llvm-6502/lib/CodeGen
Hal Finkel 71da6755c8 Fix legalization of SETCC with promoted integer intrinsics
If the input operands to SETCC are promoted, we need to make sure that we
either use the promoted form of both operands (or neither); a mixture is not
allowed. This can happen, for example, if a target has a custom promoted
i1-returning intrinsic (where i1 is not a legal type). In this case, we need to
use the promoted form of both operands.

This change only augments the behavior of the existing logic in the case where
the input types (which may or may not have already been legalized) disagree,
and should not affect existing target code because this case would otherwise
cause an assert in the SETCC operand promotion code.

This will be covered by (essentially all of the) tests for the new PPCCTRLoops
infrastructure.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181926 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-15 21:37:27 +00:00
..
AsmPrinter Make getCompileUnit non-const and return the current DIE if it 2013-05-14 21:33:10 +00:00
SelectionDAG Fix legalization of SETCC with promoted integer intrinsics 2013-05-15 21:37:27 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp Only pass 'returned' to target-specific lowering code when the value of entire register is guaranteed to be preserved. 2013-04-30 22:49:28 +00:00
AntiDepBreaker.h
BasicTargetTransformInfo.cpp Document the decision to assume that the cost of floats is twice as much as integers. 2013-04-14 05:55:18 +00:00
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp typo 2013-04-06 04:24:12 +00:00
CallingConvLower.cpp For ARM backend, fixed "byval" attribute support. 2013-05-05 07:48:36 +00:00
CMakeLists.txt Remove the old CodePlacementOpt pass. 2013-03-29 17:14:24 +00:00
CodeGen.cpp This patch breaks up Wrap.h so that it does not have to include all of 2013-05-01 20:59:00 +00:00
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
DwarfEHPrepare.cpp
EarlyIfConversion.cpp Allow MachineTraceMetrics to be used when the model has no resources. 2013-04-02 22:27:45 +00:00
EdgeBundles.cpp
ErlangGC.cpp Add a GC plugin for Erlang 2013-03-25 13:47:46 +00:00
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp Teach if-converter to avoid removing BBs whose addresses are takne. rdar://13782395 2013-05-05 18:03:49 +00:00
InlineSpiller.cpp InlineSpiller: Remove quadratic behavior. 2013-05-05 11:29:14 +00:00
InterferenceCache.cpp
InterferenceCache.h
IntrinsicLowering.cpp
JITCodeEmitter.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp
LiveDebugVariables.cpp Temporarily revert "Change the informal convention of DBG_VALUE so that we can express a" 2013-04-30 22:35:14 +00:00
LiveDebugVariables.h
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
LiveRangeCalc.cpp
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMBuild.txt
LLVMTargetMachine.cpp Remove the MachineMove class. 2013-05-13 01:16:13 +00:00
LocalStackSlotAllocation.cpp LocalStackSlotAllocation improvements 2013-04-30 20:04:37 +00:00
MachineBasicBlock.cpp Optimize MachineBasicBlock::getSymbol by caching the symbol. Since the symbol 2013-04-22 21:21:08 +00:00
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp Don't disable block layout when forcing block alignment. 2013-04-12 01:24:16 +00:00
MachineBranchProbabilityInfo.cpp
MachineCodeEmitter.cpp
MachineCopyPropagation.cpp
MachineCSE.cpp
MachineDominators.cpp
MachineFunction.cpp
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp
MachineInstrBundle.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineModuleInfo.cpp Remove the MachineMove class. 2013-05-13 01:16:13 +00:00
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegisterInfo.cpp Add an MRI::verifyUseLists() function. 2013-04-19 21:40:57 +00:00
MachineScheduler.cpp MI Sched: revert a minor heuristic that snuck in with -misched-vcopy. 2013-04-30 22:10:59 +00:00
MachineSink.cpp
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp Generalize the MachineTraceMetrics public API. 2013-04-27 03:54:20 +00:00
MachineVerifier.cpp Add an MRI::verifyUseLists() function. 2013-04-19 21:40:57 +00:00
Makefile
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Add braces around || in && to pacify GCC. 2013-04-11 11:57:01 +00:00
PeepholeOptimizer.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp Reapply r178845 with fix - Fix bug in PEI's virtual-register scavenging 2013-04-05 22:31:56 +00:00
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp Replace uses of the deprecated std::auto_ptr with OwningPtr. 2013-04-12 10:56:28 +00:00
RegAllocFast.cpp
RegAllocGreedy.cpp Use only explicit bool conversion operators 2013-05-15 07:36:59 +00:00
RegAllocPBQP.cpp Replace uses of the deprecated std::auto_ptr with OwningPtr. 2013-04-15 12:06:32 +00:00
RegisterClassInfo.cpp
RegisterCoalescer.cpp
RegisterCoalescer.h
RegisterPressure.cpp
RegisterScavenging.cpp Reapply r178845 with fix - Fix bug in PEI's virtual-register scavenging 2013-04-05 22:31:56 +00:00
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp MI-Sched: schedule physreg copies. 2013-04-13 06:07:40 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp Add ArrayRef constructor from None, and do the cleanups that this constructor enables 2013-05-05 00:40:33 +00:00
SjLjEHPrepare.cpp Add bitcast to store of personality function. 2013-05-14 16:30:51 +00:00
SlotIndexes.cpp
Spiller.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h
SplitKit.cpp
SplitKit.h
StackColoring.cpp Fix miscompile due to StackColoring incorrectly merging stack slots (PR15707) 2013-05-15 21:15:09 +00:00
StackProtector.cpp
StackSlotColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
TargetLoweringBase.cpp Remove unused ShouldFoldAtomicFences flag. 2013-04-20 12:32:43 +00:00
TargetLoweringObjectFileImpl.cpp Micro-optimization 2013-04-26 21:15:08 +00:00
TargetOptionsImpl.cpp Remove exception handling support from the old JIT. 2013-05-07 20:53:59 +00:00
TargetRegisterInfo.cpp
TargetSchedule.cpp MI-Sched cleanup. If an instruction has no valid sched class, do not attempt to check for a variant. 2013-04-13 06:07:45 +00:00
TwoAddressInstructionPass.cpp TiedTo flag can now be placed on implicit operands. isTwoAddrUse() should look 2013-05-02 02:07:32 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.