mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	utils/sort_includes.py. I clearly haven't done this in a while, so more changed than usual. This even uncovered a missing include from the InstrProf library that I've added. No functionality changed here, just mechanical cleanup of the include order. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			323 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of some scaled number algorithms.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/ScaledNumber.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::ScaledNumbers;
 | |
| 
 | |
| std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
 | |
|                                                        uint64_t RHS) {
 | |
|   // Separate into two 32-bit digits (U.L).
 | |
|   auto getU = [](uint64_t N) { return N >> 32; };
 | |
|   auto getL = [](uint64_t N) { return N & UINT32_MAX; };
 | |
|   uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
 | |
| 
 | |
|   // Compute cross products.
 | |
|   uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
 | |
| 
 | |
|   // Sum into two 64-bit digits.
 | |
|   uint64_t Upper = P1, Lower = P4;
 | |
|   auto addWithCarry = [&](uint64_t N) {
 | |
|     uint64_t NewLower = Lower + (getL(N) << 32);
 | |
|     Upper += getU(N) + (NewLower < Lower);
 | |
|     Lower = NewLower;
 | |
|   };
 | |
|   addWithCarry(P2);
 | |
|   addWithCarry(P3);
 | |
| 
 | |
|   // Check whether the upper digit is empty.
 | |
|   if (!Upper)
 | |
|     return std::make_pair(Lower, 0);
 | |
| 
 | |
|   // Shift as little as possible to maximize precision.
 | |
|   unsigned LeadingZeros = countLeadingZeros(Upper);
 | |
|   int Shift = 64 - LeadingZeros;
 | |
|   if (LeadingZeros)
 | |
|     Upper = Upper << LeadingZeros | Lower >> Shift;
 | |
|   return getRounded(Upper, Shift,
 | |
|                     Shift && (Lower & UINT64_C(1) << (Shift - 1)));
 | |
| }
 | |
| 
 | |
| static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
 | |
| 
 | |
| std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
 | |
|                                                      uint32_t Divisor) {
 | |
|   assert(Dividend && "expected non-zero dividend");
 | |
|   assert(Divisor && "expected non-zero divisor");
 | |
| 
 | |
|   // Use 64-bit math and canonicalize the dividend to gain precision.
 | |
|   uint64_t Dividend64 = Dividend;
 | |
|   int Shift = 0;
 | |
|   if (int Zeros = countLeadingZeros(Dividend64)) {
 | |
|     Shift -= Zeros;
 | |
|     Dividend64 <<= Zeros;
 | |
|   }
 | |
|   uint64_t Quotient = Dividend64 / Divisor;
 | |
|   uint64_t Remainder = Dividend64 % Divisor;
 | |
| 
 | |
|   // If Quotient needs to be shifted, leave the rounding to getAdjusted().
 | |
|   if (Quotient > UINT32_MAX)
 | |
|     return getAdjusted<uint32_t>(Quotient, Shift);
 | |
| 
 | |
|   // Round based on the value of the next bit.
 | |
|   return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
 | |
| }
 | |
| 
 | |
| std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
 | |
|                                                      uint64_t Divisor) {
 | |
|   assert(Dividend && "expected non-zero dividend");
 | |
|   assert(Divisor && "expected non-zero divisor");
 | |
| 
 | |
|   // Minimize size of divisor.
 | |
|   int Shift = 0;
 | |
|   if (int Zeros = countTrailingZeros(Divisor)) {
 | |
|     Shift -= Zeros;
 | |
|     Divisor >>= Zeros;
 | |
|   }
 | |
| 
 | |
|   // Check for powers of two.
 | |
|   if (Divisor == 1)
 | |
|     return std::make_pair(Dividend, Shift);
 | |
| 
 | |
|   // Maximize size of dividend.
 | |
|   if (int Zeros = countLeadingZeros(Dividend)) {
 | |
|     Shift -= Zeros;
 | |
|     Dividend <<= Zeros;
 | |
|   }
 | |
| 
 | |
|   // Start with the result of a divide.
 | |
|   uint64_t Quotient = Dividend / Divisor;
 | |
|   Dividend %= Divisor;
 | |
| 
 | |
|   // Continue building the quotient with long division.
 | |
|   while (!(Quotient >> 63) && Dividend) {
 | |
|     // Shift Dividend and check for overflow.
 | |
|     bool IsOverflow = Dividend >> 63;
 | |
|     Dividend <<= 1;
 | |
|     --Shift;
 | |
| 
 | |
|     // Get the next bit of Quotient.
 | |
|     Quotient <<= 1;
 | |
|     if (IsOverflow || Divisor <= Dividend) {
 | |
|       Quotient |= 1;
 | |
|       Dividend -= Divisor;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
 | |
| }
 | |
| 
 | |
| int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
 | |
|   assert(ScaleDiff >= 0 && "wrong argument order");
 | |
|   assert(ScaleDiff < 64 && "numbers too far apart");
 | |
| 
 | |
|   uint64_t L_adjusted = L >> ScaleDiff;
 | |
|   if (L_adjusted < R)
 | |
|     return -1;
 | |
|   if (L_adjusted > R)
 | |
|     return 1;
 | |
| 
 | |
|   return L > L_adjusted << ScaleDiff ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void appendDigit(std::string &Str, unsigned D) {
 | |
|   assert(D < 10);
 | |
|   Str += '0' + D % 10;
 | |
| }
 | |
| 
 | |
| static void appendNumber(std::string &Str, uint64_t N) {
 | |
|   while (N) {
 | |
|     appendDigit(Str, N % 10);
 | |
|     N /= 10;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool doesRoundUp(char Digit) {
 | |
|   switch (Digit) {
 | |
|   case '5':
 | |
|   case '6':
 | |
|   case '7':
 | |
|   case '8':
 | |
|   case '9':
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
 | |
|   assert(E >= ScaledNumbers::MinScale);
 | |
|   assert(E <= ScaledNumbers::MaxScale);
 | |
| 
 | |
|   // Find a new E, but don't let it increase past MaxScale.
 | |
|   int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
 | |
|   int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
 | |
|   int Shift = 63 - (NewE - E);
 | |
|   assert(Shift <= LeadingZeros);
 | |
|   assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
 | |
|   assert(Shift >= 0 && Shift < 64 && "undefined behavior");
 | |
|   D <<= Shift;
 | |
|   E = NewE;
 | |
| 
 | |
|   // Check for a denormal.
 | |
|   unsigned AdjustedE = E + 16383;
 | |
|   if (!(D >> 63)) {
 | |
|     assert(E == ScaledNumbers::MaxScale);
 | |
|     AdjustedE = 0;
 | |
|   }
 | |
| 
 | |
|   // Build the float and print it.
 | |
|   uint64_t RawBits[2] = {D, AdjustedE};
 | |
|   APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
 | |
|   SmallVector<char, 24> Chars;
 | |
|   Float.toString(Chars, Precision, 0);
 | |
|   return std::string(Chars.begin(), Chars.end());
 | |
| }
 | |
| 
 | |
| static std::string stripTrailingZeros(const std::string &Float) {
 | |
|   size_t NonZero = Float.find_last_not_of('0');
 | |
|   assert(NonZero != std::string::npos && "no . in floating point string");
 | |
| 
 | |
|   if (Float[NonZero] == '.')
 | |
|     ++NonZero;
 | |
| 
 | |
|   return Float.substr(0, NonZero + 1);
 | |
| }
 | |
| 
 | |
| std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
 | |
|                                        unsigned Precision) {
 | |
|   if (!D)
 | |
|     return "0.0";
 | |
| 
 | |
|   // Canonicalize exponent and digits.
 | |
|   uint64_t Above0 = 0;
 | |
|   uint64_t Below0 = 0;
 | |
|   uint64_t Extra = 0;
 | |
|   int ExtraShift = 0;
 | |
|   if (E == 0) {
 | |
|     Above0 = D;
 | |
|   } else if (E > 0) {
 | |
|     if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
 | |
|       D <<= Shift;
 | |
|       E -= Shift;
 | |
| 
 | |
|       if (!E)
 | |
|         Above0 = D;
 | |
|     }
 | |
|   } else if (E > -64) {
 | |
|     Above0 = D >> -E;
 | |
|     Below0 = D << (64 + E);
 | |
|   } else if (E == -64) {
 | |
|     // Special case: shift by 64 bits is undefined behavior.
 | |
|     Below0 = D;
 | |
|   } else if (E > -120) {
 | |
|     Below0 = D >> (-E - 64);
 | |
|     Extra = D << (128 + E);
 | |
|     ExtraShift = -64 - E;
 | |
|   }
 | |
| 
 | |
|   // Fall back on APFloat for very small and very large numbers.
 | |
|   if (!Above0 && !Below0)
 | |
|     return toStringAPFloat(D, E, Precision);
 | |
| 
 | |
|   // Append the digits before the decimal.
 | |
|   std::string Str;
 | |
|   size_t DigitsOut = 0;
 | |
|   if (Above0) {
 | |
|     appendNumber(Str, Above0);
 | |
|     DigitsOut = Str.size();
 | |
|   } else
 | |
|     appendDigit(Str, 0);
 | |
|   std::reverse(Str.begin(), Str.end());
 | |
| 
 | |
|   // Return early if there's nothing after the decimal.
 | |
|   if (!Below0)
 | |
|     return Str + ".0";
 | |
| 
 | |
|   // Append the decimal and beyond.
 | |
|   Str += '.';
 | |
|   uint64_t Error = UINT64_C(1) << (64 - Width);
 | |
| 
 | |
|   // We need to shift Below0 to the right to make space for calculating
 | |
|   // digits.  Save the precision we're losing in Extra.
 | |
|   Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
 | |
|   Below0 >>= 4;
 | |
|   size_t SinceDot = 0;
 | |
|   size_t AfterDot = Str.size();
 | |
|   do {
 | |
|     if (ExtraShift) {
 | |
|       --ExtraShift;
 | |
|       Error *= 5;
 | |
|     } else
 | |
|       Error *= 10;
 | |
| 
 | |
|     Below0 *= 10;
 | |
|     Extra *= 10;
 | |
|     Below0 += (Extra >> 60);
 | |
|     Extra = Extra & (UINT64_MAX >> 4);
 | |
|     appendDigit(Str, Below0 >> 60);
 | |
|     Below0 = Below0 & (UINT64_MAX >> 4);
 | |
|     if (DigitsOut || Str.back() != '0')
 | |
|       ++DigitsOut;
 | |
|     ++SinceDot;
 | |
|   } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
 | |
|            (!Precision || DigitsOut <= Precision || SinceDot < 2));
 | |
| 
 | |
|   // Return early for maximum precision.
 | |
|   if (!Precision || DigitsOut <= Precision)
 | |
|     return stripTrailingZeros(Str);
 | |
| 
 | |
|   // Find where to truncate.
 | |
|   size_t Truncate =
 | |
|       std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
 | |
| 
 | |
|   // Check if there's anything to truncate.
 | |
|   if (Truncate >= Str.size())
 | |
|     return stripTrailingZeros(Str);
 | |
| 
 | |
|   bool Carry = doesRoundUp(Str[Truncate]);
 | |
|   if (!Carry)
 | |
|     return stripTrailingZeros(Str.substr(0, Truncate));
 | |
| 
 | |
|   // Round with the first truncated digit.
 | |
|   for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
 | |
|        I != E; ++I) {
 | |
|     if (*I == '.')
 | |
|       continue;
 | |
|     if (*I == '9') {
 | |
|       *I = '0';
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++*I;
 | |
|     Carry = false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Add "1" in front if we still need to carry.
 | |
|   return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
 | |
| }
 | |
| 
 | |
| raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
 | |
|                                      int Width, unsigned Precision) {
 | |
|   return OS << toString(D, E, Width, Precision);
 | |
| }
 | |
| 
 | |
| void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
 | |
|   print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
 | |
|                                 << "]";
 | |
| }
 |