mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	to index into structure types and allows arbitrary 32- and 64-bit integer types to index into sequential types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- InstructionWriter.cpp - Functions for writing instructions --------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the routines for encoding instruction opcodes to a 
 | 
						|
// bytecode stream.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "WriterInternals.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
typedef unsigned char uchar;
 | 
						|
 | 
						|
// outputInstructionFormat0 - Output those wierd instructions that have a large
 | 
						|
// number of operands or have large operands themselves...
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table,
 | 
						|
				     unsigned Type, std::deque<uchar> &Out) {
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | 
						|
  output_vbr(Type, Out);                         // Result type
 | 
						|
 | 
						|
  unsigned NumArgs = I->getNumOperands();
 | 
						|
  output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
 | 
						|
                        isa<VAArgInst>(I)), Out);
 | 
						|
 | 
						|
  if (!isa<GetElementPtrInst>(&I)) {
 | 
						|
    for (unsigned i = 0; i < NumArgs; ++i) {
 | 
						|
      int Slot = Table.getSlot(I->getOperand(i));
 | 
						|
      assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
      output_vbr((unsigned)Slot, Out);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | 
						|
      int Slot = Table.getSlot(I->getType());
 | 
						|
      assert(Slot != -1 && "Cast return type unknown?");
 | 
						|
      output_vbr((unsigned)Slot, Out);
 | 
						|
    } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
 | 
						|
      int Slot = Table.getSlot(VAI->getArgType());
 | 
						|
      assert(Slot != -1 && "VarArg argument type unknown?");
 | 
						|
      output_vbr((unsigned)Slot, Out);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    int Slot = Table.getSlot(I->getOperand(0));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr(unsigned(Slot), Out);
 | 
						|
 | 
						|
    // We need to encode the type of sequential type indices into their slot #
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
 | 
						|
         Idx != NumArgs; ++TI, ++Idx) {
 | 
						|
      Slot = Table.getSlot(I->getOperand(Idx));
 | 
						|
      assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    
 | 
						|
      if (isa<SequentialType>(*TI)) {
 | 
						|
        unsigned IdxId;
 | 
						|
        switch (I->getOperand(Idx)->getType()->getPrimitiveID()) {
 | 
						|
        default: assert(0 && "Unknown index type!");
 | 
						|
        case Type::UIntTyID:  IdxId = 0; break;
 | 
						|
        case Type::IntTyID:   IdxId = 1; break;
 | 
						|
        case Type::ULongTyID: IdxId = 2; break;
 | 
						|
        case Type::LongTyID:  IdxId = 3; break;
 | 
						|
        }
 | 
						|
        Slot = (Slot << 2) | IdxId;
 | 
						|
      }
 | 
						|
      output_vbr(unsigned(Slot), Out);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  align32(Out);    // We must maintain correct alignment!
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
 | 
						|
// This are more annoying than most because the signature of the call does not
 | 
						|
// tell us anything about the types of the arguments in the varargs portion.
 | 
						|
// Because of this, we encode (as type 0) all of the argument types explicitly
 | 
						|
// before the argument value.  This really sucks, but you shouldn't be using
 | 
						|
// varargs functions in your code! *death to printf*!
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
 | 
						|
				   const SlotCalculator &Table, unsigned Type,
 | 
						|
				   std::deque<uchar> &Out) {
 | 
						|
  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | 
						|
  output_vbr(Type, Out);                         // Result type (varargs type)
 | 
						|
 | 
						|
  const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  unsigned NumParams = FTy->getNumParams();
 | 
						|
 | 
						|
  unsigned NumFixedOperands;
 | 
						|
  if (isa<CallInst>(I)) {
 | 
						|
    // Output an operand for the callee and each fixed argument, then two for
 | 
						|
    // each variable argument.
 | 
						|
    NumFixedOperands = 1+NumParams;
 | 
						|
  } else {
 | 
						|
    assert(isa<InvokeInst>(I) && "Not call or invoke??");
 | 
						|
    // Output an operand for the callee and destinations, then two for each
 | 
						|
    // variable argument.
 | 
						|
    NumFixedOperands = 3+NumParams;
 | 
						|
  }
 | 
						|
  output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out);
 | 
						|
 | 
						|
  // The type for the function has already been emitted in the type field of the
 | 
						|
  // instruction.  Just emit the slot # now.
 | 
						|
  for (unsigned i = 0; i != NumFixedOperands; ++i) {
 | 
						|
    int Slot = Table.getSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
    // Output Arg Type ID
 | 
						|
    int Slot = Table.getSlot(I->getOperand(i)->getType());
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
    
 | 
						|
    // Output arg ID itself
 | 
						|
    Slot = Table.getSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
  }
 | 
						|
  align32(Out);    // We must maintain correct alignment!
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat1 - Output one operand instructions, knowing that no
 | 
						|
// operand index is >= 2^12.
 | 
						|
//
 | 
						|
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table,
 | 
						|
                                     unsigned *Slots, unsigned Type, 
 | 
						|
                                     std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 1.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 19-08: Resulting type plane
 | 
						|
  // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | 
						|
  //
 | 
						|
  unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
 | 
						|
  //  cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat2 - Output two operand instructions, knowing that no
 | 
						|
// operand index is >= 2^8.
 | 
						|
//
 | 
						|
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table,
 | 
						|
                                     unsigned *Slots, unsigned Type, 
 | 
						|
                                     std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 2.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 15-08: Resulting type plane
 | 
						|
  // 23-16: Operand #1
 | 
						|
  // 31-24: Operand #2  
 | 
						|
  //
 | 
						|
  unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
 | 
						|
                    (Slots[0] << 16) | (Slots[1] << 24);
 | 
						|
  //  cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " 
 | 
						|
  //       << Slots[1] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat3 - Output three operand instructions, knowing that no
 | 
						|
// operand index is >= 2^6.
 | 
						|
//
 | 
						|
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table,
 | 
						|
                                     unsigned *Slots, unsigned Type,
 | 
						|
                                     std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 3.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 13-08: Resulting type plane
 | 
						|
  // 19-14: Operand #1
 | 
						|
  // 25-20: Operand #2
 | 
						|
  // 31-26: Operand #3
 | 
						|
  //
 | 
						|
  unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
 | 
						|
          (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
 | 
						|
  //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " 
 | 
						|
  //     << Slots[1] << " " << Slots[2] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputInstruction(const Instruction &I) {
 | 
						|
  assert(I.getOpcode() < 62 && "Opcode too big???");
 | 
						|
  unsigned Opcode = I.getOpcode();
 | 
						|
  unsigned NumOperands = I.getNumOperands();
 | 
						|
 | 
						|
  // Encode 'volatile load' as 62 and 'volatile store' as 63.
 | 
						|
  if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
 | 
						|
    Opcode = 62;
 | 
						|
  if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
 | 
						|
    Opcode = 63;
 | 
						|
 | 
						|
  // Figure out which type to encode with the instruction.  Typically we want
 | 
						|
  // the type of the first parameter, as opposed to the type of the instruction
 | 
						|
  // (for example, with setcc, we always know it returns bool, but the type of
 | 
						|
  // the first param is actually interesting).  But if we have no arguments
 | 
						|
  // we take the type of the instruction itself.  
 | 
						|
  //
 | 
						|
  const Type *Ty;
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Select:
 | 
						|
  case Instruction::Malloc:
 | 
						|
  case Instruction::Alloca:
 | 
						|
    Ty = I.getType();  // These ALWAYS want to encode the return type
 | 
						|
    break;
 | 
						|
  case Instruction::Store:
 | 
						|
    Ty = I.getOperand(1)->getType();  // Encode the pointer type...
 | 
						|
    assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
 | 
						|
    break;
 | 
						|
  default:              // Otherwise use the default behavior...
 | 
						|
    Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Type;
 | 
						|
  int Slot = Table.getSlot(Ty);
 | 
						|
  assert(Slot != -1 && "Type not available!!?!");
 | 
						|
  Type = (unsigned)Slot;
 | 
						|
 | 
						|
  // Varargs calls and invokes are encoded entirely different from any other
 | 
						|
  // instructions.
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(&I)){
 | 
						|
    const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOperands <= 3) {
 | 
						|
    // Make sure that we take the type number into consideration.  We don't want
 | 
						|
    // to overflow the field size for the instruction format we select.
 | 
						|
    //
 | 
						|
    unsigned MaxOpSlot = Type;
 | 
						|
    unsigned Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != NumOperands; ++i) {
 | 
						|
      int slot = Table.getSlot(I.getOperand(i));
 | 
						|
      assert(slot != -1 && "Broken bytecode!");
 | 
						|
      if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
 | 
						|
      Slots[i] = unsigned(slot);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the special cases for various instructions...
 | 
						|
    if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | 
						|
      // Cast has to encode the destination type as the second argument in the
 | 
						|
      // packet, or else we won't know what type to cast to!
 | 
						|
      Slots[1] = Table.getSlot(I.getType());
 | 
						|
      assert(Slots[1] != ~0U && "Cast return type unknown?");
 | 
						|
      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | 
						|
      NumOperands++;
 | 
						|
    } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
 | 
						|
      Slots[1] = Table.getSlot(VANI->getArgType());
 | 
						|
      assert(Slots[1] != ~0U && "va_next return type unknown?");
 | 
						|
      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | 
						|
      NumOperands++;
 | 
						|
    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
      // We need to encode the type of sequential type indices into their slot #
 | 
						|
      unsigned Idx = 1;
 | 
						|
      for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
 | 
						|
           I != E; ++I, ++Idx)
 | 
						|
        if (isa<SequentialType>(*I)) {
 | 
						|
          unsigned IdxId;
 | 
						|
          switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) {
 | 
						|
          default: assert(0 && "Unknown index type!");
 | 
						|
          case Type::UIntTyID:  IdxId = 0; break;
 | 
						|
          case Type::IntTyID:   IdxId = 1; break;
 | 
						|
          case Type::ULongTyID: IdxId = 2; break;
 | 
						|
          case Type::LongTyID:  IdxId = 3; break;
 | 
						|
          }
 | 
						|
          Slots[Idx] = (Slots[Idx] << 2) | IdxId;
 | 
						|
          if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Decide which instruction encoding to use.  This is determined primarily
 | 
						|
    // by the number of operands, and secondarily by whether or not the max
 | 
						|
    // operand will fit into the instruction encoding.  More operands == fewer
 | 
						|
    // bits per operand.
 | 
						|
    //
 | 
						|
    switch (NumOperands) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
 | 
						|
        outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case 2:
 | 
						|
      if (MaxOpSlot < (1 << 8)) {
 | 
						|
        outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case 3:
 | 
						|
      if (MaxOpSlot < (1 << 6)) {
 | 
						|
        outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we weren't handled before here, we either have a large number of
 | 
						|
  // operands or a large operand index that we are referring to.
 | 
						|
  outputInstructionFormat0(&I, Opcode, Table, Type, Out);
 | 
						|
}
 |