into it's caller, and thus should be eliminated
 | |
| // from the caller's graph entirely.  This is only appropriate to use when
 | |
| // inlining graphs.
 | |
| //
 | |
| void DSGraph::removeDeadNodes(unsigned Flags) {
 | |
|   DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK());
 | |
| 
 | |
|   // Reduce the amount of work we have to do... remove dummy nodes left over by
 | |
|   // merging...
 | |
|   removeTriviallyDeadNodes();
 | |
| 
 | |
|   TIME_REGION(X, "removeDeadNodes");
 | |
| 
 | |
|   // FIXME: Merge non-trivially identical call nodes...
 | |
| 
 | |
|   // Alive - a set that holds all nodes found to be reachable/alive.
 | |
|   hash_set<DSNode*> Alive;
 | |
|   std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
 | |
| 
 | |
|   // Copy and merge all information about globals to the GlobalsGraph if this is
 | |
|   // not a final pass (where unreachable globals are removed).
 | |
|   //
 | |
|   // Strip all alloca bits since the current function is only for the BU pass.
 | |
|   // Strip all incomplete bits since they are short-lived properties and they
 | |
|   // will be correctly computed when rematerializing nodes into the functions.
 | |
|   //
 | |
|   ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit |
 | |
|                               DSGraph::StripIncompleteBit);
 | |
| 
 | |
|   // Mark all nodes reachable by (non-global) scalar nodes as alive...
 | |
|   { TIME_REGION(Y, "removeDeadNodes:scalarscan");
 | |
|   for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I !=E;)
 | |
|     if (isa<GlobalValue>(I->first)) {             // Keep track of global nodes
 | |
|       assert(!I->second.isNull() && "Null global node?");
 | |
|       assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
 | |
|       GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
 | |
| 
 | |
|       // Make sure that all globals are cloned over as roots.
 | |
|       if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {
 | |
|         DSGraph::ScalarMapTy::iterator SMI = 
 | |
|           GlobalsGraph->getScalarMap().find(I->first);
 | |
|         if (SMI != GlobalsGraph->getScalarMap().end())
 | |
|           GGCloner.merge(SMI->second, I->second);
 | |
|         else
 | |
|           GGCloner.getClonedNH(I->second);
 | |
|       }
 | |
|       ++I;
 | |
|     } else {
 | |
|       DSNode *N = I->second.getNode();
 | |
| #if 0
 | |
|       // Check to see if this is a worthless node generated for non-pointer
 | |
|       // values, such as integers.  Consider an addition of long types: A+B.
 | |
|       // Assuming we can track all uses of the value in this context, and it is
 | |
|       // NOT used as a pointer, we can delete the node.  We will be able to
 | |
|       // detect this situation if the node pointed to ONLY has Unknown bit set
 | |
|       // in the node.  In this case, the node is not incomplete, does not point
 | |
|       // to any other nodes (no mod/ref bits set), and is therefore
 | |
|       // uninteresting for data structure analysis.  If we run across one of
 | |
|       // these, prune the scalar pointing to it.
 | |
|       //
 | |
|       if (N->getNodeFlags() == DSNode::UnknownNode && !isa<Argument>(I->first))
 | |
|         ScalarMap.erase(I++);
 | |
|       else {
 | |
| #endif
 | |
|         N->markReachableNodes(Alive);
 | |
|         ++I;
 | |
|       //}
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The return values are alive as well.
 | |
|   for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
 | |
|        I != E; ++I)
 | |
|     I->second.getNode()->markReachableNodes(Alive);
 | |
| 
 | |
|   // Mark any nodes reachable by primary calls as alive...
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|     FunctionCalls[i].markReachableNodes(Alive);
 | |
| 
 | |
| 
 | |
|   // Now find globals and aux call nodes that are already live or reach a live
 | |
|   // value (which makes them live in turn), and continue till no more are found.
 | |
|   // 
 | |
|   bool Iterate;
 | |
|   hash_set<DSNode*> Visited;
 | |
|   std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size());
 | |
|   do {
 | |
|     Visited.clear();
 | |
|     // If any global node points to a non-global that is "alive", the global is
 | |
|     // "alive" as well...  Remove it from the GlobalNodes list so we only have
 | |
|     // unreachable globals in the list.
 | |
|     //
 | |
|     Iterate = false;
 | |
|     if (!(Flags & DSGraph::RemoveUnreachableGlobals))
 | |
|       for (unsigned i = 0; i != GlobalNodes.size(); ++i)
 | |
|         if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, 
 | |
|                                Flags & DSGraph::RemoveUnreachableGlobals)) {
 | |
|           std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
 | |
|           GlobalNodes.pop_back();                          // erase efficiently
 | |
|           Iterate = true;
 | |
|         }
 | |
| 
 | |
|     // Mark only unresolvable call nodes for moving to the GlobalsGraph since
 | |
|     // call nodes that get resolved will be difficult to remove from that graph.
 | |
|     // The final unresolved call nodes must be handled specially at the end of
 | |
|     // the BU pass (i.e., in main or other roots of the call graph).
 | |
|     for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       if (!AuxFCallsAlive[i] &&
 | |
|           (AuxFunctionCalls[i].isIndirectCall()
 | |
|            || CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited,
 | |
|                                   Flags & DSGraph::RemoveUnreachableGlobals))) {
 | |
|         AuxFunctionCalls[i].markReachableNodes(Alive);
 | |
|         AuxFCallsAlive[i] = true;
 | |
|         Iterate = true;
 | |
|       }
 | |
|   } while (Iterate);
 | |
| 
 | |
|   // Move dead aux function calls to the end of the list
 | |
|   unsigned CurIdx = 0;
 | |
|   for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|     if (AuxFCallsAlive[i])
 | |
|       AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);
 | |
| 
 | |
|   // Copy and merge all global nodes and dead aux call nodes into the
 | |
|   // GlobalsGraph, and all nodes reachable from those nodes
 | |
|   // 
 | |
|   if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {
 | |
|     // Copy the unreachable call nodes to the globals graph, updating their
 | |
|     // target pointers using the GGCloner
 | |
|     for (unsigned i = CurIdx, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(AuxFunctionCalls[i],
 | |
|                                                           GGCloner));
 | |
|   }
 | |
|   // Crop all the useless ones out...
 | |
|   AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
 | |
|                          AuxFunctionCalls.end());
 | |
| 
 | |
|   // We are finally done with the GGCloner so we can destroy it.
 | |
|   GGCloner.destroy();
 | |
| 
 | |
|   // At this point, any nodes which are visited, but not alive, are nodes
 | |
|   // which can be removed.  Loop over all nodes, eliminating completely
 | |
|   // unreachable nodes.
 | |
|   //
 | |
|   std::vector<DSNode*> DeadNodes;
 | |
|   DeadNodes.reserve(Nodes.size());
 | |
|   for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) {
 | |
|     DSNode *N = NI++;
 | |
|     assert(!N->isForwarding() && "Forwarded node in nodes list?");
 | |
| 
 | |
|     if (!Alive.count(N)) {
 | |
|       Nodes.remove(N);
 | |
|       assert(!N->isForwarding() && "Cannot remove a forwarding node!");
 | |
|       DeadNodes.push_back(N);
 | |
|       N->dropAllReferences();
 | |
|       ++NumDNE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all unreachable globals from the ScalarMap.
 | |
|   // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
 | |
|   // In either case, the dead nodes will not be in the set Alive.
 | |
|   for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
 | |
|     if (!Alive.count(GlobalNodes[i].second))
 | |
|       ScalarMap.erase(GlobalNodes[i].first);
 | |
|     else
 | |
|       assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global");
 | |
| 
 | |
|   // Delete all dead nodes now since their referrer counts are zero.
 | |
|   for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
 | |
|     delete DeadNodes[i];
 | |
| 
 | |
|   DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
 | |
| }
 | |
| 
 | |
| void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const {
 | |
|   if (CS.isIndirectCall()) {
 | |
|     AssertNodeInGraph(CS.getCalleeNode());
 | |
| #if 0
 | |
|     if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() &&
 | |
|         CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty())
 | |
|       std::cerr << "WARNING: WIERD CALL SITE FOUND!\n";      
 | |
| #endif
 | |
|   }
 | |
|   AssertNodeInGraph(CS.getRetVal().getNode());
 | |
|   for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
 | |
|     AssertNodeInGraph(CS.getPtrArg(j).getNode());
 | |
| }
 | |
| 
 | |
| void DSGraph::AssertCallNodesInGraph() const {
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|     AssertCallSiteInGraph(FunctionCalls[i]);
 | |
| }
 | |
| void DSGraph::AssertAuxCallNodesInGraph() const {
 | |
|   for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|     AssertCallSiteInGraph(AuxFunctionCalls[i]);
 | |
| }
 | |
| 
 | |
| void DSGraph::AssertGraphOK() const {
 | |
|   for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
 | |
|     (*NI)->assertOK();
 | |
| 
 | |
|   for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
 | |
|          E = ScalarMap.end(); I != E; ++I) {
 | |
|     assert(!I->second.isNull() && "Null node in scalarmap!");
 | |
|     AssertNodeInGraph(I->second.getNode());
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
 | |
|       assert(I->second.getNode()->isGlobalNode() &&
 | |
|              "Global points to node, but node isn't global?");
 | |
|       AssertNodeContainsGlobal(I->second.getNode(), GV);
 | |
|     }
 | |
|   }
 | |
|   AssertCallNodesInGraph();
 | |
|   AssertAuxCallNodesInGraph();
 | |
| 
 | |
|   // Check that all pointer arguments to any functions in this graph have
 | |
|   // destinations.
 | |
|   for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(),
 | |
|          E = ReturnNodes.end();
 | |
|        RI != E; ++RI) {
 | |
|     Function &F = *RI->first;
 | |
|     for (Function::aiterator AI = F.abegin(); AI != F.aend(); ++AI)
 | |
|       if (isPointerType(AI->getType()))
 | |
|         assert(!getNodeForValue(AI).isNull() &&
 | |
|                "Pointer argument must be in the scalar map!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// computeNodeMapping - Given roots in two different DSGraphs, traverse the
 | |
| /// nodes reachable from the two graphs, computing the mapping of nodes from the
 | |
| /// first to the second graph.  This mapping may be many-to-one (i.e. the first
 | |
| /// graph may have multiple nodes representing one node in the second graph),
 | |
| /// but it will not work if there is a one-to-many or many-to-many mapping.
 | |
| ///
 | |
| void DSGraph::computeNodeMapping(const DSNodeHandle &NH1,
 | |
|                                  const DSNodeHandle &NH2, NodeMapTy &NodeMap,
 | |
|                                  bool StrictChecking) {
 | |
|   DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode();
 | |
|   if (N1 == 0 || N2 == 0) return;
 | |
| 
 | |
|   DSNodeHandle &Entry = NodeMap[N1];
 | |
|   if (!Entry.isNull()) {
 | |
|     // Termination of recursion!
 | |
|     if (StrictChecking) {
 | |
|       assert(Entry.getNode() == N2 && "Inconsistent mapping detected!");
 | |
|       assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) ||
 | |
|               Entry.getNode()->isNodeCompletelyFolded()) &&
 | |
|              "Inconsistent mapping detected!");
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   Entry.setTo(N2, NH2.getOffset()-NH1.getOffset());
 | |
| 
 | |
|   // Loop over all of the fields that N1 and N2 have in common, recursively
 | |
|   // mapping the edges together now.
 | |
|   int N2Idx = NH2.getOffset()-NH1.getOffset();
 | |
|   unsigned N2Size = N2->getSize();
 | |
|   for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (unsigned(N2Idx)+i < N2Size)
 | |
|       computeNodeMapping(N1->getLink(i), N2->getLink(N2Idx+i), NodeMap);
 | |
|     else
 | |
|       computeNodeMapping(N1->getLink(i),
 | |
|                          N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap);
 | |
| }
 |