mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
3f1a1e0366
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34996 91177308-0d34-0410-b5e6-96231b3b80d8
357 lines
13 KiB
C++
357 lines
13 KiB
C++
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a simple loop unroller. It works best when loops have
|
|
// been canonicalized by the -indvars pass, allowing it to determine the trip
|
|
// counts of loops easily.
|
|
//
|
|
// This pass will multi-block loops only if they contain no non-unrolled
|
|
// subloops. The process of unrolling can produce extraneous basic blocks
|
|
// linked with unconditional branches. This will be corrected in the future.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include <cstdio>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumUnrolled, "Number of loops completely unrolled");
|
|
|
|
namespace {
|
|
cl::opt<unsigned>
|
|
UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
|
|
cl::desc("The cut-off point for loop unrolling"));
|
|
|
|
class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
|
|
LoopInfo *LI; // The current loop information
|
|
public:
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM);
|
|
BasicBlock* FoldBlockIntoPredecessor(BasicBlock* BB);
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addPreservedID(LCSSAID);
|
|
AU.addPreserved<LoopInfo>();
|
|
}
|
|
};
|
|
RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
|
|
}
|
|
|
|
LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
|
|
|
|
/// ApproximateLoopSize - Approximate the size of the loop after it has been
|
|
/// unrolled.
|
|
static unsigned ApproximateLoopSize(const Loop *L) {
|
|
unsigned Size = 0;
|
|
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
|
|
BasicBlock *BB = L->getBlocks()[i];
|
|
Instruction *Term = BB->getTerminator();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
if (isa<PHINode>(I) && BB == L->getHeader()) {
|
|
// Ignore PHI nodes in the header.
|
|
} else if (I->hasOneUse() && I->use_back() == Term) {
|
|
// Ignore instructions only used by the loop terminator.
|
|
} else if (isa<DbgInfoIntrinsic>(I)) {
|
|
// Ignore debug instructions
|
|
} else {
|
|
++Size;
|
|
}
|
|
|
|
// TODO: Ignore expressions derived from PHI and constants if inval of phi
|
|
// is a constant, or if operation is associative. This will get induction
|
|
// variables.
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
// RemapInstruction - Convert the instruction operands from referencing the
|
|
// current values into those specified by ValueMap.
|
|
//
|
|
static inline void RemapInstruction(Instruction *I,
|
|
DenseMap<const Value *, Value*> &ValueMap) {
|
|
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
|
|
Value *Op = I->getOperand(op);
|
|
DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
|
|
if (It != ValueMap.end()) Op = It->second;
|
|
I->setOperand(op, Op);
|
|
}
|
|
}
|
|
|
|
// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
|
|
// only has one predecessor, and that predecessor only has one successor.
|
|
// Returns the new combined block.
|
|
BasicBlock* LoopUnroll::FoldBlockIntoPredecessor(BasicBlock* BB) {
|
|
// Merge basic blocks into their predecessor if there is only one distinct
|
|
// pred, and if there is only one distinct successor of the predecessor, and
|
|
// if there are no PHI nodes.
|
|
//
|
|
BasicBlock *OnlyPred = BB->getSinglePredecessor();
|
|
if (!OnlyPred) return 0;
|
|
|
|
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
|
|
return 0;
|
|
|
|
DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
|
|
|
|
// Resolve any PHI nodes at the start of the block. They are all
|
|
// guaranteed to have exactly one entry if they exist, unless there are
|
|
// multiple duplicate (but guaranteed to be equal) entries for the
|
|
// incoming edges. This occurs when there are multiple edges from
|
|
// OnlyPred to OnlySucc.
|
|
//
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
BB->getInstList().pop_front(); // Delete the phi node...
|
|
}
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
OnlyPred->getInstList().pop_back();
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(OnlyPred);
|
|
|
|
std::string OldName = BB->getName();
|
|
|
|
// Erase basic block from the function...
|
|
LI->removeBlock(BB);
|
|
BB->eraseFromParent();
|
|
|
|
// Inherit predecessors name if it exists...
|
|
if (!OldName.empty() && !OnlyPred->hasName())
|
|
OnlyPred->setName(OldName);
|
|
|
|
return OnlyPred;
|
|
}
|
|
|
|
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
bool Changed = false;
|
|
LI = &getAnalysis<LoopInfo>();
|
|
|
|
BasicBlock* Header = L->getHeader();
|
|
BasicBlock* LatchBlock = L->getLoopLatch();
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
|
if (BI == 0) return Changed; // Must end in a conditional branch
|
|
|
|
ConstantInt *TripCountC = dyn_cast_or_null<ConstantInt>(L->getTripCount());
|
|
if (!TripCountC) return Changed; // Must have constant trip count!
|
|
|
|
// Guard against huge trip counts. This also guards against assertions in
|
|
// APInt from the use of getZExtValue, below.
|
|
if (TripCountC->getValue().getActiveBits() > 32)
|
|
return Changed; // More than 2^32 iterations???
|
|
|
|
uint64_t TripCountFull = TripCountC->getZExtValue();
|
|
if (TripCountFull == 0)
|
|
return Changed; // Zero iteraitons?
|
|
|
|
unsigned LoopSize = ApproximateLoopSize(L);
|
|
DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
|
|
<< "] Loop %" << Header->getName() << " Loop Size = "
|
|
<< LoopSize << " Trip Count = " << TripCountFull << " - ";
|
|
uint64_t Size = (uint64_t)LoopSize*TripCountFull;
|
|
if (Size > UnrollThreshold) {
|
|
DOUT << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n";
|
|
return Changed;
|
|
}
|
|
DOUT << "UNROLLING!\n";
|
|
|
|
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
|
|
|
|
unsigned TripCount = (unsigned)TripCountFull;
|
|
|
|
BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0)));
|
|
|
|
// For the first iteration of the loop, we should use the precloned values for
|
|
// PHI nodes. Insert associations now.
|
|
DenseMap<const Value*, Value*> LastValueMap;
|
|
std::vector<PHINode*> OrigPHINode;
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
OrigPHINode.push_back(PN);
|
|
if (Instruction *I =
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
|
|
if (L->contains(I->getParent()))
|
|
LastValueMap[I] = I;
|
|
}
|
|
|
|
// Remove the exit branch from the loop
|
|
LatchBlock->getInstList().erase(BI);
|
|
|
|
std::vector<BasicBlock*> Headers;
|
|
std::vector<BasicBlock*> Latches;
|
|
Headers.push_back(Header);
|
|
Latches.push_back(LatchBlock);
|
|
|
|
assert(TripCount != 0 && "Trip count of 0 is impossible!");
|
|
for (unsigned It = 1; It != TripCount; ++It) {
|
|
char SuffixBuffer[100];
|
|
sprintf(SuffixBuffer, ".%d", It);
|
|
|
|
std::vector<BasicBlock*> NewBlocks;
|
|
|
|
for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
|
|
E = LoopBlocks.end(); BB != E; ++BB) {
|
|
DenseMap<const Value*, Value*> ValueMap;
|
|
BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
|
|
Header->getParent()->getBasicBlockList().push_back(New);
|
|
|
|
// Loop over all of the PHI nodes in the block, changing them to use the
|
|
// incoming values from the previous block.
|
|
if (*BB == Header)
|
|
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
|
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
|
|
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
|
if (It > 1 && L->contains(InValI->getParent()))
|
|
InVal = LastValueMap[InValI];
|
|
ValueMap[OrigPHINode[i]] = InVal;
|
|
New->getInstList().erase(NewPHI);
|
|
}
|
|
|
|
// Update our running map of newest clones
|
|
LastValueMap[*BB] = New;
|
|
for (DenseMap<const Value*, Value*>::iterator VI = ValueMap.begin(),
|
|
VE = ValueMap.end(); VI != VE; ++VI)
|
|
LastValueMap[VI->first] = VI->second;
|
|
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
// Add phi entries for newly created values to all exit blocks except
|
|
// the successor of the latch block. The successor of the exit block will
|
|
// be updated specially after unrolling all the way.
|
|
if (*BB != LatchBlock)
|
|
for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
|
|
UI != UE; ++UI) {
|
|
Instruction* UseInst = cast<Instruction>(*UI);
|
|
if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
|
|
PHINode* phi = cast<PHINode>(UseInst);
|
|
Value* Incoming = phi->getIncomingValueForBlock(*BB);
|
|
if (isa<Instruction>(Incoming))
|
|
Incoming = LastValueMap[Incoming];
|
|
|
|
phi->addIncoming(Incoming, New);
|
|
}
|
|
}
|
|
|
|
// Keep track of new headers and latches as we create them, so that
|
|
// we can insert the proper branches later.
|
|
if (*BB == Header)
|
|
Headers.push_back(New);
|
|
if (*BB == LatchBlock)
|
|
Latches.push_back(New);
|
|
|
|
NewBlocks.push_back(New);
|
|
}
|
|
|
|
// Remap all instructions in the most recent iteration
|
|
for (unsigned i = 0; i < NewBlocks.size(); ++i)
|
|
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
|
E = NewBlocks[i]->end(); I != E; ++I)
|
|
RemapInstruction(I, LastValueMap);
|
|
}
|
|
|
|
|
|
|
|
// Update PHI nodes that reference the final latch block
|
|
if (TripCount > 1) {
|
|
SmallPtrSet<PHINode*, 8> Users;
|
|
for (Value::use_iterator UI = LatchBlock->use_begin(),
|
|
UE = LatchBlock->use_end(); UI != UE; ++UI)
|
|
if (PHINode* phi = dyn_cast<PHINode>(*UI))
|
|
Users.insert(phi);
|
|
|
|
for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
|
|
SI != SE; ++SI) {
|
|
Value* InVal = (*SI)->getIncomingValueForBlock(LatchBlock);
|
|
if (isa<Instruction>(InVal))
|
|
InVal = LastValueMap[InVal];
|
|
(*SI)->removeIncomingValue(LatchBlock, false);
|
|
if (InVal)
|
|
(*SI)->addIncoming(InVal, cast<BasicBlock>(LastValueMap[LatchBlock]));
|
|
}
|
|
}
|
|
|
|
// Now loop over the PHI nodes in the original block, setting them to their
|
|
// incoming values.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
|
PHINode *PN = OrigPHINode[i];
|
|
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
|
Header->getInstList().erase(PN);
|
|
}
|
|
|
|
// Insert the branches that link the different iterations together
|
|
for (unsigned i = 0; i < Latches.size()-1; ++i) {
|
|
new BranchInst(Headers[i+1], Latches[i]);
|
|
if(BasicBlock* Fold = FoldBlockIntoPredecessor(Headers[i+1])) {
|
|
std::replace(Latches.begin(), Latches.end(), Headers[i+1], Fold);
|
|
std::replace(Headers.begin(), Headers.end(), Headers[i+1], Fold);
|
|
}
|
|
}
|
|
|
|
// Finally, add an unconditional branch to the block to continue into the exit
|
|
// block.
|
|
new BranchInst(LoopExit, Latches[Latches.size()-1]);
|
|
FoldBlockIntoPredecessor(LoopExit);
|
|
|
|
// At this point, the code is well formed. We now do a quick sweep over the
|
|
// inserted code, doing constant propagation and dead code elimination as we
|
|
// go.
|
|
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
|
|
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
|
|
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
|
|
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
|
|
if (isInstructionTriviallyDead(Inst))
|
|
(*BB)->getInstList().erase(Inst);
|
|
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
|
Inst->replaceAllUsesWith(C);
|
|
(*BB)->getInstList().erase(Inst);
|
|
}
|
|
}
|
|
|
|
// Update the loop information for this loop.
|
|
// Remove the loop from the parent.
|
|
LPM.deleteLoopFromQueue(L);
|
|
|
|
++NumUnrolled;
|
|
return true;
|
|
}
|