mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Summary: move the code from BreakCriticalEdges::runOnFunction() into a separate utility function llvm::SplitAllCriticalEdges() so that it can be used independently. No functionality change intended. Test Plan: check-llvm Reviewers: nlewycky Reviewed By: nlewycky Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D6313 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222288 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			344 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
 | |
| // inserting a dummy basic block.  This pass may be "required" by passes that
 | |
| // cannot deal with critical edges.  For this usage, the structure type is
 | |
| // forward declared.  This pass obviously invalidates the CFG, but can update
 | |
| // dominator trees.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "break-crit-edges"
 | |
| 
 | |
| STATISTIC(NumBroken, "Number of blocks inserted");
 | |
| 
 | |
| namespace {
 | |
|   struct BreakCriticalEdges : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     BreakCriticalEdges() : FunctionPass(ID) {
 | |
|       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override {
 | |
|       unsigned N = SplitAllCriticalEdges(F, this);
 | |
|       NumBroken += N;
 | |
|       return N > 0;
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
| 
 | |
|       // No loop canonicalization guarantees are broken by this pass.
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char BreakCriticalEdges::ID = 0;
 | |
| INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
 | |
|                 "Break critical edges in CFG", false, false)
 | |
| 
 | |
| // Publicly exposed interface to pass...
 | |
| char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
 | |
| FunctionPass *llvm::createBreakCriticalEdgesPass() {
 | |
|   return new BreakCriticalEdges();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //    Implementation of the external critical edge manipulation functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
 | |
| /// may require new PHIs in the new exit block. This function inserts the
 | |
| /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
 | |
| /// is the new loop exit block, and DestBB is the old loop exit, now the
 | |
| /// successor of SplitBB.
 | |
| static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
 | |
|                                        BasicBlock *SplitBB,
 | |
|                                        BasicBlock *DestBB) {
 | |
|   // SplitBB shouldn't have anything non-trivial in it yet.
 | |
|   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
 | |
|           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
 | |
| 
 | |
|   // For each PHI in the destination block.
 | |
|   for (BasicBlock::iterator I = DestBB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
 | |
|     Value *V = PN->getIncomingValue(Idx);
 | |
| 
 | |
|     // If the input is a PHI which already satisfies LCSSA, don't create
 | |
|     // a new one.
 | |
|     if (const PHINode *VP = dyn_cast<PHINode>(V))
 | |
|       if (VP->getParent() == SplitBB)
 | |
|         continue;
 | |
| 
 | |
|     // Otherwise a new PHI is needed. Create one and populate it.
 | |
|     PHINode *NewPN =
 | |
|       PHINode::Create(PN->getType(), Preds.size(), "split",
 | |
|                       SplitBB->isLandingPad() ?
 | |
|                       SplitBB->begin() : SplitBB->getTerminator());
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|       NewPN->addIncoming(V, Preds[i]);
 | |
| 
 | |
|     // Update the original PHI.
 | |
|     PN->setIncomingValue(Idx, NewPN);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
 | |
| /// split the critical edge.  This will update DominatorTree information if it
 | |
| /// is available, thus calling this pass will not invalidate either of them.
 | |
| /// This returns the new block if the edge was split, null otherwise.
 | |
| ///
 | |
| /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
 | |
| /// specified successor will be merged into the same critical edge block.
 | |
| /// This is most commonly interesting with switch instructions, which may
 | |
| /// have many edges to any one destination.  This ensures that all edges to that
 | |
| /// dest go to one block instead of each going to a different block, but isn't
 | |
| /// the standard definition of a "critical edge".
 | |
| ///
 | |
| /// It is invalid to call this function on a critical edge that starts at an
 | |
| /// IndirectBrInst.  Splitting these edges will almost always create an invalid
 | |
| /// program because the address of the new block won't be the one that is jumped
 | |
| /// to.
 | |
| ///
 | |
| BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
 | |
|                                     Pass *P, bool MergeIdenticalEdges,
 | |
|                                     bool DontDeleteUselessPhis,
 | |
|                                     bool SplitLandingPads) {
 | |
|   if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr;
 | |
| 
 | |
|   assert(!isa<IndirectBrInst>(TI) &&
 | |
|          "Cannot split critical edge from IndirectBrInst");
 | |
| 
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
 | |
| 
 | |
|   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
 | |
|   // it in this generic function.
 | |
|   if (DestBB->isLandingPad()) return nullptr;
 | |
| 
 | |
|   // Create a new basic block, linking it into the CFG.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
 | |
|                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
 | |
|   // Create our unconditional branch.
 | |
|   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
 | |
|   NewBI->setDebugLoc(TI->getDebugLoc());
 | |
| 
 | |
|   // Branch to the new block, breaking the edge.
 | |
|   TI->setSuccessor(SuccNum, NewBB);
 | |
| 
 | |
|   // Insert the block into the function... right after the block TI lives in.
 | |
|   Function &F = *TIBB->getParent();
 | |
|   Function::iterator FBBI = TIBB;
 | |
|   F.getBasicBlockList().insert(++FBBI, NewBB);
 | |
| 
 | |
|   // If there are any PHI nodes in DestBB, we need to update them so that they
 | |
|   // merge incoming values from NewBB instead of from TIBB.
 | |
|   {
 | |
|     unsigned BBIdx = 0;
 | |
|     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
 | |
|       // We no longer enter through TIBB, now we come in through NewBB.
 | |
|       // Revector exactly one entry in the PHI node that used to come from
 | |
|       // TIBB to come from NewBB.
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|       // Reuse the previous value of BBIdx if it lines up.  In cases where we
 | |
|       // have multiple phi nodes with *lots* of predecessors, this is a speed
 | |
|       // win because we don't have to scan the PHI looking for TIBB.  This
 | |
|       // happens because the BB list of PHI nodes are usually in the same
 | |
|       // order.
 | |
|       if (PN->getIncomingBlock(BBIdx) != TIBB)
 | |
|         BBIdx = PN->getBasicBlockIndex(TIBB);
 | |
|       PN->setIncomingBlock(BBIdx, NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any other edges from TIBB to DestBB, update those to go
 | |
|   // through the split block, making those edges non-critical as well (and
 | |
|   // reducing the number of phi entries in the DestBB if relevant).
 | |
|   if (MergeIdenticalEdges) {
 | |
|     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|       if (TI->getSuccessor(i) != DestBB) continue;
 | |
| 
 | |
|       // Remove an entry for TIBB from DestBB phi nodes.
 | |
|       DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
 | |
| 
 | |
|       // We found another edge to DestBB, go to NewBB instead.
 | |
|       TI->setSuccessor(i, NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   // If we don't have a pass object, we can't update anything...
 | |
|   if (!P) return NewBB;
 | |
| 
 | |
|   DominatorTreeWrapperPass *DTWP =
 | |
|       P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
 | |
| 
 | |
|   // If we have nothing to update, just return.
 | |
|   if (!DT && !LI)
 | |
|     return NewBB;
 | |
| 
 | |
|   // Now update analysis information.  Since the only predecessor of NewBB is
 | |
|   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
 | |
|   // anything, as there are other successors of DestBB.  However, if all other
 | |
|   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
 | |
|   // loop header) then NewBB dominates DestBB.
 | |
|   SmallVector<BasicBlock*, 8> OtherPreds;
 | |
| 
 | |
|   // If there is a PHI in the block, loop over predecessors with it, which is
 | |
|   // faster than iterating pred_begin/end.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (PN->getIncomingBlock(i) != NewBB)
 | |
|         OtherPreds.push_back(PN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
 | |
|          I != E; ++I) {
 | |
|       BasicBlock *P = *I;
 | |
|       if (P != NewBB)
 | |
|         OtherPreds.push_back(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool NewBBDominatesDestBB = true;
 | |
| 
 | |
|   // Should we update DominatorTree information?
 | |
|   if (DT) {
 | |
|     DomTreeNode *TINode = DT->getNode(TIBB);
 | |
| 
 | |
|     // The new block is not the immediate dominator for any other nodes, but
 | |
|     // TINode is the immediate dominator for the new node.
 | |
|     //
 | |
|     if (TINode) {       // Don't break unreachable code!
 | |
|       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
 | |
|       DomTreeNode *DestBBNode = nullptr;
 | |
| 
 | |
|       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
 | |
|       if (!OtherPreds.empty()) {
 | |
|         DestBBNode = DT->getNode(DestBB);
 | |
|         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
 | |
|           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
 | |
|             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
 | |
|           OtherPreds.pop_back();
 | |
|         }
 | |
|         OtherPreds.clear();
 | |
|       }
 | |
| 
 | |
|       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
 | |
|       // doesn't dominate anything.
 | |
|       if (NewBBDominatesDestBB) {
 | |
|         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
 | |
|         DT->changeImmediateDominator(DestBBNode, NewBBNode);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update LoopInfo if it is around.
 | |
|   if (LI) {
 | |
|     if (Loop *TIL = LI->getLoopFor(TIBB)) {
 | |
|       // If one or the other blocks were not in a loop, the new block is not
 | |
|       // either, and thus LI doesn't need to be updated.
 | |
|       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
 | |
|         if (TIL == DestLoop) {
 | |
|           // Both in the same loop, the NewBB joins loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|         } else if (TIL->contains(DestLoop)) {
 | |
|           // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | |
|           TIL->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|         } else if (DestLoop->contains(TIL)) {
 | |
|           // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|         } else {
 | |
|           // Edge from two loops with no containment relation.  Because these
 | |
|           // are natural loops, we know that the destination block must be the
 | |
|           // header of its loop (adding a branch into a loop elsewhere would
 | |
|           // create an irreducible loop).
 | |
|           assert(DestLoop->getHeader() == DestBB &&
 | |
|                  "Should not create irreducible loops!");
 | |
|           if (Loop *P = DestLoop->getParentLoop())
 | |
|             P->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|         }
 | |
|       }
 | |
|       // If TIBB is in a loop and DestBB is outside of that loop, we may need
 | |
|       // to update LoopSimplify form and LCSSA form.
 | |
|       if (!TIL->contains(DestBB) &&
 | |
|           P->mustPreserveAnalysisID(LoopSimplifyID)) {
 | |
|         assert(!TIL->contains(NewBB) &&
 | |
|                "Split point for loop exit is contained in loop!");
 | |
| 
 | |
|         // Update LCSSA form in the newly created exit block.
 | |
|         if (P->mustPreserveAnalysisID(LCSSAID))
 | |
|           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
 | |
| 
 | |
|         // The only that we can break LoopSimplify form by splitting a critical
 | |
|         // edge is if after the split there exists some edge from TIL to DestBB
 | |
|         // *and* the only edge into DestBB from outside of TIL is that of
 | |
|         // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
 | |
|         // is the new exit block and it has no non-loop predecessors. If the
 | |
|         // second isn't true, then DestBB was not in LoopSimplify form prior to
 | |
|         // the split as it had a non-loop predecessor. In both of these cases,
 | |
|         // the predecessor must be directly in TIL, not in a subloop, or again
 | |
|         // LoopSimplify doesn't hold.
 | |
|         SmallVector<BasicBlock *, 4> LoopPreds;
 | |
|         for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
 | |
|              ++I) {
 | |
|           BasicBlock *P = *I;
 | |
|           if (P == NewBB)
 | |
|             continue; // The new block is known.
 | |
|           if (LI->getLoopFor(P) != TIL) {
 | |
|             // No need to re-simplify, it wasn't to start with.
 | |
|             LoopPreds.clear();
 | |
|             break;
 | |
|           }
 | |
|           LoopPreds.push_back(P);
 | |
|         }
 | |
|         if (!LoopPreds.empty()) {
 | |
|           assert(!DestBB->isLandingPad() &&
 | |
|                  "We don't split edges to landing pads!");
 | |
|           BasicBlock *NewExitBB =
 | |
|               SplitBlockPredecessors(DestBB, LoopPreds, "split", P);
 | |
|           if (P->mustPreserveAnalysisID(LCSSAID))
 | |
|             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
 | |
|         }
 | |
|       }
 | |
|       // LCSSA form was updated above for the case where LoopSimplify is
 | |
|       // available, which means that all predecessors of loop exit blocks
 | |
|       // are within the loop. Without LoopSimplify form, it would be
 | |
|       // necessary to insert a new phi.
 | |
|       assert((!P->mustPreserveAnalysisID(LCSSAID) ||
 | |
|               P->mustPreserveAnalysisID(LoopSimplifyID)) &&
 | |
|              "SplitCriticalEdge doesn't know how to update LCCSA form "
 | |
|              "without LoopSimplify!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewBB;
 | |
| }
 |