mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-27 09:17:11 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35224 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			712 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by James M. Laskey and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a simple two pass scheduler.  The first pass attempts to push
 | |
| // backward any lengthy instructions and critical paths.  The second pass packs
 | |
| // instructions into semi-optimal time slots.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
 | |
| /// This SUnit graph is similar to the SelectionDAG, but represents flagged
 | |
| /// together nodes with a single SUnit.
 | |
| void ScheduleDAG::BuildSchedUnits() {
 | |
|   // Reserve entries in the vector for each of the SUnits we are creating.  This
 | |
|   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | |
|   // invalidated.
 | |
|   SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
 | |
|   
 | |
|   const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | |
|   
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
 | |
|        E = DAG.allnodes_end(); NI != E; ++NI) {
 | |
|     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | |
|       continue;
 | |
|     
 | |
|     // If this node has already been processed, stop now.
 | |
|     if (SUnitMap[NI]) continue;
 | |
|     
 | |
|     SUnit *NodeSUnit = NewSUnit(NI);
 | |
|     
 | |
|     // See if anything is flagged to this node, if so, add them to flagged
 | |
|     // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | |
|     // are required the be the last operand and result of a node.
 | |
|     
 | |
|     // Scan up, adding flagged preds to FlaggedNodes.
 | |
|     SDNode *N = NI;
 | |
|     if (N->getNumOperands() &&
 | |
|         N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | |
|       do {
 | |
|         N = N->getOperand(N->getNumOperands()-1).Val;
 | |
|         NodeSUnit->FlaggedNodes.push_back(N);
 | |
|         SUnitMap[N] = NodeSUnit;
 | |
|       } while (N->getNumOperands() &&
 | |
|                N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
 | |
|       std::reverse(NodeSUnit->FlaggedNodes.begin(),
 | |
|                    NodeSUnit->FlaggedNodes.end());
 | |
|     }
 | |
|     
 | |
|     // Scan down, adding this node and any flagged succs to FlaggedNodes if they
 | |
|     // have a user of the flag operand.
 | |
|     N = NI;
 | |
|     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | |
|       SDOperand FlagVal(N, N->getNumValues()-1);
 | |
|       
 | |
|       // There are either zero or one users of the Flag result.
 | |
|       bool HasFlagUse = false;
 | |
|       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | |
|            UI != E; ++UI)
 | |
|         if (FlagVal.isOperand(*UI)) {
 | |
|           HasFlagUse = true;
 | |
|           NodeSUnit->FlaggedNodes.push_back(N);
 | |
|           SUnitMap[N] = NodeSUnit;
 | |
|           N = *UI;
 | |
|           break;
 | |
|         }
 | |
|       if (!HasFlagUse) break;
 | |
|     }
 | |
|     
 | |
|     // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
 | |
|     // Update the SUnit
 | |
|     NodeSUnit->Node = N;
 | |
|     SUnitMap[N] = NodeSUnit;
 | |
|     
 | |
|     // Compute the latency for the node.  We use the sum of the latencies for
 | |
|     // all nodes flagged together into this SUnit.
 | |
|     if (InstrItins.isEmpty()) {
 | |
|       // No latency information.
 | |
|       NodeSUnit->Latency = 1;
 | |
|     } else {
 | |
|       NodeSUnit->Latency = 0;
 | |
|       if (N->isTargetOpcode()) {
 | |
|         unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
 | |
|         InstrStage *S = InstrItins.begin(SchedClass);
 | |
|         InstrStage *E = InstrItins.end(SchedClass);
 | |
|         for (; S != E; ++S)
 | |
|           NodeSUnit->Latency += S->Cycles;
 | |
|       }
 | |
|       for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
 | |
|         SDNode *FNode = NodeSUnit->FlaggedNodes[i];
 | |
|         if (FNode->isTargetOpcode()) {
 | |
|           unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
 | |
|           InstrStage *S = InstrItins.begin(SchedClass);
 | |
|           InstrStage *E = InstrItins.end(SchedClass);
 | |
|           for (; S != E; ++S)
 | |
|             NodeSUnit->Latency += S->Cycles;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Pass 2: add the preds, succs, etc.
 | |
|   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | |
|     SUnit *SU = &SUnits[su];
 | |
|     SDNode *MainNode = SU->Node;
 | |
|     
 | |
|     if (MainNode->isTargetOpcode()) {
 | |
|       unsigned Opc = MainNode->getTargetOpcode();
 | |
|       for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) {
 | |
|         if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) {
 | |
|           SU->isTwoAddress = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (TII->isCommutableInstr(Opc))
 | |
|         SU->isCommutable = true;
 | |
|     }
 | |
|     
 | |
|     // Find all predecessors and successors of the group.
 | |
|     // Temporarily add N to make code simpler.
 | |
|     SU->FlaggedNodes.push_back(MainNode);
 | |
|     
 | |
|     for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
 | |
|       SDNode *N = SU->FlaggedNodes[n];
 | |
|       
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|         SDNode *OpN = N->getOperand(i).Val;
 | |
|         if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | |
|         SUnit *OpSU = SUnitMap[OpN];
 | |
|         assert(OpSU && "Node has no SUnit!");
 | |
|         if (OpSU == SU) continue;           // In the same group.
 | |
| 
 | |
|         MVT::ValueType OpVT = N->getOperand(i).getValueType();
 | |
|         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | |
|         bool isChain = OpVT == MVT::Other;
 | |
|         
 | |
|         if (SU->addPred(OpSU, isChain)) {
 | |
|           if (!isChain) {
 | |
|             SU->NumPreds++;
 | |
|             SU->NumPredsLeft++;
 | |
|           } else {
 | |
|             SU->NumChainPredsLeft++;
 | |
|           }
 | |
|         }
 | |
|         if (OpSU->addSucc(SU, isChain)) {
 | |
|           if (!isChain) {
 | |
|             OpSU->NumSuccs++;
 | |
|             OpSU->NumSuccsLeft++;
 | |
|           } else {
 | |
|             OpSU->NumChainSuccsLeft++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Remove MainNode from FlaggedNodes again.
 | |
|     SU->FlaggedNodes.pop_back();
 | |
|   }
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static void CalculateDepths(SUnit &SU, unsigned Depth) {
 | |
|   if (SU.Depth == 0 || Depth > SU.Depth) {
 | |
|     SU.Depth = Depth;
 | |
|     for (SUnit::succ_iterator I = SU.Succs.begin(), E = SU.Succs.end();
 | |
|          I != E; ++I)
 | |
|       CalculateDepths(*I->first, Depth+1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAG::CalculateDepths() {
 | |
|   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
|   ::CalculateDepths(*Entry, 0U);
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
 | |
|     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | |
|       ::CalculateDepths(SUnits[i], 0U);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void CalculateHeights(SUnit &SU, unsigned Height) {
 | |
|   if (SU.Height == 0 || Height > SU.Height) {
 | |
|     SU.Height = Height;
 | |
|     for (SUnit::pred_iterator I = SU.Preds.begin(), E = SU.Preds.end();
 | |
|          I != E; ++I)
 | |
|       CalculateHeights(*I->first, Height+1);
 | |
|   }
 | |
| }
 | |
| void ScheduleDAG::CalculateHeights() {
 | |
|   SUnit *Root = SUnitMap[DAG.getRoot().Val];
 | |
|   ::CalculateHeights(*Root, 0U);
 | |
| }
 | |
| 
 | |
| /// CountResults - The results of target nodes have register or immediate
 | |
| /// operands first, then an optional chain, and optional flag operands (which do
 | |
| /// not go into the machine instrs.)
 | |
| unsigned ScheduleDAG::CountResults(SDNode *Node) {
 | |
|   unsigned N = Node->getNumValues();
 | |
|   while (N && Node->getValueType(N - 1) == MVT::Flag)
 | |
|     --N;
 | |
|   if (N && Node->getValueType(N - 1) == MVT::Other)
 | |
|     --N;    // Skip over chain result.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// CountOperands  The inputs to target nodes have any actual inputs first,
 | |
| /// followed by an optional chain operand, then flag operands.  Compute the
 | |
| /// number of actual operands that  will go into the machine instr.
 | |
| unsigned ScheduleDAG::CountOperands(SDNode *Node) {
 | |
|   unsigned N = Node->getNumOperands();
 | |
|   while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
 | |
|     --N;
 | |
|   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
 | |
|     --N; // Ignore chain if it exists.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| static const TargetRegisterClass *getInstrOperandRegClass(
 | |
|         const MRegisterInfo *MRI, 
 | |
|         const TargetInstrInfo *TII,
 | |
|         const TargetInstrDescriptor *II,
 | |
|         unsigned Op) {
 | |
|   if (Op >= II->numOperands) {
 | |
|     assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction");
 | |
|     return NULL;
 | |
|   }
 | |
|   const TargetOperandInfo &toi = II->OpInfo[Op];
 | |
|   return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS)
 | |
|          ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass);
 | |
| }
 | |
| 
 | |
| static unsigned CreateVirtualRegisters(const MRegisterInfo *MRI,
 | |
|                                        MachineInstr *MI,
 | |
|                                        unsigned NumResults,
 | |
|                                        SSARegMap *RegMap,
 | |
|                                        const TargetInstrInfo *TII,
 | |
|                                        const TargetInstrDescriptor &II) {
 | |
|   // Create the result registers for this node and add the result regs to
 | |
|   // the machine instruction.
 | |
|   unsigned ResultReg =
 | |
|     RegMap->createVirtualRegister(getInstrOperandRegClass(MRI, TII, &II, 0));
 | |
|   MI->addRegOperand(ResultReg, true);
 | |
|   for (unsigned i = 1; i != NumResults; ++i) {
 | |
|     const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i);
 | |
|     assert(RC && "Isn't a register operand!");
 | |
|     MI->addRegOperand(RegMap->createVirtualRegister(RC), true);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| /// getVR - Return the virtual register corresponding to the specified result
 | |
| /// of the specified node.
 | |
| static unsigned getVR(SDOperand Op, DenseMap<SDNode*, unsigned> &VRBaseMap) {
 | |
|   DenseMap<SDNode*, unsigned>::iterator I = VRBaseMap.find(Op.Val);
 | |
|   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
 | |
|   return I->second + Op.ResNo;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddOperand - Add the specified operand to the specified machine instr.  II
 | |
| /// specifies the instruction information for the node, and IIOpNum is the
 | |
| /// operand number (in the II) that we are adding. IIOpNum and II are used for 
 | |
| /// assertions only.
 | |
| void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
 | |
|                              unsigned IIOpNum,
 | |
|                              const TargetInstrDescriptor *II,
 | |
|                              DenseMap<SDNode*, unsigned> &VRBaseMap) {
 | |
|   if (Op.isTargetOpcode()) {
 | |
|     // Note that this case is redundant with the final else block, but we
 | |
|     // include it because it is the most common and it makes the logic
 | |
|     // simpler here.
 | |
|     assert(Op.getValueType() != MVT::Other &&
 | |
|            Op.getValueType() != MVT::Flag &&
 | |
|            "Chain and flag operands should occur at end of operand list!");
 | |
|     
 | |
|     // Get/emit the operand.
 | |
|     unsigned VReg = getVR(Op, VRBaseMap);
 | |
|     MI->addRegOperand(VReg, false);
 | |
|     
 | |
|     // Verify that it is right.
 | |
|     assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | |
|     if (II) {
 | |
|       const TargetRegisterClass *RC =
 | |
|                           getInstrOperandRegClass(MRI, TII, II, IIOpNum);
 | |
|       assert(RC && "Don't have operand info for this instruction!");
 | |
|       const TargetRegisterClass *VRC = RegMap->getRegClass(VReg);
 | |
|       if (VRC != RC) {
 | |
|         cerr << "Register class of operand and regclass of use don't agree!\n";
 | |
| #ifndef NDEBUG
 | |
|         cerr << "Operand = " << IIOpNum << "\n";
 | |
|         cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n";
 | |
|         cerr << "MI = "; MI->print(cerr);
 | |
|         cerr << "VReg = " << VReg << "\n";
 | |
|         cerr << "VReg RegClass     size = " << VRC->getSize()
 | |
|              << ", align = " << VRC->getAlignment() << "\n";
 | |
|         cerr << "Expected RegClass size = " << RC->getSize()
 | |
|              << ", align = " << RC->getAlignment() << "\n";
 | |
| #endif
 | |
|         cerr << "Fatal error, aborting.\n";
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *C =
 | |
|              dyn_cast<ConstantSDNode>(Op)) {
 | |
|     MI->addImmOperand(C->getValue());
 | |
|   } else if (RegisterSDNode *R =
 | |
|              dyn_cast<RegisterSDNode>(Op)) {
 | |
|     MI->addRegOperand(R->getReg(), false);
 | |
|   } else if (GlobalAddressSDNode *TGA =
 | |
|              dyn_cast<GlobalAddressSDNode>(Op)) {
 | |
|     MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset());
 | |
|   } else if (BasicBlockSDNode *BB =
 | |
|              dyn_cast<BasicBlockSDNode>(Op)) {
 | |
|     MI->addMachineBasicBlockOperand(BB->getBasicBlock());
 | |
|   } else if (FrameIndexSDNode *FI =
 | |
|              dyn_cast<FrameIndexSDNode>(Op)) {
 | |
|     MI->addFrameIndexOperand(FI->getIndex());
 | |
|   } else if (JumpTableSDNode *JT =
 | |
|              dyn_cast<JumpTableSDNode>(Op)) {
 | |
|     MI->addJumpTableIndexOperand(JT->getIndex());
 | |
|   } else if (ConstantPoolSDNode *CP = 
 | |
|              dyn_cast<ConstantPoolSDNode>(Op)) {
 | |
|     int Offset = CP->getOffset();
 | |
|     unsigned Align = CP->getAlignment();
 | |
|     const Type *Type = CP->getType();
 | |
|     // MachineConstantPool wants an explicit alignment.
 | |
|     if (Align == 0) {
 | |
|       Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
 | |
|       if (Align == 0) {
 | |
|         // Alignment of vector types.  FIXME!
 | |
|         Align = TM.getTargetData()->getTypeSize(Type);
 | |
|         Align = Log2_64(Align);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     unsigned Idx;
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
 | |
|     else
 | |
|       Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
 | |
|     MI->addConstantPoolIndexOperand(Idx, Offset);
 | |
|   } else if (ExternalSymbolSDNode *ES = 
 | |
|              dyn_cast<ExternalSymbolSDNode>(Op)) {
 | |
|     MI->addExternalSymbolOperand(ES->getSymbol());
 | |
|   } else {
 | |
|     assert(Op.getValueType() != MVT::Other &&
 | |
|            Op.getValueType() != MVT::Flag &&
 | |
|            "Chain and flag operands should occur at end of operand list!");
 | |
|     unsigned VReg = getVR(Op, VRBaseMap);
 | |
|     MI->addRegOperand(VReg, false);
 | |
|     
 | |
|     // Verify that it is right.
 | |
|     assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | |
|     if (II) {
 | |
|       const TargetRegisterClass *RC =
 | |
|                             getInstrOperandRegClass(MRI, TII, II, IIOpNum);
 | |
|       assert(RC && "Don't have operand info for this instruction!");
 | |
|       assert(RegMap->getRegClass(VReg) == RC &&
 | |
|              "Register class of operand and regclass of use don't agree!");
 | |
|     }
 | |
|   }
 | |
|   
 | |
| }
 | |
| 
 | |
| // Returns the Register Class of a physical register
 | |
| static const TargetRegisterClass *getPhysicalRegisterRegClass(
 | |
|         const MRegisterInfo *MRI,
 | |
|         MVT::ValueType VT,
 | |
|         unsigned reg) {
 | |
|   assert(MRegisterInfo::isPhysicalRegister(reg) &&
 | |
|          "reg must be a physical register");
 | |
|   // Pick the register class of the right type that contains this physreg.
 | |
|   for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
 | |
|          E = MRI->regclass_end(); I != E; ++I)
 | |
|     if ((*I)->hasType(VT) && (*I)->contains(reg))
 | |
|       return *I;
 | |
|   assert(false && "Couldn't find the register class");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// EmitNode - Generate machine code for an node and needed dependencies.
 | |
| ///
 | |
| void ScheduleDAG::EmitNode(SDNode *Node, 
 | |
|                            DenseMap<SDNode*, unsigned> &VRBaseMap) {
 | |
|   unsigned VRBase = 0;                 // First virtual register for node
 | |
|   
 | |
|   // If machine instruction
 | |
|   if (Node->isTargetOpcode()) {
 | |
|     unsigned Opc = Node->getTargetOpcode();
 | |
|     const TargetInstrDescriptor &II = TII->get(Opc);
 | |
| 
 | |
|     unsigned NumResults = CountResults(Node);
 | |
|     unsigned NodeOperands = CountOperands(Node);
 | |
|     unsigned NumMIOperands = NodeOperands + NumResults;
 | |
| #ifndef NDEBUG
 | |
|     assert((unsigned(II.numOperands) == NumMIOperands ||
 | |
|             (II.Flags & M_VARIABLE_OPS)) &&
 | |
|            "#operands for dag node doesn't match .td file!"); 
 | |
| #endif
 | |
| 
 | |
|     // Create the new machine instruction.
 | |
|     MachineInstr *MI = new MachineInstr(II);
 | |
|     
 | |
|     // Add result register values for things that are defined by this
 | |
|     // instruction.
 | |
|     
 | |
|     // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|     // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|     if (NumResults == 1) {
 | |
|       for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | |
|            UI != E; ++UI) {
 | |
|         SDNode *Use = *UI;
 | |
|         if (Use->getOpcode() == ISD::CopyToReg && 
 | |
|             Use->getOperand(2).Val == Node) {
 | |
|           unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | |
|           if (MRegisterInfo::isVirtualRegister(Reg)) {
 | |
|             VRBase = Reg;
 | |
|             MI->addRegOperand(Reg, true);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Otherwise, create new virtual registers.
 | |
|     if (NumResults && VRBase == 0)
 | |
|       VRBase = CreateVirtualRegisters(MRI, MI, NumResults, RegMap, TII, II);
 | |
|     
 | |
|     // Emit all of the actual operands of this instruction, adding them to the
 | |
|     // instruction as appropriate.
 | |
|     for (unsigned i = 0; i != NodeOperands; ++i)
 | |
|       AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap);
 | |
| 
 | |
|     // Commute node if it has been determined to be profitable.
 | |
|     if (CommuteSet.count(Node)) {
 | |
|       MachineInstr *NewMI = TII->commuteInstruction(MI);
 | |
|       if (NewMI == 0)
 | |
|         DOUT << "Sched: COMMUTING FAILED!\n";
 | |
|       else {
 | |
|         DOUT << "Sched: COMMUTED TO: " << *NewMI;
 | |
|         if (MI != NewMI) {
 | |
|           delete MI;
 | |
|           MI = NewMI;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have emitted all operands, emit this instruction itself.
 | |
|     if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
 | |
|       BB->insert(BB->end(), MI);
 | |
|     } else {
 | |
|       // Insert this instruction into the end of the basic block, potentially
 | |
|       // taking some custom action.
 | |
|       BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
 | |
|     }
 | |
|   } else {
 | |
|     switch (Node->getOpcode()) {
 | |
|     default:
 | |
| #ifndef NDEBUG
 | |
|       Node->dump();
 | |
| #endif
 | |
|       assert(0 && "This target-independent node should have been selected!");
 | |
|     case ISD::EntryToken: // fall thru
 | |
|     case ISD::TokenFactor:
 | |
|     case ISD::LABEL:
 | |
|       break;
 | |
|     case ISD::CopyToReg: {
 | |
|       unsigned InReg;
 | |
|       if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(2)))
 | |
|         InReg = R->getReg();
 | |
|       else
 | |
|         InReg = getVR(Node->getOperand(2), VRBaseMap);
 | |
|       unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|       if (InReg != DestReg)  {// Coalesced away the copy?
 | |
|         const TargetRegisterClass *TRC = 0;
 | |
|         // Get the target register class
 | |
|         if (MRegisterInfo::isVirtualRegister(InReg))
 | |
|           TRC = RegMap->getRegClass(InReg);
 | |
|         else
 | |
|           TRC = getPhysicalRegisterRegClass(MRI,
 | |
|                                             Node->getOperand(2).getValueType(),
 | |
|                                             InReg);
 | |
|         MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, TRC);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ISD::CopyFromReg: {
 | |
|       unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|       if (MRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|         VRBase = SrcReg;  // Just use the input register directly!
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|       // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|       for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | |
|            UI != E; ++UI) {
 | |
|         SDNode *Use = *UI;
 | |
|         if (Use->getOpcode() == ISD::CopyToReg && 
 | |
|             Use->getOperand(2).Val == Node) {
 | |
|           unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | |
|           if (MRegisterInfo::isVirtualRegister(DestReg)) {
 | |
|             VRBase = DestReg;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Figure out the register class to create for the destreg.
 | |
|       const TargetRegisterClass *TRC = 0;
 | |
|       if (VRBase) {
 | |
|         TRC = RegMap->getRegClass(VRBase);
 | |
|       } else {
 | |
|         TRC = getPhysicalRegisterRegClass(MRI, Node->getValueType(0), SrcReg);
 | |
| 
 | |
|         // Create the reg, emit the copy.
 | |
|         VRBase = RegMap->createVirtualRegister(TRC);
 | |
|       }
 | |
|       MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::INLINEASM: {
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
 | |
|         --NumOps;  // Ignore the flag operand.
 | |
|       
 | |
|       // Create the inline asm machine instruction.
 | |
|       MachineInstr *MI =
 | |
|         new MachineInstr(BB, TII->get(TargetInstrInfo::INLINEASM));
 | |
| 
 | |
|       // Add the asm string as an external symbol operand.
 | |
|       const char *AsmStr =
 | |
|         cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
 | |
|       MI->addExternalSymbolOperand(AsmStr);
 | |
|       
 | |
|       // Add all of the operand registers to the instruction.
 | |
|       for (unsigned i = 2; i != NumOps;) {
 | |
|         unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
 | |
|         unsigned NumVals = Flags >> 3;
 | |
|         
 | |
|         MI->addImmOperand(Flags);
 | |
|         ++i;  // Skip the ID value.
 | |
|         
 | |
|         switch (Flags & 7) {
 | |
|         default: assert(0 && "Bad flags!");
 | |
|         case 1:  // Use of register.
 | |
|           for (; NumVals; --NumVals, ++i) {
 | |
|             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|             MI->addRegOperand(Reg, false);
 | |
|           }
 | |
|           break;
 | |
|         case 2:   // Def of register.
 | |
|           for (; NumVals; --NumVals, ++i) {
 | |
|             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|             MI->addRegOperand(Reg, true);
 | |
|           }
 | |
|           break;
 | |
|         case 3: { // Immediate.
 | |
|           assert(NumVals == 1 && "Unknown immediate value!");
 | |
|           if (ConstantSDNode *CS=dyn_cast<ConstantSDNode>(Node->getOperand(i))){
 | |
|             MI->addImmOperand(CS->getValue());
 | |
|           } else {
 | |
|             GlobalAddressSDNode *GA = 
 | |
|               cast<GlobalAddressSDNode>(Node->getOperand(i));
 | |
|             MI->addGlobalAddressOperand(GA->getGlobal(), GA->getOffset());
 | |
|           }
 | |
|           ++i;
 | |
|           break;
 | |
|         }
 | |
|         case 4:  // Addressing mode.
 | |
|           // The addressing mode has been selected, just add all of the
 | |
|           // operands to the machine instruction.
 | |
|           for (; NumVals; --NumVals, ++i)
 | |
|             AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!VRBaseMap.count(Node) && "Node emitted out of order - early");
 | |
|   VRBaseMap[Node] = VRBase;
 | |
| }
 | |
| 
 | |
| void ScheduleDAG::EmitNoop() {
 | |
|   TII->insertNoop(*BB, BB->end());
 | |
| }
 | |
| 
 | |
| /// EmitSchedule - Emit the machine code in scheduled order.
 | |
| void ScheduleDAG::EmitSchedule() {
 | |
|   // If this is the first basic block in the function, and if it has live ins
 | |
|   // that need to be copied into vregs, emit the copies into the top of the
 | |
|   // block before emitting the code for the block.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
 | |
|     for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | |
|          E = MF.livein_end(); LI != E; ++LI)
 | |
|       if (LI->second)
 | |
|         MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
 | |
|                           LI->first, RegMap->getRegClass(LI->second));
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Finally, emit the code for all of the scheduled instructions.
 | |
|   DenseMap<SDNode*, unsigned> VRBaseMap;
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i]) {
 | |
|       for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
 | |
|         EmitNode(SU->FlaggedNodes[j], VRBaseMap);
 | |
|       EmitNode(SU->Node, VRBaseMap);
 | |
|     } else {
 | |
|       // Null SUnit* is a noop.
 | |
|       EmitNoop();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dump - dump the schedule.
 | |
| void ScheduleDAG::dumpSchedule() const {
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i])
 | |
|       SU->dump(&DAG);
 | |
|     else
 | |
|       cerr << "**** NOOP ****\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Run - perform scheduling.
 | |
| ///
 | |
| MachineBasicBlock *ScheduleDAG::Run() {
 | |
|   TII = TM.getInstrInfo();
 | |
|   MRI = TM.getRegisterInfo();
 | |
|   RegMap = BB->getParent()->getSSARegMap();
 | |
|   ConstPool = BB->getParent()->getConstantPool();
 | |
| 
 | |
|   Schedule();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | |
| /// a group of nodes flagged together.
 | |
| void SUnit::dump(const SelectionDAG *G) const {
 | |
|   cerr << "SU(" << NodeNum << "): ";
 | |
|   Node->dump(G);
 | |
|   cerr << "\n";
 | |
|   if (FlaggedNodes.size() != 0) {
 | |
|     for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
 | |
|       cerr << "    ";
 | |
|       FlaggedNodes[i]->dump(G);
 | |
|       cerr << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SUnit::dumpAll(const SelectionDAG *G) const {
 | |
|   dump(G);
 | |
| 
 | |
|   cerr << "  # preds left       : " << NumPredsLeft << "\n";
 | |
|   cerr << "  # succs left       : " << NumSuccsLeft << "\n";
 | |
|   cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
 | |
|   cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
 | |
|   cerr << "  Latency            : " << Latency << "\n";
 | |
|   cerr << "  Depth              : " << Depth << "\n";
 | |
|   cerr << "  Height             : " << Height << "\n";
 | |
| 
 | |
|   if (Preds.size() != 0) {
 | |
|     cerr << "  Predecessors:\n";
 | |
|     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second)
 | |
|         cerr << "   ch  #";
 | |
|       else
 | |
|         cerr << "   val #";
 | |
|       cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
 | |
|     }
 | |
|   }
 | |
|   if (Succs.size() != 0) {
 | |
|     cerr << "  Successors:\n";
 | |
|     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second)
 | |
|         cerr << "   ch  #";
 | |
|       else
 | |
|         cerr << "   val #";
 | |
|       cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
 | |
|     }
 | |
|   }
 | |
|   cerr << "\n";
 | |
| }
 |