mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125317 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			754 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			754 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs several transformations to transform natural loops into a
 | |
| // simpler form, which makes subsequent analyses and transformations simpler and
 | |
| // more effective.
 | |
| //
 | |
| // Loop pre-header insertion guarantees that there is a single, non-critical
 | |
| // entry edge from outside of the loop to the loop header.  This simplifies a
 | |
| // number of analyses and transformations, such as LICM.
 | |
| //
 | |
| // Loop exit-block insertion guarantees that all exit blocks from the loop
 | |
| // (blocks which are outside of the loop that have predecessors inside of the
 | |
| // loop) only have predecessors from inside of the loop (and are thus dominated
 | |
| // by the loop header).  This simplifies transformations such as store-sinking
 | |
| // that are built into LICM.
 | |
| //
 | |
| // This pass also guarantees that loops will have exactly one backedge.
 | |
| //
 | |
| // Indirectbr instructions introduce several complications. If the loop
 | |
| // contains or is entered by an indirectbr instruction, it may not be possible
 | |
| // to transform the loop and make these guarantees. Client code should check
 | |
| // that these conditions are true before relying on them.
 | |
| //
 | |
| // Note that the simplifycfg pass will clean up blocks which are split out but
 | |
| // end up being unnecessary, so usage of this pass should not pessimize
 | |
| // generated code.
 | |
| //
 | |
| // This pass obviously modifies the CFG, but updates loop information and
 | |
| // dominator information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-simplify"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
 | |
| STATISTIC(NumNested  , "Number of nested loops split out");
 | |
| 
 | |
| namespace {
 | |
|   struct LoopSimplify : public LoopPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     LoopSimplify() : LoopPass(ID) {
 | |
|       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     // AA - If we have an alias analysis object to update, this is it, otherwise
 | |
|     // this is null.
 | |
|     AliasAnalysis *AA;
 | |
|     LoopInfo *LI;
 | |
|     DominatorTree *DT;
 | |
|     ScalarEvolution *SE;
 | |
|     Loop *L;
 | |
|     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We need loop information to identify the loops...
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
| 
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
| 
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
 | |
|     }
 | |
| 
 | |
|     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
 | |
|     void verifyAnalysis() const;
 | |
| 
 | |
|   private:
 | |
|     bool ProcessLoop(Loop *L, LPPassManager &LPM);
 | |
|     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | |
|     BasicBlock *InsertPreheaderForLoop(Loop *L);
 | |
|     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
 | |
|     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
 | |
|     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
 | |
|                                   SmallVectorImpl<BasicBlock*> &SplitPreds,
 | |
|                                   Loop *L);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopSimplify::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
 | |
|                 "Canonicalize natural loops", true, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
 | |
|                 "Canonicalize natural loops", true, false)
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| char &llvm::LoopSimplifyID = LoopSimplify::ID;
 | |
| Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | |
| 
 | |
| /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
 | |
| /// it in any convenient order) inserting preheaders...
 | |
| ///
 | |
| bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
 | |
|   L = l;
 | |
|   bool Changed = false;
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   AA = getAnalysisIfAvailable<AliasAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   SE = getAnalysisIfAvailable<ScalarEvolution>();
 | |
| 
 | |
|   Changed |= ProcessLoop(L, LPM);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | |
| /// all loops have preheaders.
 | |
| ///
 | |
| bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
 | |
|   bool Changed = false;
 | |
| ReprocessLoop:
 | |
| 
 | |
|   // Check to see that no blocks (other than the header) in this loop have
 | |
|   // predecessors that are not in the loop.  This is not valid for natural
 | |
|   // loops, but can occur if the blocks are unreachable.  Since they are
 | |
|   // unreachable we can just shamelessly delete those CFG edges!
 | |
|   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | |
|        BB != E; ++BB) {
 | |
|     if (*BB == L->getHeader()) continue;
 | |
| 
 | |
|     SmallPtrSet<BasicBlock*, 4> BadPreds;
 | |
|     for (pred_iterator PI = pred_begin(*BB),
 | |
|          PE = pred_end(*BB); PI != PE; ++PI) {
 | |
|       BasicBlock *P = *PI;
 | |
|       if (!L->contains(P))
 | |
|         BadPreds.insert(P);
 | |
|     }
 | |
| 
 | |
|     // Delete each unique out-of-loop (and thus dead) predecessor.
 | |
|     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
 | |
|          E = BadPreds.end(); I != E; ++I) {
 | |
| 
 | |
|       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
 | |
|                    << (*I)->getName() << "\n");
 | |
| 
 | |
|       // Inform each successor of each dead pred.
 | |
|       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
 | |
|         (*SI)->removePredecessor(*I);
 | |
|       // Zap the dead pred's terminator and replace it with unreachable.
 | |
|       TerminatorInst *TI = (*I)->getTerminator();
 | |
|        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | |
|       (*I)->getTerminator()->eraseFromParent();
 | |
|       new UnreachableInst((*I)->getContext(), *I);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are exiting blocks with branches on undef, resolve the undef in
 | |
|   // the direction which will exit the loop. This will help simplify loop
 | |
|   // trip count computations.
 | |
|   SmallVector<BasicBlock*, 8> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
|   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
 | |
|        E = ExitingBlocks.end(); I != E; ++I)
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
 | |
|       if (BI->isConditional()) {
 | |
|         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
 | |
| 
 | |
|           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
 | |
|                        << (*I)->getName() << "\n");
 | |
| 
 | |
|           BI->setCondition(ConstantInt::get(Cond->getType(),
 | |
|                                             !L->contains(BI->getSuccessor(0))));
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // Does the loop already have a preheader?  If so, don't insert one.
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) {
 | |
|     Preheader = InsertPreheaderForLoop(L);
 | |
|     if (Preheader) {
 | |
|       ++NumInserted;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Next, check to make sure that all exit nodes of the loop only have
 | |
|   // predecessors that are inside of the loop.  This check guarantees that the
 | |
|   // loop preheader/header will dominate the exit blocks.  If the exit block has
 | |
|   // predecessors from outside of the loop, split the edge now.
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|     
 | |
|   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
 | |
|                                                ExitBlocks.end());
 | |
|   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
 | |
|          E = ExitBlockSet.end(); I != E; ++I) {
 | |
|     BasicBlock *ExitBlock = *I;
 | |
|     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | |
|          PI != PE; ++PI)
 | |
|       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
 | |
|       // allowed.
 | |
|       if (!L->contains(*PI)) {
 | |
|         if (RewriteLoopExitBlock(L, ExitBlock)) {
 | |
|           ++NumInserted;
 | |
|           Changed = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If the header has more than two predecessors at this point (from the
 | |
|   // preheader and from multiple backedges), we must adjust the loop.
 | |
|   BasicBlock *LoopLatch = L->getLoopLatch();
 | |
|   if (!LoopLatch) {
 | |
|     // If this is really a nested loop, rip it out into a child loop.  Don't do
 | |
|     // this for loops with a giant number of backedges, just factor them into a
 | |
|     // common backedge instead.
 | |
|     if (L->getNumBackEdges() < 8) {
 | |
|       if (SeparateNestedLoop(L, LPM)) {
 | |
|         ++NumNested;
 | |
|         // This is a big restructuring change, reprocess the whole loop.
 | |
|         Changed = true;
 | |
|         // GCC doesn't tail recursion eliminate this.
 | |
|         goto ReprocessLoop;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we either couldn't, or didn't want to, identify nesting of the loops,
 | |
|     // insert a new block that all backedges target, then make it jump to the
 | |
|     // loop header.
 | |
|     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
 | |
|     if (LoopLatch) {
 | |
|       ++NumInserted;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan over the PHI nodes in the loop header.  Since they now have only two
 | |
|   // incoming values (the loop is canonicalized), we may have simplified the PHI
 | |
|   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin();
 | |
|        (PN = dyn_cast<PHINode>(I++)); )
 | |
|     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
 | |
|       if (AA) AA->deleteValue(PN);
 | |
|       if (SE) SE->forgetValue(PN);
 | |
|       PN->replaceAllUsesWith(V);
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|   // If this loop has multiple exits and the exits all go to the same
 | |
|   // block, attempt to merge the exits. This helps several passes, such
 | |
|   // as LoopRotation, which do not support loops with multiple exits.
 | |
|   // SimplifyCFG also does this (and this code uses the same utility
 | |
|   // function), however this code is loop-aware, where SimplifyCFG is
 | |
|   // not. That gives it the advantage of being able to hoist
 | |
|   // loop-invariant instructions out of the way to open up more
 | |
|   // opportunities, and the disadvantage of having the responsibility
 | |
|   // to preserve dominator information.
 | |
|   bool UniqueExit = true;
 | |
|   if (!ExitBlocks.empty())
 | |
|     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
 | |
|       if (ExitBlocks[i] != ExitBlocks[0]) {
 | |
|         UniqueExit = false;
 | |
|         break;
 | |
|       }
 | |
|   if (UniqueExit) {
 | |
|     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | |
|       BasicBlock *ExitingBlock = ExitingBlocks[i];
 | |
|       if (!ExitingBlock->getSinglePredecessor()) continue;
 | |
|       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|       if (!BI || !BI->isConditional()) continue;
 | |
|       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
 | |
|       if (!CI || CI->getParent() != ExitingBlock) continue;
 | |
| 
 | |
|       // Attempt to hoist out all instructions except for the
 | |
|       // comparison and the branch.
 | |
|       bool AllInvariant = true;
 | |
|       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
 | |
|         Instruction *Inst = I++;
 | |
|         // Skip debug info intrinsics.
 | |
|         if (isa<DbgInfoIntrinsic>(Inst))
 | |
|           continue;
 | |
|         if (Inst == CI)
 | |
|           continue;
 | |
|         if (!L->makeLoopInvariant(Inst, Changed,
 | |
|                                   Preheader ? Preheader->getTerminator() : 0)) {
 | |
|           AllInvariant = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!AllInvariant) continue;
 | |
| 
 | |
|       // The block has now been cleared of all instructions except for
 | |
|       // a comparison and a conditional branch. SimplifyCFG may be able
 | |
|       // to fold it now.
 | |
|       if (!FoldBranchToCommonDest(BI)) continue;
 | |
| 
 | |
|       // Success. The block is now dead, so remove it from the loop,
 | |
|       // update the dominator tree and delete it.
 | |
|       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
 | |
|                    << ExitingBlock->getName() << "\n");
 | |
| 
 | |
|       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
 | |
|       Changed = true;
 | |
|       LI->removeBlock(ExitingBlock);
 | |
| 
 | |
|       DomTreeNode *Node = DT->getNode(ExitingBlock);
 | |
|       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
 | |
|         Node->getChildren();
 | |
|       while (!Children.empty()) {
 | |
|         DomTreeNode *Child = Children.front();
 | |
|         DT->changeImmediateDominator(Child, Node->getIDom());
 | |
|       }
 | |
|       DT->eraseNode(ExitingBlock);
 | |
| 
 | |
|       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
 | |
|       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
 | |
|       ExitingBlock->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | |
| /// preheader, this method is called to insert one.  This method has two phases:
 | |
| /// preheader insertion and analysis updating.
 | |
| ///
 | |
| BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Compute the set of predecessors of the loop that are not in the loop.
 | |
|   SmallVector<BasicBlock*, 8> OutsideBlocks;
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI) {
 | |
|     BasicBlock *P = *PI;
 | |
|     if (!L->contains(P)) {         // Coming in from outside the loop?
 | |
|       // If the loop is branched to from an indirect branch, we won't
 | |
|       // be able to fully transform the loop, because it prohibits
 | |
|       // edge splitting.
 | |
|       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
 | |
| 
 | |
|       // Keep track of it.
 | |
|       OutsideBlocks.push_back(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Split out the loop pre-header.
 | |
|   BasicBlock *NewBB =
 | |
|     SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
 | |
|                            ".preheader", this);
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
 | |
|                << "\n");
 | |
| 
 | |
|   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | |
|   // code layout too horribly.
 | |
|   PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
 | |
| 
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
 | |
| /// blocks.  This method is used to split exit blocks that have predecessors
 | |
| /// outside of the loop.
 | |
| BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | |
|   SmallVector<BasicBlock*, 8> LoopBlocks;
 | |
|   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
 | |
|     BasicBlock *P = *I;
 | |
|     if (L->contains(P)) {
 | |
|       // Don't do this if the loop is exited via an indirect branch.
 | |
|       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
 | |
| 
 | |
|       LoopBlocks.push_back(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 
 | |
|                                              LoopBlocks.size(), ".loopexit",
 | |
|                                              this);
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | |
|                << NewBB->getName() << "\n");
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// AddBlockAndPredsToSet - Add the specified block, and all of its
 | |
| /// predecessors, to the specified set, if it's not already in there.  Stop
 | |
| /// predecessor traversal when we reach StopBlock.
 | |
| static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
 | |
|                                   std::set<BasicBlock*> &Blocks) {
 | |
|   std::vector<BasicBlock *> WorkList;
 | |
|   WorkList.push_back(InputBB);
 | |
|   do {
 | |
|     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
 | |
|     if (Blocks.insert(BB).second && BB != StopBlock)
 | |
|       // If BB is not already processed and it is not a stop block then
 | |
|       // insert its predecessor in the work list
 | |
|       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | |
|         BasicBlock *WBB = *I;
 | |
|         WorkList.push_back(WBB);
 | |
|       }
 | |
|   } while(!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
 | |
| /// PHI node that tells us how to partition the loops.
 | |
| static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
 | |
|                                         AliasAnalysis *AA, LoopInfo *LI) {
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     ++I;
 | |
|     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
 | |
|       // This is a degenerate PHI already, don't modify it!
 | |
|       PN->replaceAllUsesWith(V);
 | |
|       if (AA) AA->deleteValue(PN);
 | |
|       PN->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Scan this PHI node looking for a use of the PHI node by itself.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (PN->getIncomingValue(i) == PN &&
 | |
|           L->contains(PN->getIncomingBlock(i)))
 | |
|         // We found something tasty to remove.
 | |
|         return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
 | |
| // right after some 'outside block' block.  This prevents the preheader from
 | |
| // being placed inside the loop body, e.g. when the loop hasn't been rotated.
 | |
| void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
 | |
|                                        SmallVectorImpl<BasicBlock*> &SplitPreds,
 | |
|                                             Loop *L) {
 | |
|   // Check to see if NewBB is already well placed.
 | |
|   Function::iterator BBI = NewBB; --BBI;
 | |
|   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | |
|     if (&*BBI == SplitPreds[i])
 | |
|       return;
 | |
|   }
 | |
|   
 | |
|   // If it isn't already after an outside block, move it after one.  This is
 | |
|   // always good as it makes the uncond branch from the outside block into a
 | |
|   // fall-through.
 | |
|   
 | |
|   // Figure out *which* outside block to put this after.  Prefer an outside
 | |
|   // block that neighbors a BB actually in the loop.
 | |
|   BasicBlock *FoundBB = 0;
 | |
|   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | |
|     Function::iterator BBI = SplitPreds[i];
 | |
|     if (++BBI != NewBB->getParent()->end() && 
 | |
|         L->contains(BBI)) {
 | |
|       FoundBB = SplitPreds[i];
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If our heuristic for a *good* bb to place this after doesn't find
 | |
|   // anything, just pick something.  It's likely better than leaving it within
 | |
|   // the loop.
 | |
|   if (!FoundBB)
 | |
|     FoundBB = SplitPreds[0];
 | |
|   NewBB->moveAfter(FoundBB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
 | |
| /// them out into a nested loop.  This is important for code that looks like
 | |
| /// this:
 | |
| ///
 | |
| ///  Loop:
 | |
| ///     ...
 | |
| ///     br cond, Loop, Next
 | |
| ///     ...
 | |
| ///     br cond2, Loop, Out
 | |
| ///
 | |
| /// To identify this common case, we look at the PHI nodes in the header of the
 | |
| /// loop.  PHI nodes with unchanging values on one backedge correspond to values
 | |
| /// that change in the "outer" loop, but not in the "inner" loop.
 | |
| ///
 | |
| /// If we are able to separate out a loop, return the new outer loop that was
 | |
| /// created.
 | |
| ///
 | |
| Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
 | |
|   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
 | |
|   if (PN == 0) return 0;  // No known way to partition.
 | |
| 
 | |
|   // Pull out all predecessors that have varying values in the loop.  This
 | |
|   // handles the case when a PHI node has multiple instances of itself as
 | |
|   // arguments.
 | |
|   SmallVector<BasicBlock*, 8> OuterLoopPreds;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) != PN ||
 | |
|         !L->contains(PN->getIncomingBlock(i))) {
 | |
|       // We can't split indirectbr edges.
 | |
|       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
 | |
|         return 0;
 | |
| 
 | |
|       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
 | |
|     }
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
 | |
| 
 | |
|   // If ScalarEvolution is around and knows anything about values in
 | |
|   // this loop, tell it to forget them, because we're about to
 | |
|   // substantially change it.
 | |
|   if (SE)
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
 | |
|                                              OuterLoopPreds.size(),
 | |
|                                              ".outer", this);
 | |
| 
 | |
|   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | |
|   // code layout too horribly.
 | |
|   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
 | |
|   
 | |
|   // Create the new outer loop.
 | |
|   Loop *NewOuter = new Loop();
 | |
| 
 | |
|   // Change the parent loop to use the outer loop as its child now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->replaceChildLoopWith(L, NewOuter);
 | |
|   else
 | |
|     LI->changeTopLevelLoop(L, NewOuter);
 | |
| 
 | |
|   // L is now a subloop of our outer loop.
 | |
|   NewOuter->addChildLoop(L);
 | |
| 
 | |
|   // Add the new loop to the pass manager queue.
 | |
|   LPM.insertLoopIntoQueue(NewOuter);
 | |
| 
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     NewOuter->addBlockEntry(*I);
 | |
| 
 | |
|   // Now reset the header in L, which had been moved by
 | |
|   // SplitBlockPredecessors for the outer loop.
 | |
|   L->moveToHeader(Header);
 | |
| 
 | |
|   // Determine which blocks should stay in L and which should be moved out to
 | |
|   // the Outer loop now.
 | |
|   std::set<BasicBlock*> BlocksInL;
 | |
|   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
 | |
|     BasicBlock *P = *PI;
 | |
|     if (DT->dominates(Header, P))
 | |
|       AddBlockAndPredsToSet(P, Header, BlocksInL);
 | |
|   }
 | |
| 
 | |
|   // Scan all of the loop children of L, moving them to OuterLoop if they are
 | |
|   // not part of the inner loop.
 | |
|   const std::vector<Loop*> &SubLoops = L->getSubLoops();
 | |
|   for (size_t I = 0; I != SubLoops.size(); )
 | |
|     if (BlocksInL.count(SubLoops[I]->getHeader()))
 | |
|       ++I;   // Loop remains in L
 | |
|     else
 | |
|       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
 | |
| 
 | |
|   // Now that we know which blocks are in L and which need to be moved to
 | |
|   // OuterLoop, move any blocks that need it.
 | |
|   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
 | |
|     BasicBlock *BB = L->getBlocks()[i];
 | |
|     if (!BlocksInL.count(BB)) {
 | |
|       // Move this block to the parent, updating the exit blocks sets
 | |
|       L->removeBlockFromLoop(BB);
 | |
|       if ((*LI)[BB] == L)
 | |
|         LI->changeLoopFor(BB, NewOuter);
 | |
|       --i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewOuter;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InsertUniqueBackedgeBlock - This method is called when the specified loop
 | |
| /// has more than one backedge in it.  If this occurs, revector all of these
 | |
| /// backedges to target a new basic block and have that block branch to the loop
 | |
| /// header.  This ensures that loops have exactly one backedge.
 | |
| ///
 | |
| BasicBlock *
 | |
| LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
 | |
|   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | |
| 
 | |
|   // Get information about the loop
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   Function *F = Header->getParent();
 | |
| 
 | |
|   // Unique backedge insertion currently depends on having a preheader.
 | |
|   if (!Preheader)
 | |
|     return 0;
 | |
| 
 | |
|   // Figure out which basic blocks contain back-edges to the loop header.
 | |
|   std::vector<BasicBlock*> BackedgeBlocks;
 | |
|   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
 | |
|     BasicBlock *P = *I;
 | |
| 
 | |
|     // Indirectbr edges cannot be split, so we must fail if we find one.
 | |
|     if (isa<IndirectBrInst>(P->getTerminator()))
 | |
|       return 0;
 | |
| 
 | |
|     if (P != Preheader) BackedgeBlocks.push_back(P);
 | |
|   }
 | |
| 
 | |
|   // Create and insert the new backedge block...
 | |
|   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
 | |
|                                            Header->getName()+".backedge", F);
 | |
|   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
 | |
| 
 | |
|   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
 | |
|                << BEBlock->getName() << "\n");
 | |
| 
 | |
|   // Move the new backedge block to right after the last backedge block.
 | |
|   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | |
|   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | |
| 
 | |
|   // Now that the block has been inserted into the function, create PHI nodes in
 | |
|   // the backedge block which correspond to any PHI nodes in the header block.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
 | |
|                                      BETerminator);
 | |
|     NewPN->reserveOperandSpace(BackedgeBlocks.size());
 | |
|     if (AA) AA->copyValue(PN, NewPN);
 | |
| 
 | |
|     // Loop over the PHI node, moving all entries except the one for the
 | |
|     // preheader over to the new PHI node.
 | |
|     unsigned PreheaderIdx = ~0U;
 | |
|     bool HasUniqueIncomingValue = true;
 | |
|     Value *UniqueValue = 0;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *IBB = PN->getIncomingBlock(i);
 | |
|       Value *IV = PN->getIncomingValue(i);
 | |
|       if (IBB == Preheader) {
 | |
|         PreheaderIdx = i;
 | |
|       } else {
 | |
|         NewPN->addIncoming(IV, IBB);
 | |
|         if (HasUniqueIncomingValue) {
 | |
|           if (UniqueValue == 0)
 | |
|             UniqueValue = IV;
 | |
|           else if (UniqueValue != IV)
 | |
|             HasUniqueIncomingValue = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Delete all of the incoming values from the old PN except the preheader's
 | |
|     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | |
|     if (PreheaderIdx != 0) {
 | |
|       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | |
|       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | |
|     }
 | |
|     // Nuke all entries except the zero'th.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
 | |
|       PN->removeIncomingValue(e-i, false);
 | |
| 
 | |
|     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | |
|     PN->addIncoming(NewPN, BEBlock);
 | |
| 
 | |
|     // As an optimization, if all incoming values in the new PhiNode (which is a
 | |
|     // subset of the incoming values of the old PHI node) have the same value,
 | |
|     // eliminate the PHI Node.
 | |
|     if (HasUniqueIncomingValue) {
 | |
|       NewPN->replaceAllUsesWith(UniqueValue);
 | |
|       if (AA) AA->deleteValue(NewPN);
 | |
|       BEBlock->getInstList().erase(NewPN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | |
|   // backedge blocks to just to the BEBlock instead of the header.
 | |
|   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | |
|     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | |
|       if (TI->getSuccessor(Op) == Header)
 | |
|         TI->setSuccessor(Op, BEBlock);
 | |
|   }
 | |
| 
 | |
|   //===--- Update all analyses which we must preserve now -----------------===//
 | |
| 
 | |
|   // Update Loop Information - we know that this block is now in the current
 | |
|   // loop and all parent loops.
 | |
|   L->addBasicBlockToLoop(BEBlock, LI->getBase());
 | |
| 
 | |
|   // Update dominator information
 | |
|   DT->splitBlock(BEBlock);
 | |
| 
 | |
|   return BEBlock;
 | |
| }
 | |
| 
 | |
| void LoopSimplify::verifyAnalysis() const {
 | |
|   // It used to be possible to just assert L->isLoopSimplifyForm(), however
 | |
|   // with the introduction of indirectbr, there are now cases where it's
 | |
|   // not possible to transform a loop as necessary. We can at least check
 | |
|   // that there is an indirectbr near any time there's trouble.
 | |
| 
 | |
|   // Indirectbr can interfere with preheader and unique backedge insertion.
 | |
|   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
 | |
|     bool HasIndBrPred = false;
 | |
|     for (pred_iterator PI = pred_begin(L->getHeader()),
 | |
|          PE = pred_end(L->getHeader()); PI != PE; ++PI)
 | |
|       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
 | |
|         HasIndBrPred = true;
 | |
|         break;
 | |
|       }
 | |
|     assert(HasIndBrPred &&
 | |
|            "LoopSimplify has no excuse for missing loop header info!");
 | |
|   }
 | |
| 
 | |
|   // Indirectbr can interfere with exit block canonicalization.
 | |
|   if (!L->hasDedicatedExits()) {
 | |
|     bool HasIndBrExiting = false;
 | |
|     SmallVector<BasicBlock*, 8> ExitingBlocks;
 | |
|     L->getExitingBlocks(ExitingBlocks);
 | |
|     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
 | |
|       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
 | |
|         HasIndBrExiting = true;
 | |
|         break;
 | |
|       }
 | |
|     assert(HasIndBrExiting &&
 | |
|            "LoopSimplify has no excuse for missing exit block info!");
 | |
|   }
 | |
| }
 |