Andrew Kaylor 8e9ec01534 Adding multiple module support for MCJIT.
Tests to follow.

PIC with small code model and  EH frame handling will not work with multiple modules.  There are also some rough edges to be smoothed out for remote target support.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191722 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-01 01:47:35 +00:00

533 lines
17 KiB
C++

//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine *MCJIT::createJIT(Module *M,
std::string *ErrorStr,
RTDyldMemoryManager *MemMgr,
bool GVsWithCode,
TargetMachine *TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(),
GVsWithCode);
}
MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(this, MM), Dyld(&MemMgr),
ObjCache(0) {
ModuleStates[m] = ModuleAdded;
setDataLayout(TM->getDataLayout());
}
MCJIT::~MCJIT() {
LoadedObjectMap::iterator it, end = LoadedObjects.end();
for (it = LoadedObjects.begin(); it != end; ++it) {
ObjectImage *Obj = it->second;
if (Obj) {
NotifyFreeingObject(*Obj);
delete Obj;
}
}
LoadedObjects.clear();
delete TM;
}
void MCJIT::addModule(Module *M) {
Modules.push_back(M);
ModuleStates[M] = MCJITModuleState();
}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
ObjCache = NewCache;
}
ObjectBufferStream* MCJIT::emitObject(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
// Get a thread lock to make sure we aren't trying to compile multiple times
MutexGuard locked(lock);
// Re-compilation is not supported
assert(!ModuleStates[M].hasBeenEmitted());
PassManager PM;
PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
CompiledObject->flush();
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
ObjCache->notifyObjectCompiled(M, MB.get());
}
return CompiledObject.take();
}
void MCJIT::generateCodeForModule(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// Re-compilation is not supported
if (ModuleStates[M].hasBeenLoaded())
return;
OwningPtr<ObjectBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (0 != ObjCache) {
OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
if (0 != PreCompiledObject.get())
ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
}
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad.reset(emitObject(M));
assert(ObjectToLoad.get() && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects map).
ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take());
LoadedObjects[M] = LoadedObject;
if (!LoadedObject)
report_fatal_error(Dyld.getErrorString());
// FIXME: Make this optional, maybe even move it to a JIT event listener
LoadedObject->registerWithDebugger();
NotifyObjectEmitted(*LoadedObject);
ModuleStates[M] = ModuleLoaded;
}
void MCJIT::finalizeLoadedModules() {
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// Register EH frame data for any module we own which has been loaded
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenLoaded() &&
!ModuleStates[M].hasBeenFinalized()) {
// FIXME: This should be module specific!
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
ModuleStates[M] = ModuleFinalized;
}
}
// Set page permissions.
MemMgr.finalizeMemory();
}
// FIXME: Rename this.
void MCJIT::finalizeObject() {
// FIXME: This is a temporary hack to get around problems with calling
// finalize multiple times.
bool finalizeNeeded = false;
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (!ModuleStates[M].hasBeenFinalized())
finalizeNeeded = true;
// I don't really like this, but the C API depends on this behavior.
// I suppose it's OK for a deprecated function.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
}
if (!finalizeNeeded)
return;
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// Register EH frame data for any module we own which has been loaded
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenLoaded() &&
!ModuleStates[M].hasBeenFinalized()) {
// FIXME: This should be module specific!
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
ModuleStates[M] = ModuleFinalized;
}
}
// Set page permissions.
MemMgr.finalizeMemory();
}
void MCJIT::finalizeModule(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenFinalized())
return;
// If the module hasn't been compiled, just do that.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// FIXME: Should this be module specific?
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
// Set page permissions.
MemMgr.finalizeMemory();
ModuleStates[M] = ModuleFinalized;
}
void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
report_fatal_error("not yet implemented");
}
uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
// Check with the RuntimeDyld to see if we already have this symbol.
if (Name[0] == '\1')
return Dyld.getSymbolLoadAddress(Name.substr(1));
return Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ Name));
}
Module *MCJIT::findModuleForSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
// If it hasn't already been generated, see if it's in one of our modules.
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
Function *F = M->getFunction(Name);
if (F && !F->empty())
return M;
if (!CheckFunctionsOnly) {
GlobalVariable *G = M->getGlobalVariable(Name);
if (G)
return M;
// FIXME: Do we need to worry about global aliases?
}
}
// We didn't find the symbol in any of our modules.
return NULL;
}
uint64_t MCJIT::getSymbolAddress(const std::string &Name,
bool CheckFunctionsOnly)
{
// First, check to see if we already have this symbol.
uint64_t Addr = getExistingSymbolAddress(Name);
if (Addr)
return Addr;
// If it hasn't already been generated, see if it's in one of our modules.
Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
if (!M)
return 0;
// If this is in one of our modules, generate code for that module.
assert(ModuleStates.find(M) != ModuleStates.end());
// If the module code has already been generated, we won't find the symbol.
if (ModuleStates[M].hasBeenLoaded())
return 0;
// FIXME: We probably need to make sure we aren't in the process of
// loading or finalizing this module.
generateCodeForModule(M);
// Check the RuntimeDyld table again, it should be there now.
return getExistingSymbolAddress(Name);
}
uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
uint64_t Result = getSymbolAddress(Name, false);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
uint64_t Result = getSymbolAddress(Name, true);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
// Deprecated. Use getFunctionAddress instead.
void *MCJIT::getPointerToFunction(Function *F) {
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
addGlobalMapping(F, Addr);
return Addr;
}
// If this function doesn't belong to one of our modules, we're done.
Module *M = F->getParent();
if (std::find(Modules.begin(), Modules.end(), M) == Modules.end())
return NULL;
assert(ModuleStates.find(M) != ModuleStates.end());
// Make sure the relevant module has been compiled and loaded.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
// FIXME: Should the Dyld be retaining module information? Probably not.
// FIXME: Should we be using the mangler for this? Probably.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
StringRef BaseName = F->getName();
if (BaseName[0] == '\1')
return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1));
return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ BaseName).str());
}
void *MCJIT::recompileAndRelinkFunction(Function *F) {
report_fatal_error("not yet implemented");
}
void MCJIT::freeMachineCodeForFunction(Function *F) {
report_fatal_error("not yet implemented");
}
GenericValue MCJIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
FunctionType *FTy = F->getFunctionType();
Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
llvm_unreachable("Full-featured argument passing not supported yet!");
}
void *MCJIT::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
if (!isSymbolSearchingDisabled()) {
void *ptr = MemMgr.getPointerToNamedFunction(Name, false);
if (ptr)
return ptr;
}
/// If a LazyFunctionCreator is installed, use it to get/create the function.
if (LazyFunctionCreator)
if (void *RP = LazyFunctionCreator(Name))
return RP;
if (AbortOnFailure) {
report_fatal_error("Program used external function '"+Name+
"' which could not be resolved!");
}
return 0;
}
void MCJIT::RegisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
SmallVector<JITEventListener*, 2>::reverse_iterator I=
std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj);
}
}
void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyFreeingObject(Obj);
}
}
uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
uint64_t Result = ParentEngine->getSymbolAddress(Name, false);
if (Result)
return Result;
return ClientMM->getSymbolAddress(Name);
}