mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
37aabf28b3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1064 91177308-0d34-0410-b5e6-96231b3b80d8
516 lines
18 KiB
C++
516 lines
18 KiB
C++
//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
|
|
//
|
|
// This file implements sparse conditional constant propogation and merging:
|
|
//
|
|
// Specifically, this:
|
|
// * Assumes values are constant unless proven otherwise
|
|
// * Assumes BasicBlocks are dead unless proven otherwise
|
|
// * Proves values to be constant, and replaces them with constants
|
|
// . Proves conditional branches constant, and unconditionalizes them
|
|
// * Folds multiple identical constants in the constant pool together
|
|
//
|
|
// Notice that:
|
|
// * This pass has a habit of making definitions be dead. It is a good idea
|
|
// to to run a DCE pass sometime after running this pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Optimizations/ConstantProp.h"
|
|
#include "llvm/Optimizations/ConstantHandling.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/ConstPoolVals.h"
|
|
#include "llvm/InstrTypes.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/Support/STLExtras.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <set>
|
|
|
|
// InstVal class - This class represents the different lattice values that an
|
|
// instruction may occupy. It is a simple class with value semantics. The
|
|
// potential constant value that is pointed to is owned by the constant pool
|
|
// for the method being optimized.
|
|
//
|
|
class InstVal {
|
|
enum {
|
|
Undefined, // This instruction has no known value
|
|
Constant, // This instruction has a constant value
|
|
// Range, // This instruction is known to fall within a range
|
|
Overdefined // This instruction has an unknown value
|
|
} LatticeValue; // The current lattice position
|
|
ConstPoolVal *ConstantVal; // If Constant value, the current value
|
|
public:
|
|
inline InstVal() : LatticeValue(Undefined), ConstantVal(0) {}
|
|
|
|
// markOverdefined - Return true if this is a new status to be in...
|
|
inline bool markOverdefined() {
|
|
if (LatticeValue != Overdefined) {
|
|
LatticeValue = Overdefined;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// markConstant - Return true if this is a new status for us...
|
|
inline bool markConstant(ConstPoolVal *V) {
|
|
if (LatticeValue != Constant) {
|
|
LatticeValue = Constant;
|
|
ConstantVal = V;
|
|
return true;
|
|
} else {
|
|
assert(ConstantVal == V && "Marking constant with different value");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool isUndefined() const { return LatticeValue == Undefined; }
|
|
inline bool isConstant() const { return LatticeValue == Constant; }
|
|
inline bool isOverdefined() const { return LatticeValue == Overdefined; }
|
|
|
|
inline ConstPoolVal *getConstant() const { return ConstantVal; }
|
|
};
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SCCP Class
|
|
//
|
|
// This class does all of the work of Sparse Conditional Constant Propogation.
|
|
// It's public interface consists of a constructor and a doSCCP() method.
|
|
//
|
|
class SCCP {
|
|
Method *M; // The method that we are working on...
|
|
|
|
set<BasicBlock*> BBExecutable; // The basic blocks that are executable
|
|
map<Value*, InstVal> ValueState; // The state each value is in...
|
|
|
|
vector<Instruction*> InstWorkList; // The instruction work list
|
|
vector<BasicBlock*> BBWorkList; // The BasicBlock work list
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// The public interface for this class
|
|
//
|
|
public:
|
|
|
|
// SCCP Ctor - Save the method to operate on...
|
|
inline SCCP(Method *m) : M(m) {}
|
|
|
|
// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
|
|
// return true if the method was modified.
|
|
bool doSCCP();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// The implementation of this class
|
|
//
|
|
private:
|
|
|
|
// markValueOverdefined - Make a value be marked as "constant". If the value
|
|
// is not already a constant, add it to the instruction work list so that
|
|
// the users of the instruction are updated later.
|
|
//
|
|
inline bool markConstant(Instruction *I, ConstPoolVal *V) {
|
|
//cerr << "markConstant: " << V << " = " << I;
|
|
if (ValueState[I].markConstant(V)) {
|
|
InstWorkList.push_back(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// markValueOverdefined - Make a value be marked as "overdefined". If the
|
|
// value is not already overdefined, add it to the instruction work list so
|
|
// that the users of the instruction are updated later.
|
|
//
|
|
inline bool markOverdefined(Value *V) {
|
|
if (ValueState[V].markOverdefined()) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
//cerr << "markOverdefined: " << V;
|
|
InstWorkList.push_back(I); // Only instructions go on the work list
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// getValueState - Return the InstVal object that corresponds to the value.
|
|
// This function is neccesary because not all values should start out in the
|
|
// underdefined state... MethodArgument's should be overdefined, and constants
|
|
// should be marked as constants. If a value is not known to be an
|
|
// Instruction object, then use this accessor to get its value from the map.
|
|
//
|
|
inline InstVal &getValueState(Value *V) {
|
|
map<Value*, InstVal>::iterator I = ValueState.find(V);
|
|
if (I != ValueState.end()) return I->second; // Common case, in the map
|
|
|
|
if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(V)) {//Constants are constant
|
|
ValueState[CPV].markConstant(CPV);
|
|
} else if (isa<MethodArgument>(V)) { // MethodArgs are overdefined
|
|
ValueState[V].markOverdefined();
|
|
}
|
|
// All others are underdefined by default...
|
|
return ValueState[V];
|
|
}
|
|
|
|
// markExecutable - Mark a basic block as executable, adding it to the BB
|
|
// work list if it is not already executable...
|
|
//
|
|
void markExecutable(BasicBlock *BB) {
|
|
if (BBExecutable.count(BB)) return;
|
|
//cerr << "Marking BB Executable: " << BB;
|
|
BBExecutable.insert(BB); // Basic block is executable!
|
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
|
}
|
|
|
|
|
|
// UpdateInstruction - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate.
|
|
//
|
|
void UpdateInstruction(Instruction *I);
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow.... Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
//
|
|
void OperandChangedState(User *U);
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SCCP Class Implementation
|
|
|
|
|
|
// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
|
|
// return true if the method was modified.
|
|
//
|
|
bool SCCP::doSCCP() {
|
|
// Mark the first block of the method as being executable...
|
|
markExecutable(M->front());
|
|
|
|
// Process the work lists until their are empty!
|
|
while (!BBWorkList.empty() || !InstWorkList.empty()) {
|
|
// Process the instruction work list...
|
|
while (!InstWorkList.empty()) {
|
|
Instruction *I = InstWorkList.back();
|
|
InstWorkList.pop_back();
|
|
|
|
//cerr << "\nPopped off I-WL: " << I;
|
|
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant, or to Overdefined.
|
|
//
|
|
// Update all of the users of this instruction's value...
|
|
//
|
|
for_each(I->use_begin(), I->use_end(),
|
|
bind_obj(this, &SCCP::OperandChangedState));
|
|
}
|
|
|
|
// Process the basic block work list...
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.back();
|
|
BBWorkList.pop_back();
|
|
|
|
//cerr << "\nPopped off BBWL: " << BB;
|
|
|
|
// If this block only has a single successor, mark it as executable as
|
|
// well... if not, terminate the do loop.
|
|
//
|
|
if (BB->getTerminator()->getNumSuccessors() == 1)
|
|
markExecutable(BB->getTerminator()->getSuccessor(0));
|
|
|
|
// Loop over all of the instructions and notify them that they are newly
|
|
// executable...
|
|
for_each(BB->begin(), BB->end(),
|
|
bind_obj(this, &SCCP::UpdateInstruction));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI)
|
|
if (!BBExecutable.count(*BBI))
|
|
cerr << "BasicBlock Dead:" << *BBI;
|
|
#endif
|
|
|
|
|
|
// Iterate over all of the instructions in a method, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
//
|
|
bool MadeChanges = false;
|
|
for (Method::inst_iterator II = M->inst_begin(); II != M->inst_end(); ) {
|
|
Instruction *Inst = *II;
|
|
InstVal &IV = ValueState[Inst];
|
|
if (IV.isConstant()) {
|
|
ConstPoolVal *Const = IV.getConstant();
|
|
// cerr << "Constant: " << Inst << " is: " << Const;
|
|
|
|
// Replaces all of the uses of a variable with uses of the constant.
|
|
Inst->replaceAllUsesWith(Const);
|
|
|
|
// Remove the operator from the list of definitions...
|
|
Inst->getParent()->getInstList().remove(II.getInstructionIterator());
|
|
|
|
// The new constant inherits the old name of the operator...
|
|
if (Inst->hasName() && !Const->hasName())
|
|
Const->setName(Inst->getName(), M->getSymbolTableSure());
|
|
|
|
// Delete the operator now...
|
|
delete Inst;
|
|
|
|
// Incrementing the iterator in an unchecked manner could mess up the
|
|
// internals of 'II'. To make sure everything is happy, tell it we might
|
|
// have broken it.
|
|
II.resyncInstructionIterator();
|
|
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
continue; // Skip the ++II at the end of the loop here...
|
|
} else if (Inst->isTerminator()) {
|
|
MadeChanges |= opt::ConstantFoldTerminator(cast<TerminatorInst>(Inst));
|
|
}
|
|
|
|
++II;
|
|
}
|
|
|
|
// Merge identical constants last: this is important because we may have just
|
|
// introduced constants that already exist, and we don't want to pollute later
|
|
// stages with extraneous constants.
|
|
//
|
|
return MadeChanges;
|
|
}
|
|
|
|
|
|
// UpdateInstruction - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate. This method
|
|
// makes sure to do the following actions:
|
|
//
|
|
// 1. If a phi node merges two constants in, and has conflicting value coming
|
|
// from different branches, or if the PHI node merges in an overdefined
|
|
// value, then the PHI node becomes overdefined.
|
|
// 2. If a phi node merges only constants in, and they all agree on value, the
|
|
// PHI node becomes a constant value equal to that.
|
|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
|
|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
|
|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
|
|
// 6. If a conditional branch has a value that is constant, make the selected
|
|
// destination executable
|
|
// 7. If a conditional branch has a value that is overdefined, make all
|
|
// successors executable.
|
|
//
|
|
void SCCP::UpdateInstruction(Instruction *I) {
|
|
InstVal &IValue = ValueState[I];
|
|
if (IValue.isOverdefined())
|
|
return; // If already overdefined, we aren't going to effect anything
|
|
|
|
switch (I->getOpcode()) {
|
|
//===-----------------------------------------------------------------===//
|
|
// Handle PHI nodes...
|
|
//
|
|
case Instruction::PHINode: {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
unsigned NumValues = PN->getNumIncomingValues(), i;
|
|
InstVal *OperandIV = 0;
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. If they are all
|
|
// constant, and they agree with each other, the PHI becomes the identical
|
|
// constant. If they are constant and don't agree, the PHI is overdefined.
|
|
// If there are no executable operands, the PHI remains undefined.
|
|
//
|
|
for (i = 0; i < NumValues; ++i) {
|
|
if (BBExecutable.count(PN->getIncomingBlock(i))) {
|
|
InstVal &IV = getValueState(PN->getIncomingValue(i));
|
|
if (IV.isUndefined()) continue; // Doesn't influence PHI node.
|
|
if (IV.isOverdefined()) { // PHI node becomes overdefined!
|
|
markOverdefined(PN);
|
|
return;
|
|
}
|
|
|
|
if (OperandIV == 0) { // Grab the first value...
|
|
OperandIV = &IV;
|
|
} else { // Another value is being merged in!
|
|
// There is already a reachable operand. If we conflict with it,
|
|
// then the PHI node becomes overdefined. If we agree with it, we
|
|
// can continue on.
|
|
|
|
// Check to see if there are two different constants merging...
|
|
if (IV.getConstant() != OperandIV->getConstant()) {
|
|
// Yes there is. This means the PHI node is not constant.
|
|
// You must be overdefined poor PHI.
|
|
//
|
|
markOverdefined(I); // The PHI node now becomes overdefined
|
|
return; // I'm done analyzing you
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we exited the loop, this means that the PHI node only has constant
|
|
// arguments that agree with each other(and OperandIV is a pointer to one
|
|
// of their InstVal's) or OperandIV is null because there are no defined
|
|
// incoming arguments. If this is the case, the PHI remains undefined.
|
|
//
|
|
if (OperandIV) {
|
|
assert(OperandIV->isConstant() && "Should only be here for constants!");
|
|
markConstant(I, OperandIV->getConstant()); // Aquire operand value
|
|
}
|
|
return;
|
|
}
|
|
|
|
//===-----------------------------------------------------------------===//
|
|
// Handle instructions that unconditionally provide overdefined values...
|
|
//
|
|
case Instruction::Malloc:
|
|
case Instruction::Free:
|
|
case Instruction::Alloca:
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
// TODO: getfield
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
markOverdefined(I); // Memory and call's are all overdefined
|
|
return;
|
|
|
|
//===-----------------------------------------------------------------===//
|
|
// Handle Terminator instructions...
|
|
//
|
|
case Instruction::Ret: return; // Method return doesn't affect anything
|
|
case Instruction::Br: { // Handle conditional branches...
|
|
BranchInst *BI = cast<BranchInst>(I);
|
|
if (BI->isUnconditional())
|
|
return; // Unconditional branches are already handled!
|
|
|
|
InstVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isOverdefined()) {
|
|
// Overdefined condition variables mean the branch could go either way.
|
|
markExecutable(BI->getSuccessor(0));
|
|
markExecutable(BI->getSuccessor(1));
|
|
} else if (BCValue.isConstant()) {
|
|
// Constant condition variables mean the branch can only go a single way.
|
|
ConstPoolBool *CPB = cast<ConstPoolBool>(BCValue.getConstant());
|
|
if (CPB->getValue()) // If the branch condition is TRUE...
|
|
markExecutable(BI->getSuccessor(0));
|
|
else // Else if the br cond is FALSE...
|
|
markExecutable(BI->getSuccessor(1));
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Instruction::Switch: {
|
|
SwitchInst *SI = cast<SwitchInst>(I);
|
|
InstVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isOverdefined()) { // Overdefined condition? All dests are exe
|
|
for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i)
|
|
markExecutable(Succ);
|
|
} else if (SCValue.isConstant()) {
|
|
ConstPoolVal *CPV = SCValue.getConstant();
|
|
// Make sure to skip the "default value" which isn't a value
|
|
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
|
|
if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
|
|
markExecutable(SI->getSuccessor(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Constant value not equal to any of the branches... must execute
|
|
// default branch then...
|
|
markExecutable(SI->getDefaultDest());
|
|
}
|
|
return;
|
|
}
|
|
|
|
default: break; // Handle math operators as groups.
|
|
} // end switch(I->getOpcode())
|
|
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// Handle Unary instructions...
|
|
// Also treated as unary here, are cast instructions and getelementptr
|
|
// instructions on struct* operands.
|
|
//
|
|
if (isa<UnaryOperator>(I) || isa<CastInst>(I) ||
|
|
(isa<GetElementPtrInst>(I) &&
|
|
cast<GetElementPtrInst>(I)->isStructSelector())) {
|
|
|
|
Value *V = I->getOperand(0);
|
|
InstVal &VState = getValueState(V);
|
|
if (VState.isOverdefined()) { // Inherit overdefinedness of operand
|
|
markOverdefined(I);
|
|
} else if (VState.isConstant()) { // Propogate constant value
|
|
ConstPoolVal *Result = isa<CastInst>(I)
|
|
? opt::ConstantFoldCastInstruction(VState.getConstant(), I->getType())
|
|
: opt::ConstantFoldUnaryInstruction(I->getOpcode(),
|
|
VState.getConstant());
|
|
|
|
if (Result) {
|
|
// This instruction constant folds!
|
|
markConstant(I, Result);
|
|
} else {
|
|
markOverdefined(I); // Don't know how to fold this instruction. :(
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
//===-----------------------------------------------------------------===//
|
|
// Handle Binary instructions...
|
|
//
|
|
if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) {
|
|
Value *V1 = I->getOperand(0);
|
|
Value *V2 = I->getOperand(1);
|
|
|
|
InstVal &V1State = getValueState(V1);
|
|
InstVal &V2State = getValueState(V2);
|
|
if (V1State.isOverdefined() || V2State.isOverdefined()) {
|
|
markOverdefined(I);
|
|
} else if (V1State.isConstant() && V2State.isConstant()) {
|
|
ConstPoolVal *Result =
|
|
opt::ConstantFoldBinaryInstruction(I->getOpcode(),
|
|
V1State.getConstant(),
|
|
V2State.getConstant());
|
|
if (Result) {
|
|
// This instruction constant folds!
|
|
markConstant(I, Result);
|
|
} else {
|
|
markOverdefined(I); // Don't know how to fold this instruction. :(
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Shouldn't get here... either the switch statement or one of the group
|
|
// handlers should have kicked in...
|
|
//
|
|
cerr << "SCCP: Don't know how to handle: " << I;
|
|
markOverdefined(I); // Just in case
|
|
}
|
|
|
|
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow.... Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
//
|
|
void SCCP::OperandChangedState(User *U) {
|
|
// Only instructions use other variable values!
|
|
Instruction *I = cast<Instruction>(U);
|
|
if (!BBExecutable.count(I->getParent())) return; // Inst not executable yet!
|
|
|
|
UpdateInstruction(I);
|
|
}
|
|
|
|
|
|
// DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation
|
|
// to prove whether a value is constant and whether blocks are used.
|
|
//
|
|
bool opt::SCCPPass::doSCCP(Method *M) {
|
|
if (M->isExternal()) return false;
|
|
SCCP S(M);
|
|
return S.doSCCP();
|
|
}
|