mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	are the same as in unpacked structs, only field positions differ. This only matters for structs containing x86 long double or an apint; it may cause backwards compatibility problems if someone has bitcode containing a packed struct with a field of one of those types. The issue is that only 10 bytes are needed to hold an x86 long double: the store size is 10 bytes, but the ABI size is 12 or 16 bytes (linux/ darwin) which comes from rounding the store size up by the alignment. Because it seemed silly not to pack an x86 long double into 10 bytes in a packed struct, this is what was done. I now think this was a mistake. Reserving the ABI size for an x86 long double field even in a packed struct makes things more uniform: the ABI size is now always used when reserving space for a type. This means that developers are less likely to make mistakes. It also makes life easier for the CBE which otherwise could not represent all LLVM packed structs (PR2402). Front-end people might need to adjust the way they create LLVM structs - see following change to llvm-gcc. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51928 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1448 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1448 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the AsmPrinter class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/Collector.h"
 | |
| #include "llvm/CodeGen/CollectorMetadata.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/Target/TargetAsmInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <cerrno>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AsmVerbose("asm-verbose", cl::Hidden, cl::desc("Add comments to directives."));
 | |
| 
 | |
| char AsmPrinter::ID = 0;
 | |
| AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm,
 | |
|                        const TargetAsmInfo *T)
 | |
|   : MachineFunctionPass((intptr_t)&ID), FunctionNumber(0), O(o),
 | |
|     TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
 | |
|     IsInTextSection(false)
 | |
| {}
 | |
| 
 | |
| std::string AsmPrinter::getSectionForFunction(const Function &F) const {
 | |
|   return TAI->getTextSection();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SwitchToTextSection - Switch to the specified text section of the executable
 | |
| /// if we are not already in it!
 | |
| ///
 | |
| void AsmPrinter::SwitchToTextSection(const char *NewSection,
 | |
|                                      const GlobalValue *GV) {
 | |
|   std::string NS;
 | |
|   if (GV && GV->hasSection())
 | |
|     NS = TAI->getSwitchToSectionDirective() + GV->getSection();
 | |
|   else
 | |
|     NS = NewSection;
 | |
|   
 | |
|   // If we're already in this section, we're done.
 | |
|   if (CurrentSection == NS) return;
 | |
| 
 | |
|   // Close the current section, if applicable.
 | |
|   if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
 | |
|     O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
 | |
| 
 | |
|   CurrentSection = NS;
 | |
| 
 | |
|   if (!CurrentSection.empty())
 | |
|     O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
 | |
| 
 | |
|   IsInTextSection = true;
 | |
| }
 | |
| 
 | |
| /// SwitchToDataSection - Switch to the specified data section of the executable
 | |
| /// if we are not already in it!
 | |
| ///
 | |
| void AsmPrinter::SwitchToDataSection(const char *NewSection,
 | |
|                                      const GlobalValue *GV) {
 | |
|   std::string NS;
 | |
|   if (GV && GV->hasSection())
 | |
|     NS = TAI->getSwitchToSectionDirective() + GV->getSection();
 | |
|   else
 | |
|     NS = NewSection;
 | |
|   
 | |
|   // If we're already in this section, we're done.
 | |
|   if (CurrentSection == NS) return;
 | |
| 
 | |
|   // Close the current section, if applicable.
 | |
|   if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
 | |
|     O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
 | |
| 
 | |
|   CurrentSection = NS;
 | |
|   
 | |
|   if (!CurrentSection.empty())
 | |
|     O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
 | |
| 
 | |
|   IsInTextSection = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   AU.addRequired<CollectorModuleMetadata>();
 | |
| }
 | |
| 
 | |
| bool AsmPrinter::doInitialization(Module &M) {
 | |
|   Mang = new Mangler(M, TAI->getGlobalPrefix());
 | |
|   
 | |
|   CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
 | |
|   assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
 | |
|   for (CollectorModuleMetadata::iterator I = CMM->begin(),
 | |
|                                          E = CMM->end(); I != E; ++I)
 | |
|     (*I)->beginAssembly(O, *this, *TAI);
 | |
|   
 | |
|   if (!M.getModuleInlineAsm().empty())
 | |
|     O << TAI->getCommentString() << " Start of file scope inline assembly\n"
 | |
|       << M.getModuleInlineAsm()
 | |
|       << "\n" << TAI->getCommentString()
 | |
|       << " End of file scope inline assembly\n";
 | |
| 
 | |
|   SwitchToDataSection("");   // Reset back to no section.
 | |
|   
 | |
|   MMI = getAnalysisToUpdate<MachineModuleInfo>();
 | |
|   if (MMI) MMI->AnalyzeModule(M);
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AsmPrinter::doFinalization(Module &M) {
 | |
|   if (TAI->getWeakRefDirective()) {
 | |
|     if (!ExtWeakSymbols.empty())
 | |
|       SwitchToDataSection("");
 | |
| 
 | |
|     for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
 | |
|          e = ExtWeakSymbols.end(); i != e; ++i) {
 | |
|       const GlobalValue *GV = *i;
 | |
|       std::string Name = Mang->getValueName(GV);
 | |
|       O << TAI->getWeakRefDirective() << Name << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TAI->getSetDirective()) {
 | |
|     if (!M.alias_empty())
 | |
|       SwitchToTextSection(TAI->getTextSection());
 | |
| 
 | |
|     O << "\n";
 | |
|     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
 | |
|          I!=E; ++I) {
 | |
|       std::string Name = Mang->getValueName(I);
 | |
|       std::string Target;
 | |
| 
 | |
|       const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
 | |
|       Target = Mang->getValueName(GV);
 | |
|       
 | |
|       if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
 | |
|         O << "\t.globl\t" << Name << "\n";
 | |
|       else if (I->hasWeakLinkage())
 | |
|         O << TAI->getWeakRefDirective() << Name << "\n";
 | |
|       else if (!I->hasInternalLinkage())
 | |
|         assert(0 && "Invalid alias linkage");
 | |
| 
 | |
|       if (I->hasHiddenVisibility()) {
 | |
|         if (const char *Directive = TAI->getHiddenDirective())
 | |
|           O << Directive << Name << "\n";
 | |
|       } else if (I->hasProtectedVisibility()) {
 | |
|         if (const char *Directive = TAI->getProtectedDirective())
 | |
|           O << Directive << Name << "\n";
 | |
|       }
 | |
| 
 | |
|       O << TAI->getSetDirective() << ' ' << Name << ", " << Target << "\n";
 | |
| 
 | |
|       // If the aliasee has external weak linkage it can be referenced only by
 | |
|       // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
 | |
|       // weak reference in such case.
 | |
|       if (GV->hasExternalWeakLinkage()) {
 | |
|         if (TAI->getWeakRefDirective())
 | |
|           O << TAI->getWeakRefDirective() << Target << "\n";
 | |
|         else
 | |
|           O << "\t.globl\t" << Target << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
 | |
|   assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
 | |
|   for (CollectorModuleMetadata::iterator I = CMM->end(),
 | |
|                                          E = CMM->begin(); I != E; )
 | |
|     (*--I)->finishAssembly(O, *this, *TAI);
 | |
| 
 | |
|   // If we don't have any trampolines, then we don't require stack memory
 | |
|   // to be executable. Some targets have a directive to declare this.
 | |
|   Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
 | |
|   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
 | |
|     if (TAI->getNonexecutableStackDirective())
 | |
|       O << TAI->getNonexecutableStackDirective() << "\n";
 | |
| 
 | |
|   delete Mang; Mang = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
 | |
|   assert(MF && "No machine function?");
 | |
|   std::string Name = MF->getFunction()->getName();
 | |
|   if (Name.empty())
 | |
|     Name = Mang->getValueName(MF->getFunction());
 | |
|   return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
 | |
| }
 | |
| 
 | |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
 | |
|   // What's my mangled name?
 | |
|   CurrentFnName = Mang->getValueName(MF.getFunction());
 | |
|   IncrementFunctionNumber();
 | |
| }
 | |
| 
 | |
| /// EmitConstantPool - Print to the current output stream assembly
 | |
| /// representations of the constants in the constant pool MCP. This is
 | |
| /// used to print out constants which have been "spilled to memory" by
 | |
| /// the code generator.
 | |
| ///
 | |
| void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
 | |
|   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
 | |
|   if (CP.empty()) return;
 | |
| 
 | |
|   // Some targets require 4-, 8-, and 16- byte constant literals to be placed
 | |
|   // in special sections.
 | |
|   std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
 | |
|   std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
 | |
|   std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
 | |
|   std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
 | |
|   std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
 | |
|   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
 | |
|     MachineConstantPoolEntry CPE = CP[i];
 | |
|     const Type *Ty = CPE.getType();
 | |
|     if (TAI->getFourByteConstantSection() &&
 | |
|         TM.getTargetData()->getABITypeSize(Ty) == 4)
 | |
|       FourByteCPs.push_back(std::make_pair(CPE, i));
 | |
|     else if (TAI->getEightByteConstantSection() &&
 | |
|              TM.getTargetData()->getABITypeSize(Ty) == 8)
 | |
|       EightByteCPs.push_back(std::make_pair(CPE, i));
 | |
|     else if (TAI->getSixteenByteConstantSection() &&
 | |
|              TM.getTargetData()->getABITypeSize(Ty) == 16)
 | |
|       SixteenByteCPs.push_back(std::make_pair(CPE, i));
 | |
|     else
 | |
|       OtherCPs.push_back(std::make_pair(CPE, i));
 | |
|   }
 | |
| 
 | |
|   unsigned Alignment = MCP->getConstantPoolAlignment();
 | |
|   EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
 | |
|   EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
 | |
|   EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
 | |
|                    SixteenByteCPs);
 | |
|   EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
 | |
| }
 | |
| 
 | |
| void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
 | |
|                std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
 | |
|   if (CP.empty()) return;
 | |
| 
 | |
|   SwitchToDataSection(Section);
 | |
|   EmitAlignment(Alignment);
 | |
|   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
 | |
|     O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
 | |
|       << CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << " ";
 | |
|     WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n';
 | |
|     if (CP[i].first.isMachineConstantPoolEntry())
 | |
|       EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
 | |
|      else
 | |
|       EmitGlobalConstant(CP[i].first.Val.ConstVal);
 | |
|     if (i != e-1) {
 | |
|       const Type *Ty = CP[i].first.getType();
 | |
|       unsigned EntSize =
 | |
|         TM.getTargetData()->getABITypeSize(Ty);
 | |
|       unsigned ValEnd = CP[i].first.getOffset() + EntSize;
 | |
|       // Emit inter-object padding for alignment.
 | |
|       EmitZeros(CP[i+1].first.getOffset()-ValEnd);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitJumpTableInfo - Print assembly representations of the jump tables used
 | |
| /// by the current function to the current output stream.  
 | |
| ///
 | |
| void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
 | |
|                                    MachineFunction &MF) {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return;
 | |
| 
 | |
|   bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
 | |
|   
 | |
|   // Pick the directive to use to print the jump table entries, and switch to 
 | |
|   // the appropriate section.
 | |
|   TargetLowering *LoweringInfo = TM.getTargetLowering();
 | |
| 
 | |
|   const char* JumpTableDataSection = TAI->getJumpTableDataSection();  
 | |
|   if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
 | |
|      !JumpTableDataSection) {
 | |
|     // In PIC mode, we need to emit the jump table to the same section as the
 | |
|     // function body itself, otherwise the label differences won't make sense.
 | |
|     // We should also do if the section name is NULL.
 | |
|     const Function *F = MF.getFunction();
 | |
|     SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
 | |
|   } else {
 | |
|     SwitchToDataSection(JumpTableDataSection);
 | |
|   }
 | |
|   
 | |
|   EmitAlignment(Log2_32(MJTI->getAlignment()));
 | |
|   
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|     const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
 | |
|     
 | |
|     // If this jump table was deleted, ignore it. 
 | |
|     if (JTBBs.empty()) continue;
 | |
| 
 | |
|     // For PIC codegen, if possible we want to use the SetDirective to reduce
 | |
|     // the number of relocations the assembler will generate for the jump table.
 | |
|     // Set directives are all printed before the jump table itself.
 | |
|     SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
 | |
|     if (TAI->getSetDirective() && IsPic)
 | |
|       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
 | |
|         if (EmittedSets.insert(JTBBs[ii]))
 | |
|           printPICJumpTableSetLabel(i, JTBBs[ii]);
 | |
|     
 | |
|     // On some targets (e.g. darwin) we want to emit two consequtive labels
 | |
|     // before each jump table.  The first label is never referenced, but tells
 | |
|     // the assembler and linker the extents of the jump table object.  The
 | |
|     // second label is actually referenced by the code.
 | |
|     if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
 | |
|       O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
 | |
|     
 | |
|     O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
 | |
|       << '_' << i << ":\n";
 | |
|     
 | |
|     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
 | |
|       printPICJumpTableEntry(MJTI, JTBBs[ii], i);
 | |
|       O << '\n';
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
 | |
|                                         const MachineBasicBlock *MBB,
 | |
|                                         unsigned uid)  const {
 | |
|   bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
 | |
|   
 | |
|   // Use JumpTableDirective otherwise honor the entry size from the jump table
 | |
|   // info.
 | |
|   const char *JTEntryDirective = TAI->getJumpTableDirective();
 | |
|   bool HadJTEntryDirective = JTEntryDirective != NULL;
 | |
|   if (!HadJTEntryDirective) {
 | |
|     JTEntryDirective = MJTI->getEntrySize() == 4 ?
 | |
|       TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
 | |
|   }
 | |
| 
 | |
|   O << JTEntryDirective << ' ';
 | |
| 
 | |
|   // If we have emitted set directives for the jump table entries, print 
 | |
|   // them rather than the entries themselves.  If we're emitting PIC, then
 | |
|   // emit the table entries as differences between two text section labels.
 | |
|   // If we're emitting non-PIC code, then emit the entries as direct
 | |
|   // references to the target basic blocks.
 | |
|   if (IsPic) {
 | |
|     if (TAI->getSetDirective()) {
 | |
|       O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
 | |
|         << '_' << uid << "_set_" << MBB->getNumber();
 | |
|     } else {
 | |
|       printBasicBlockLabel(MBB, false, false, false);
 | |
|       // If the arch uses custom Jump Table directives, don't calc relative to
 | |
|       // JT
 | |
|       if (!HadJTEntryDirective) 
 | |
|         O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
 | |
|           << getFunctionNumber() << '_' << uid;
 | |
|     }
 | |
|   } else {
 | |
|     printBasicBlockLabel(MBB, false, false, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
 | |
| /// special global used by LLVM.  If so, emit it and return true, otherwise
 | |
| /// do nothing and return false.
 | |
| bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
 | |
|   if (GV->getName() == "llvm.used") {
 | |
|     if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
 | |
|       EmitLLVMUsedList(GV->getInitializer());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Ignore debug and non-emitted data.
 | |
|   if (GV->getSection() == "llvm.metadata") return true;
 | |
|   
 | |
|   if (!GV->hasAppendingLinkage()) return false;
 | |
| 
 | |
|   assert(GV->hasInitializer() && "Not a special LLVM global!");
 | |
|   
 | |
|   const TargetData *TD = TM.getTargetData();
 | |
|   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
 | |
|   if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
 | |
|     SwitchToDataSection(TAI->getStaticCtorsSection());
 | |
|     EmitAlignment(Align, 0);
 | |
|     EmitXXStructorList(GV->getInitializer());
 | |
|     return true;
 | |
|   } 
 | |
|   
 | |
|   if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
 | |
|     SwitchToDataSection(TAI->getStaticDtorsSection());
 | |
|     EmitAlignment(Align, 0);
 | |
|     EmitXXStructorList(GV->getInitializer());
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
 | |
| /// global in the specified llvm.used list as being used with this directive.
 | |
| void AsmPrinter::EmitLLVMUsedList(Constant *List) {
 | |
|   const char *Directive = TAI->getUsedDirective();
 | |
| 
 | |
|   // Should be an array of 'sbyte*'.
 | |
|   ConstantArray *InitList = dyn_cast<ConstantArray>(List);
 | |
|   if (InitList == 0) return;
 | |
|   
 | |
|   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
 | |
|     O << Directive;
 | |
|     EmitConstantValueOnly(InitList->getOperand(i));
 | |
|     O << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the 
 | |
| /// function pointers, ignoring the init priority.
 | |
| void AsmPrinter::EmitXXStructorList(Constant *List) {
 | |
|   // Should be an array of '{ int, void ()* }' structs.  The first value is the
 | |
|   // init priority, which we ignore.
 | |
|   if (!isa<ConstantArray>(List)) return;
 | |
|   ConstantArray *InitList = cast<ConstantArray>(List);
 | |
|   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
 | |
|       if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
 | |
| 
 | |
|       if (CS->getOperand(1)->isNullValue())
 | |
|         return;  // Found a null terminator, exit printing.
 | |
|       // Emit the function pointer.
 | |
|       EmitGlobalConstant(CS->getOperand(1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// getGlobalLinkName - Returns the asm/link name of of the specified
 | |
| /// global variable.  Should be overridden by each target asm printer to
 | |
| /// generate the appropriate value.
 | |
| const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
 | |
|   std::string LinkName;
 | |
|   
 | |
|   if (isa<Function>(GV)) {
 | |
|     LinkName += TAI->getFunctionAddrPrefix();
 | |
|     LinkName += Mang->getValueName(GV);
 | |
|     LinkName += TAI->getFunctionAddrSuffix();
 | |
|   } else {
 | |
|     LinkName += TAI->getGlobalVarAddrPrefix();
 | |
|     LinkName += Mang->getValueName(GV);
 | |
|     LinkName += TAI->getGlobalVarAddrSuffix();
 | |
|   }  
 | |
|   
 | |
|   return LinkName;
 | |
| }
 | |
| 
 | |
| /// EmitExternalGlobal - Emit the external reference to a global variable.
 | |
| /// Should be overridden if an indirect reference should be used.
 | |
| void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
 | |
|   O << getGlobalLinkName(GV);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// LEB 128 number encoding.
 | |
| 
 | |
| /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
 | |
| /// representing an unsigned leb128 value.
 | |
| void AsmPrinter::PrintULEB128(unsigned Value) const {
 | |
|   do {
 | |
|     unsigned Byte = Value & 0x7f;
 | |
|     Value >>= 7;
 | |
|     if (Value) Byte |= 0x80;
 | |
|     O << "0x" << std::hex << Byte << std::dec;
 | |
|     if (Value) O << ", ";
 | |
|   } while (Value);
 | |
| }
 | |
| 
 | |
| /// SizeULEB128 - Compute the number of bytes required for an unsigned leb128
 | |
| /// value.
 | |
| unsigned AsmPrinter::SizeULEB128(unsigned Value) {
 | |
|   unsigned Size = 0;
 | |
|   do {
 | |
|     Value >>= 7;
 | |
|     Size += sizeof(int8_t);
 | |
|   } while (Value);
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
 | |
| /// representing a signed leb128 value.
 | |
| void AsmPrinter::PrintSLEB128(int Value) const {
 | |
|   int Sign = Value >> (8 * sizeof(Value) - 1);
 | |
|   bool IsMore;
 | |
|   
 | |
|   do {
 | |
|     unsigned Byte = Value & 0x7f;
 | |
|     Value >>= 7;
 | |
|     IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
 | |
|     if (IsMore) Byte |= 0x80;
 | |
|     O << "0x" << std::hex << Byte << std::dec;
 | |
|     if (IsMore) O << ", ";
 | |
|   } while (IsMore);
 | |
| }
 | |
| 
 | |
| /// SizeSLEB128 - Compute the number of bytes required for a signed leb128
 | |
| /// value.
 | |
| unsigned AsmPrinter::SizeSLEB128(int Value) {
 | |
|   unsigned Size = 0;
 | |
|   int Sign = Value >> (8 * sizeof(Value) - 1);
 | |
|   bool IsMore;
 | |
|   
 | |
|   do {
 | |
|     unsigned Byte = Value & 0x7f;
 | |
|     Value >>= 7;
 | |
|     IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
 | |
|     Size += sizeof(int8_t);
 | |
|   } while (IsMore);
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| // Emission and print routines
 | |
| //
 | |
| 
 | |
| /// PrintHex - Print a value as a hexidecimal value.
 | |
| ///
 | |
| void AsmPrinter::PrintHex(int Value) const { 
 | |
|   O << "0x" << std::hex << Value << std::dec;
 | |
| }
 | |
| 
 | |
| /// EOL - Print a newline character to asm stream.  If a comment is present
 | |
| /// then it will be printed first.  Comments should not contain '\n'.
 | |
| void AsmPrinter::EOL() const {
 | |
|   O << "\n";
 | |
| }
 | |
| void AsmPrinter::EOL(const std::string &Comment) const {
 | |
|   if (AsmVerbose && !Comment.empty()) {
 | |
|     O << "\t"
 | |
|       << TAI->getCommentString()
 | |
|       << " "
 | |
|       << Comment;
 | |
|   }
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
| /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
 | |
| /// unsigned leb128 value.
 | |
| void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
 | |
|   if (TAI->hasLEB128()) {
 | |
|     O << "\t.uleb128\t"
 | |
|       << Value;
 | |
|   } else {
 | |
|     O << TAI->getData8bitsDirective();
 | |
|     PrintULEB128(Value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
 | |
| /// signed leb128 value.
 | |
| void AsmPrinter::EmitSLEB128Bytes(int Value) const {
 | |
|   if (TAI->hasLEB128()) {
 | |
|     O << "\t.sleb128\t"
 | |
|       << Value;
 | |
|   } else {
 | |
|     O << TAI->getData8bitsDirective();
 | |
|     PrintSLEB128(Value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitInt8 - Emit a byte directive and value.
 | |
| ///
 | |
| void AsmPrinter::EmitInt8(int Value) const {
 | |
|   O << TAI->getData8bitsDirective();
 | |
|   PrintHex(Value & 0xFF);
 | |
| }
 | |
| 
 | |
| /// EmitInt16 - Emit a short directive and value.
 | |
| ///
 | |
| void AsmPrinter::EmitInt16(int Value) const {
 | |
|   O << TAI->getData16bitsDirective();
 | |
|   PrintHex(Value & 0xFFFF);
 | |
| }
 | |
| 
 | |
| /// EmitInt32 - Emit a long directive and value.
 | |
| ///
 | |
| void AsmPrinter::EmitInt32(int Value) const {
 | |
|   O << TAI->getData32bitsDirective();
 | |
|   PrintHex(Value);
 | |
| }
 | |
| 
 | |
| /// EmitInt64 - Emit a long long directive and value.
 | |
| ///
 | |
| void AsmPrinter::EmitInt64(uint64_t Value) const {
 | |
|   if (TAI->getData64bitsDirective()) {
 | |
|     O << TAI->getData64bitsDirective();
 | |
|     PrintHex(Value);
 | |
|   } else {
 | |
|     if (TM.getTargetData()->isBigEndian()) {
 | |
|       EmitInt32(unsigned(Value >> 32)); O << "\n";
 | |
|       EmitInt32(unsigned(Value));
 | |
|     } else {
 | |
|       EmitInt32(unsigned(Value)); O << "\n";
 | |
|       EmitInt32(unsigned(Value >> 32));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// toOctal - Convert the low order bits of X into an octal digit.
 | |
| ///
 | |
| static inline char toOctal(int X) {
 | |
|   return (X&7)+'0';
 | |
| }
 | |
| 
 | |
| /// printStringChar - Print a char, escaped if necessary.
 | |
| ///
 | |
| static void printStringChar(std::ostream &O, unsigned char C) {
 | |
|   if (C == '"') {
 | |
|     O << "\\\"";
 | |
|   } else if (C == '\\') {
 | |
|     O << "\\\\";
 | |
|   } else if (isprint(C)) {
 | |
|     O << C;
 | |
|   } else {
 | |
|     switch(C) {
 | |
|     case '\b': O << "\\b"; break;
 | |
|     case '\f': O << "\\f"; break;
 | |
|     case '\n': O << "\\n"; break;
 | |
|     case '\r': O << "\\r"; break;
 | |
|     case '\t': O << "\\t"; break;
 | |
|     default:
 | |
|       O << '\\';
 | |
|       O << toOctal(C >> 6);
 | |
|       O << toOctal(C >> 3);
 | |
|       O << toOctal(C >> 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitString - Emit a string with quotes and a null terminator.
 | |
| /// Special characters are emitted properly.
 | |
| /// \literal (Eg. '\t') \endliteral
 | |
| void AsmPrinter::EmitString(const std::string &String) const {
 | |
|   const char* AscizDirective = TAI->getAscizDirective();
 | |
|   if (AscizDirective)
 | |
|     O << AscizDirective;
 | |
|   else
 | |
|     O << TAI->getAsciiDirective();
 | |
|   O << "\"";
 | |
|   for (unsigned i = 0, N = String.size(); i < N; ++i) {
 | |
|     unsigned char C = String[i];
 | |
|     printStringChar(O, C);
 | |
|   }
 | |
|   if (AscizDirective)
 | |
|     O << "\"";
 | |
|   else
 | |
|     O << "\\0\"";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitFile - Emit a .file directive.
 | |
| void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
 | |
|   O << "\t.file\t" << Number << " \"";
 | |
|   for (unsigned i = 0, N = Name.size(); i < N; ++i) {
 | |
|     unsigned char C = Name[i];
 | |
|     printStringChar(O, C);
 | |
|   }
 | |
|   O << "\"";
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // EmitAlignment - Emit an alignment directive to the specified power of
 | |
| // two boundary.  For example, if you pass in 3 here, you will get an 8
 | |
| // byte alignment.  If a global value is specified, and if that global has
 | |
| // an explicit alignment requested, it will unconditionally override the
 | |
| // alignment request.  However, if ForcedAlignBits is specified, this value
 | |
| // has final say: the ultimate alignment will be the max of ForcedAlignBits
 | |
| // and the alignment computed with NumBits and the global.
 | |
| //
 | |
| // The algorithm is:
 | |
| //     Align = NumBits;
 | |
| //     if (GV && GV->hasalignment) Align = GV->getalignment();
 | |
| //     Align = std::max(Align, ForcedAlignBits);
 | |
| //
 | |
| void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
 | |
|                                unsigned ForcedAlignBits,
 | |
|                                bool UseFillExpr) const {
 | |
|   if (GV && GV->getAlignment())
 | |
|     NumBits = Log2_32(GV->getAlignment());
 | |
|   NumBits = std::max(NumBits, ForcedAlignBits);
 | |
|   
 | |
|   if (NumBits == 0) return;   // No need to emit alignment.
 | |
|   if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
 | |
|   O << TAI->getAlignDirective() << NumBits;
 | |
| 
 | |
|   unsigned FillValue = TAI->getTextAlignFillValue();
 | |
|   UseFillExpr &= IsInTextSection && FillValue;
 | |
|   if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec;
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
|     
 | |
| /// EmitZeros - Emit a block of zeros.
 | |
| ///
 | |
| void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
 | |
|   if (NumZeros) {
 | |
|     if (TAI->getZeroDirective()) {
 | |
|       O << TAI->getZeroDirective() << NumZeros;
 | |
|       if (TAI->getZeroDirectiveSuffix())
 | |
|         O << TAI->getZeroDirectiveSuffix();
 | |
|       O << "\n";
 | |
|     } else {
 | |
|       for (; NumZeros; --NumZeros)
 | |
|         O << TAI->getData8bitsDirective() << "0\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Print out the specified constant, without a storage class.  Only the
 | |
| // constants valid in constant expressions can occur here.
 | |
| void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
 | |
|   if (CV->isNullValue() || isa<UndefValue>(CV))
 | |
|     O << "0";
 | |
|   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|     O << CI->getZExtValue();
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
 | |
|     // This is a constant address for a global variable or function. Use the
 | |
|     // name of the variable or function as the address value, possibly
 | |
|     // decorating it with GlobalVarAddrPrefix/Suffix or
 | |
|     // FunctionAddrPrefix/Suffix (these all default to "" )
 | |
|     if (isa<Function>(GV)) {
 | |
|       O << TAI->getFunctionAddrPrefix()
 | |
|         << Mang->getValueName(GV)
 | |
|         << TAI->getFunctionAddrSuffix();
 | |
|     } else {
 | |
|       O << TAI->getGlobalVarAddrPrefix()
 | |
|         << Mang->getValueName(GV)
 | |
|         << TAI->getGlobalVarAddrSuffix();
 | |
|     }
 | |
|   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | |
|     const TargetData *TD = TM.getTargetData();
 | |
|     unsigned Opcode = CE->getOpcode();    
 | |
|     switch (Opcode) {
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // generate a symbolic expression for the byte address
 | |
|       const Constant *ptrVal = CE->getOperand(0);
 | |
|       SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
 | |
|       if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
 | |
|                                                 idxVec.size())) {
 | |
|         if (Offset)
 | |
|           O << "(";
 | |
|         EmitConstantValueOnly(ptrVal);
 | |
|         if (Offset > 0)
 | |
|           O << ") + " << Offset;
 | |
|         else if (Offset < 0)
 | |
|           O << ") - " << -Offset;
 | |
|       } else {
 | |
|         EmitConstantValueOnly(ptrVal);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|       assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
 | |
|       break;
 | |
|     case Instruction::BitCast:
 | |
|       return EmitConstantValueOnly(CE->getOperand(0));
 | |
| 
 | |
|     case Instruction::IntToPtr: {
 | |
|       // Handle casts to pointers by changing them into casts to the appropriate
 | |
|       // integer type.  This promotes constant folding and simplifies this code.
 | |
|       Constant *Op = CE->getOperand(0);
 | |
|       Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
 | |
|       return EmitConstantValueOnly(Op);
 | |
|     }
 | |
|       
 | |
|       
 | |
|     case Instruction::PtrToInt: {
 | |
|       // Support only foldable casts to/from pointers that can be eliminated by
 | |
|       // changing the pointer to the appropriately sized integer type.
 | |
|       Constant *Op = CE->getOperand(0);
 | |
|       const Type *Ty = CE->getType();
 | |
| 
 | |
|       // We can emit the pointer value into this slot if the slot is an
 | |
|       // integer slot greater or equal to the size of the pointer.
 | |
|       if (Ty->isInteger() &&
 | |
|           TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
 | |
|         return EmitConstantValueOnly(Op);
 | |
|       
 | |
|       assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
 | |
|       EmitConstantValueOnly(Op);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       O << "(";
 | |
|       EmitConstantValueOnly(CE->getOperand(0));
 | |
|       O << ")";
 | |
|       switch (Opcode) {
 | |
|       case Instruction::Add:
 | |
|        O << " + ";
 | |
|        break;
 | |
|       case Instruction::Sub:
 | |
|        O << " - ";
 | |
|        break;
 | |
|       case Instruction::And:
 | |
|        O << " & ";
 | |
|        break;
 | |
|       case Instruction::Or:
 | |
|        O << " | ";
 | |
|        break;
 | |
|       case Instruction::Xor:
 | |
|        O << " ^ ";
 | |
|        break;
 | |
|       default:
 | |
|        break;
 | |
|       }
 | |
|       O << "(";
 | |
|       EmitConstantValueOnly(CE->getOperand(1));
 | |
|       O << ")";
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unsupported operator!");
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant value!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// printAsCString - Print the specified array as a C compatible string, only if
 | |
| /// the predicate isString is true.
 | |
| ///
 | |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA,
 | |
|                            unsigned LastElt) {
 | |
|   assert(CVA->isString() && "Array is not string compatible!");
 | |
| 
 | |
|   O << "\"";
 | |
|   for (unsigned i = 0; i != LastElt; ++i) {
 | |
|     unsigned char C =
 | |
|         (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
 | |
|     printStringChar(O, C);
 | |
|   }
 | |
|   O << "\"";
 | |
| }
 | |
| 
 | |
| /// EmitString - Emit a zero-byte-terminated string constant.
 | |
| ///
 | |
| void AsmPrinter::EmitString(const ConstantArray *CVA) const {
 | |
|   unsigned NumElts = CVA->getNumOperands();
 | |
|   if (TAI->getAscizDirective() && NumElts && 
 | |
|       cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
 | |
|     O << TAI->getAscizDirective();
 | |
|     printAsCString(O, CVA, NumElts-1);
 | |
|   } else {
 | |
|     O << TAI->getAsciiDirective();
 | |
|     printAsCString(O, CVA, NumElts);
 | |
|   }
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
 | |
| void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
 | |
|   const TargetData *TD = TM.getTargetData();
 | |
|   unsigned Size = TD->getABITypeSize(CV->getType());
 | |
| 
 | |
|   if (CV->isNullValue() || isa<UndefValue>(CV)) {
 | |
|     EmitZeros(Size);
 | |
|     return;
 | |
|   } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
 | |
|     if (CVA->isString()) {
 | |
|       EmitString(CVA);
 | |
|     } else { // Not a string.  Print the values in successive locations
 | |
|       for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
 | |
|         EmitGlobalConstant(CVA->getOperand(i));
 | |
|     }
 | |
|     return;
 | |
|   } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
 | |
|     // Print the fields in successive locations. Pad to align if needed!
 | |
|     const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
 | |
|     uint64_t sizeSoFar = 0;
 | |
|     for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
 | |
|       const Constant* field = CVS->getOperand(i);
 | |
| 
 | |
|       // Check if padding is needed and insert one or more 0s.
 | |
|       uint64_t fieldSize = TD->getABITypeSize(field->getType());
 | |
|       uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
 | |
|                           - cvsLayout->getElementOffset(i)) - fieldSize;
 | |
|       sizeSoFar += fieldSize + padSize;
 | |
| 
 | |
|       // Now print the actual field value.
 | |
|       EmitGlobalConstant(field);
 | |
| 
 | |
|       // Insert padding - this may include padding to increase the size of the
 | |
|       // current field up to the ABI size (if the struct is not packed) as well
 | |
|       // as padding to ensure that the next field starts at the right offset.
 | |
|       EmitZeros(padSize);
 | |
|     }
 | |
|     assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
 | |
|            "Layout of constant struct may be incorrect!");
 | |
|     return;
 | |
|   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|     // FP Constants are printed as integer constants to avoid losing
 | |
|     // precision...
 | |
|     if (CFP->getType() == Type::DoubleTy) {
 | |
|       double Val = CFP->getValueAPF().convertToDouble();  // for comment only
 | |
|       uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
 | |
|       if (TAI->getData64bitsDirective())
 | |
|         O << TAI->getData64bitsDirective() << i << "\t"
 | |
|           << TAI->getCommentString() << " double value: " << Val << "\n";
 | |
|       else if (TD->isBigEndian()) {
 | |
|         O << TAI->getData32bitsDirective() << unsigned(i >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " double most significant word " << Val << "\n";
 | |
|         O << TAI->getData32bitsDirective() << unsigned(i)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " double least significant word " << Val << "\n";
 | |
|       } else {
 | |
|         O << TAI->getData32bitsDirective() << unsigned(i)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " double least significant word " << Val << "\n";
 | |
|         O << TAI->getData32bitsDirective() << unsigned(i >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " double most significant word " << Val << "\n";
 | |
|       }
 | |
|       return;
 | |
|     } else if (CFP->getType() == Type::FloatTy) {
 | |
|       float Val = CFP->getValueAPF().convertToFloat();  // for comment only
 | |
|       O << TAI->getData32bitsDirective()
 | |
|         << CFP->getValueAPF().convertToAPInt().getZExtValue()
 | |
|         << "\t" << TAI->getCommentString() << " float " << Val << "\n";
 | |
|       return;
 | |
|     } else if (CFP->getType() == Type::X86_FP80Ty) {
 | |
|       // all long double variants are printed as hex
 | |
|       // api needed to prevent premature destruction
 | |
|       APInt api = CFP->getValueAPF().convertToAPInt();
 | |
|       const uint64_t *p = api.getRawData();
 | |
|       APFloat DoubleVal = CFP->getValueAPF();
 | |
|       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
 | |
|       if (TD->isBigEndian()) {
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double most significant halfword of ~"
 | |
|           << DoubleVal.convertToDouble() << "\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[1])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double least significant halfword\n";
 | |
|        } else {
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[1])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double least significant halfword of ~"
 | |
|           << DoubleVal.convertToDouble() << "\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next halfword\n";
 | |
|         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double most significant halfword\n";
 | |
|       }
 | |
|       EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
 | |
|       return;
 | |
|     } else if (CFP->getType() == Type::PPC_FP128Ty) {
 | |
|       // all long double variants are printed as hex
 | |
|       // api needed to prevent premature destruction
 | |
|       APInt api = CFP->getValueAPF().convertToAPInt();
 | |
|       const uint64_t *p = api.getRawData();
 | |
|       if (TD->isBigEndian()) {
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double most significant word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[0])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[1])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double least significant word\n";
 | |
|        } else {
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[1])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double least significant word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[0])
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double next word\n";
 | |
|         O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " long double most significant word\n";
 | |
|       }
 | |
|       return;
 | |
|     } else assert(0 && "Floating point constant type not handled");
 | |
|   } else if (CV->getType() == Type::Int64Ty) {
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|       uint64_t Val = CI->getZExtValue();
 | |
| 
 | |
|       if (TAI->getData64bitsDirective())
 | |
|         O << TAI->getData64bitsDirective() << Val << "\n";
 | |
|       else if (TD->isBigEndian()) {
 | |
|         O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " Double-word most significant word " << Val << "\n";
 | |
|         O << TAI->getData32bitsDirective() << unsigned(Val)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " Double-word least significant word " << Val << "\n";
 | |
|       } else {
 | |
|         O << TAI->getData32bitsDirective() << unsigned(Val)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " Double-word least significant word " << Val << "\n";
 | |
|         O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
 | |
|           << "\t" << TAI->getCommentString()
 | |
|           << " Double-word most significant word " << Val << "\n";
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
 | |
|     const VectorType *PTy = CP->getType();
 | |
|     
 | |
|     for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
 | |
|       EmitGlobalConstant(CP->getOperand(I));
 | |
|     
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Type *type = CV->getType();
 | |
|   printDataDirective(type);
 | |
|   EmitConstantValueOnly(CV);
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|     O << "\t\t\t"
 | |
|       << TAI->getCommentString()
 | |
|       << " 0x" << CI->getValue().toStringUnsigned(16);
 | |
|   }
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
| void
 | |
| AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
 | |
|   // Target doesn't support this yet!
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| /// PrintSpecial - Print information related to the specified machine instr
 | |
| /// that is independent of the operand, and may be independent of the instr
 | |
| /// itself.  This can be useful for portably encoding the comment character
 | |
| /// or other bits of target-specific knowledge into the asmstrings.  The
 | |
| /// syntax used is ${:comment}.  Targets can override this to add support
 | |
| /// for their own strange codes.
 | |
| void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
 | |
|   if (!strcmp(Code, "private")) {
 | |
|     O << TAI->getPrivateGlobalPrefix();
 | |
|   } else if (!strcmp(Code, "comment")) {
 | |
|     O << TAI->getCommentString();
 | |
|   } else if (!strcmp(Code, "uid")) {
 | |
|     // Assign a unique ID to this machine instruction.
 | |
|     static const MachineInstr *LastMI = 0;
 | |
|     static const Function *F = 0;
 | |
|     static unsigned Counter = 0U-1;
 | |
| 
 | |
|     // Comparing the address of MI isn't sufficient, because machineinstrs may
 | |
|     // be allocated to the same address across functions.
 | |
|     const Function *ThisF = MI->getParent()->getParent()->getFunction();
 | |
|     
 | |
|     // If this is a new machine instruction, bump the counter.
 | |
|     if (LastMI != MI || F != ThisF) {
 | |
|       ++Counter;
 | |
|       LastMI = MI;
 | |
|       F = ThisF;
 | |
|     }
 | |
|     O << Counter;
 | |
|   } else {
 | |
|     cerr << "Unknown special formatter '" << Code
 | |
|          << "' for machine instr: " << *MI;
 | |
|     exit(1);
 | |
|   }    
 | |
| }
 | |
| 
 | |
| 
 | |
| /// printInlineAsm - This method formats and prints the specified machine
 | |
| /// instruction that is an inline asm.
 | |
| void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
 | |
|   unsigned NumOperands = MI->getNumOperands();
 | |
|   
 | |
|   // Count the number of register definitions.
 | |
|   unsigned NumDefs = 0;
 | |
|   for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
 | |
|        ++NumDefs)
 | |
|     assert(NumDefs != NumOperands-1 && "No asm string?");
 | |
|   
 | |
|   assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
 | |
| 
 | |
|   // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
 | |
|   const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
 | |
| 
 | |
|   // If this asmstr is empty, just print the #APP/#NOAPP markers.
 | |
|   // These are useful to see where empty asm's wound up.
 | |
|   if (AsmStr[0] == 0) {
 | |
|     O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << "\n";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   O << TAI->getInlineAsmStart() << "\n\t";
 | |
| 
 | |
|   // The variant of the current asmprinter.
 | |
|   int AsmPrinterVariant = TAI->getAssemblerDialect();
 | |
| 
 | |
|   int CurVariant = -1;            // The number of the {.|.|.} region we are in.
 | |
|   const char *LastEmitted = AsmStr; // One past the last character emitted.
 | |
|   
 | |
|   while (*LastEmitted) {
 | |
|     switch (*LastEmitted) {
 | |
|     default: {
 | |
|       // Not a special case, emit the string section literally.
 | |
|       const char *LiteralEnd = LastEmitted+1;
 | |
|       while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
 | |
|              *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
 | |
|         ++LiteralEnd;
 | |
|       if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
 | |
|         O.write(LastEmitted, LiteralEnd-LastEmitted);
 | |
|       LastEmitted = LiteralEnd;
 | |
|       break;
 | |
|     }
 | |
|     case '\n':
 | |
|       ++LastEmitted;   // Consume newline character.
 | |
|       O << "\n";       // Indent code with newline.
 | |
|       break;
 | |
|     case '$': {
 | |
|       ++LastEmitted;   // Consume '$' character.
 | |
|       bool Done = true;
 | |
| 
 | |
|       // Handle escapes.
 | |
|       switch (*LastEmitted) {
 | |
|       default: Done = false; break;
 | |
|       case '$':     // $$ -> $
 | |
|         if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
 | |
|           O << '$';
 | |
|         ++LastEmitted;  // Consume second '$' character.
 | |
|         break;
 | |
|       case '(':             // $( -> same as GCC's { character.
 | |
|         ++LastEmitted;      // Consume '(' character.
 | |
|         if (CurVariant != -1) {
 | |
|           cerr << "Nested variants found in inline asm string: '"
 | |
|                << AsmStr << "'\n";
 | |
|           exit(1);
 | |
|         }
 | |
|         CurVariant = 0;     // We're in the first variant now.
 | |
|         break;
 | |
|       case '|':
 | |
|         ++LastEmitted;  // consume '|' character.
 | |
|         if (CurVariant == -1) {
 | |
|           cerr << "Found '|' character outside of variant in inline asm "
 | |
|                << "string: '" << AsmStr << "'\n";
 | |
|           exit(1);
 | |
|         }
 | |
|         ++CurVariant;   // We're in the next variant.
 | |
|         break;
 | |
|       case ')':         // $) -> same as GCC's } char.
 | |
|         ++LastEmitted;  // consume ')' character.
 | |
|         if (CurVariant == -1) {
 | |
|           cerr << "Found '}' character outside of variant in inline asm "
 | |
|                << "string: '" << AsmStr << "'\n";
 | |
|           exit(1);
 | |
|         }
 | |
|         CurVariant = -1;
 | |
|         break;
 | |
|       }
 | |
|       if (Done) break;
 | |
|       
 | |
|       bool HasCurlyBraces = false;
 | |
|       if (*LastEmitted == '{') {     // ${variable}
 | |
|         ++LastEmitted;               // Consume '{' character.
 | |
|         HasCurlyBraces = true;
 | |
|       }
 | |
|       
 | |
|       const char *IDStart = LastEmitted;
 | |
|       char *IDEnd;
 | |
|       errno = 0;
 | |
|       long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
 | |
|       if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
 | |
|         cerr << "Bad $ operand number in inline asm string: '" 
 | |
|              << AsmStr << "'\n";
 | |
|         exit(1);
 | |
|       }
 | |
|       LastEmitted = IDEnd;
 | |
|       
 | |
|       char Modifier[2] = { 0, 0 };
 | |
|       
 | |
|       if (HasCurlyBraces) {
 | |
|         // If we have curly braces, check for a modifier character.  This
 | |
|         // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
 | |
|         if (*LastEmitted == ':') {
 | |
|           ++LastEmitted;    // Consume ':' character.
 | |
|           if (*LastEmitted == 0) {
 | |
|             cerr << "Bad ${:} expression in inline asm string: '" 
 | |
|                  << AsmStr << "'\n";
 | |
|             exit(1);
 | |
|           }
 | |
|           
 | |
|           Modifier[0] = *LastEmitted;
 | |
|           ++LastEmitted;    // Consume modifier character.
 | |
|         }
 | |
|         
 | |
|         if (*LastEmitted != '}') {
 | |
|           cerr << "Bad ${} expression in inline asm string: '" 
 | |
|                << AsmStr << "'\n";
 | |
|           exit(1);
 | |
|         }
 | |
|         ++LastEmitted;    // Consume '}' character.
 | |
|       }
 | |
|       
 | |
|       if ((unsigned)Val >= NumOperands-1) {
 | |
|         cerr << "Invalid $ operand number in inline asm string: '" 
 | |
|              << AsmStr << "'\n";
 | |
|         exit(1);
 | |
|       }
 | |
|       
 | |
|       // Okay, we finally have a value number.  Ask the target to print this
 | |
|       // operand!
 | |
|       if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
 | |
|         unsigned OpNo = 1;
 | |
| 
 | |
|         bool Error = false;
 | |
| 
 | |
|         // Scan to find the machine operand number for the operand.
 | |
|         for (; Val; --Val) {
 | |
|           if (OpNo >= MI->getNumOperands()) break;
 | |
|           unsigned OpFlags = MI->getOperand(OpNo).getImm();
 | |
|           OpNo += (OpFlags >> 3) + 1;
 | |
|         }
 | |
| 
 | |
|         if (OpNo >= MI->getNumOperands()) {
 | |
|           Error = true;
 | |
|         } else {
 | |
|           unsigned OpFlags = MI->getOperand(OpNo).getImm();
 | |
|           ++OpNo;  // Skip over the ID number.
 | |
| 
 | |
|           if (Modifier[0]=='l')  // labels are target independent
 | |
|             printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 
 | |
|                                  false, false, false);
 | |
|           else {
 | |
|             AsmPrinter *AP = const_cast<AsmPrinter*>(this);
 | |
|             if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
 | |
|               Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
 | |
|                                                 Modifier[0] ? Modifier : 0);
 | |
|             } else {
 | |
|               Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
 | |
|                                           Modifier[0] ? Modifier : 0);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (Error) {
 | |
|           cerr << "Invalid operand found in inline asm: '"
 | |
|                << AsmStr << "'\n";
 | |
|           MI->dump();
 | |
|           exit(1);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   O << "\n\t" << TAI->getInlineAsmEnd() << "\n";
 | |
| }
 | |
| 
 | |
| /// printImplicitDef - This method prints the specified machine instruction
 | |
| /// that is an implicit def.
 | |
| void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
 | |
|   O << "\t" << TAI->getCommentString() << " implicit-def: "
 | |
|     << TRI->getAsmName(MI->getOperand(0).getReg()) << "\n";
 | |
| }
 | |
| 
 | |
| /// printLabel - This method prints a local label used by debug and
 | |
| /// exception handling tables.
 | |
| void AsmPrinter::printLabel(const MachineInstr *MI) const {
 | |
|   O << TAI->getPrivateGlobalPrefix()
 | |
|     << "label" << MI->getOperand(0).getImm() << ":\n";
 | |
| }
 | |
| 
 | |
| void AsmPrinter::printLabel(unsigned Id) const {
 | |
|   O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
 | |
| }
 | |
| 
 | |
| /// printDeclare - This method prints a local variable declaration used by
 | |
| /// debug tables.
 | |
| /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
 | |
| /// entry into dwarf table.
 | |
| void AsmPrinter::printDeclare(const MachineInstr *MI) const {
 | |
|   int FI = MI->getOperand(0).getIndex();
 | |
|   GlobalValue *GV = MI->getOperand(1).getGlobal();
 | |
|   MMI->RecordVariable(GV, FI);
 | |
| }
 | |
| 
 | |
| /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
 | |
| /// instruction, using the specified assembler variant.  Targets should
 | |
| /// overried this to format as appropriate.
 | |
| bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
 | |
|                                  unsigned AsmVariant, const char *ExtraCode) {
 | |
|   // Target doesn't support this yet!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
 | |
|                                        unsigned AsmVariant,
 | |
|                                        const char *ExtraCode) {
 | |
|   // Target doesn't support this yet!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// printBasicBlockLabel - This method prints the label for the specified
 | |
| /// MachineBasicBlock
 | |
| void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
 | |
|                                       bool printAlign, 
 | |
|                                       bool printColon,
 | |
|                                       bool printComment) const {
 | |
|   if (printAlign) {
 | |
|     unsigned Align = MBB->getAlignment();
 | |
|     if (Align)
 | |
|       EmitAlignment(Log2_32(Align));
 | |
|   }
 | |
| 
 | |
|   O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << "_"
 | |
|     << MBB->getNumber();
 | |
|   if (printColon)
 | |
|     O << ':';
 | |
|   if (printComment && MBB->getBasicBlock())
 | |
|     O << '\t' << TAI->getCommentString() << ' '
 | |
|       << MBB->getBasicBlock()->getName();
 | |
| }
 | |
| 
 | |
| /// printPICJumpTableSetLabel - This method prints a set label for the
 | |
| /// specified MachineBasicBlock for a jumptable entry.
 | |
| void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 
 | |
|                                            const MachineBasicBlock *MBB) const {
 | |
|   if (!TAI->getSetDirective())
 | |
|     return;
 | |
|   
 | |
|   O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
 | |
|     << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
 | |
|   printBasicBlockLabel(MBB, false, false, false);
 | |
|   O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
 | |
|     << '_' << uid << '\n';
 | |
| }
 | |
| 
 | |
| void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
 | |
|                                            const MachineBasicBlock *MBB) const {
 | |
|   if (!TAI->getSetDirective())
 | |
|     return;
 | |
|   
 | |
|   O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
 | |
|     << getFunctionNumber() << '_' << uid << '_' << uid2
 | |
|     << "_set_" << MBB->getNumber() << ',';
 | |
|   printBasicBlockLabel(MBB, false, false, false);
 | |
|   O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
 | |
|     << '_' << uid << '_' << uid2 << '\n';
 | |
| }
 | |
| 
 | |
| /// printDataDirective - This method prints the asm directive for the
 | |
| /// specified type.
 | |
| void AsmPrinter::printDataDirective(const Type *type) {
 | |
|   const TargetData *TD = TM.getTargetData();
 | |
|   switch (type->getTypeID()) {
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
 | |
|     if (BitWidth <= 8)
 | |
|       O << TAI->getData8bitsDirective();
 | |
|     else if (BitWidth <= 16)
 | |
|       O << TAI->getData16bitsDirective();
 | |
|     else if (BitWidth <= 32)
 | |
|       O << TAI->getData32bitsDirective();
 | |
|     else if (BitWidth <= 64) {
 | |
|       assert(TAI->getData64bitsDirective() &&
 | |
|              "Target cannot handle 64-bit constant exprs!");
 | |
|       O << TAI->getData64bitsDirective();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID:
 | |
|     if (TD->getPointerSize() == 8) {
 | |
|       assert(TAI->getData64bitsDirective() &&
 | |
|              "Target cannot handle 64-bit pointer exprs!");
 | |
|       O << TAI->getData64bitsDirective();
 | |
|     } else {
 | |
|       O << TAI->getData32bitsDirective();
 | |
|     }
 | |
|     break;
 | |
|   case Type::FloatTyID: case Type::DoubleTyID:
 | |
|   case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
 | |
|     assert (0 && "Should have already output floating point constant.");
 | |
|   default:
 | |
|     assert (0 && "Can't handle printing this type of thing");
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmPrinter::printSuffixedName(std::string &Name, const char* Suffix) {
 | |
|   if (Name[0]=='\"')
 | |
|     O << "\"" << TAI->getPrivateGlobalPrefix() << 
 | |
|          Name.substr(1, Name.length()-2) << Suffix << "\"";
 | |
|   else
 | |
|     O << TAI->getPrivateGlobalPrefix() << Name << Suffix;
 | |
| }
 |