mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	into TargetOpcodes.h. #include the new TargetOpcodes.h into MachineInstr. Add new inline accessors (like isPHI()) to MachineInstr, and start using them throughout the codebase. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			280 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass moves instructions into successor blocks, when possible, so that
 | |
| // they aren't executed on paths where their results aren't needed.
 | |
| //
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for an LLVM-IR-level sinking pass. It is only designed to sink simple
 | |
| // constructs that are not exposed before lowering and instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-sink"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSunk, "Number of machine instructions sunk");
 | |
| 
 | |
| namespace {
 | |
|   class MachineSinking : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo  *RegInfo; // Machine register information
 | |
|     MachineDominatorTree *DT;   // Machine dominator tree
 | |
|     AliasAnalysis *AA;
 | |
|     BitVector AllocatableSet;   // Which physregs are allocatable?
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineSinking() : MachineFunctionPass(&ID) {}
 | |
|     
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessBlock(MachineBasicBlock &MBB);
 | |
|     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
 | |
|     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
 | |
|   };
 | |
| } // end anonymous namespace
 | |
|   
 | |
| char MachineSinking::ID = 0;
 | |
| static RegisterPass<MachineSinking>
 | |
| X("machine-sink", "Machine code sinking");
 | |
| 
 | |
| FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
 | |
| 
 | |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | |
| /// occur in blocks dominated by the specified block.
 | |
| bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 
 | |
|                                              MachineBasicBlock *MBB) const {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Only makes sense for vregs");
 | |
|   for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
 | |
|        E = RegInfo->use_end(); I != E; ++I) {
 | |
|     // Determine the block of the use.
 | |
|     MachineInstr *UseInst = &*I;
 | |
|     MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (UseInst->isPHI()) {
 | |
|       // PHI nodes use the operand in the predecessor block, not the block with
 | |
|       // the PHI.
 | |
|       UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
 | |
|     }
 | |
|     // Check that it dominates.
 | |
|     if (!DT->dominates(MBB, UseBlock))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DEBUG(dbgs() << "******** Machine Sinking ********\n");
 | |
|   
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   TII = TM.getInstrInfo();
 | |
|   TRI = TM.getRegisterInfo();
 | |
|   RegInfo = &MF.getRegInfo();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   AllocatableSet = TRI->getAllocatableSet(MF);
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
|   
 | |
|   while (1) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Process all basic blocks.
 | |
|     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 
 | |
|          I != E; ++I)
 | |
|       MadeChange |= ProcessBlock(*I);
 | |
|     
 | |
|     // If this iteration over the code changed anything, keep iterating.
 | |
|     if (!MadeChange) break;
 | |
|     EverMadeChange = true;
 | |
|   } 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | |
|   // Can't sink anything out of a block that has less than two successors.
 | |
|   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk the basic block bottom-up.  Remember if we saw a store.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   --I;
 | |
|   bool ProcessedBegin, SawStore = false;
 | |
|   do {
 | |
|     MachineInstr *MI = I;  // The instruction to sink.
 | |
|     
 | |
|     // Predecrement I (if it's not begin) so that it isn't invalidated by
 | |
|     // sinking.
 | |
|     ProcessedBegin = I == MBB.begin();
 | |
|     if (!ProcessedBegin)
 | |
|       --I;
 | |
|     
 | |
|     if (SinkInstruction(MI, SawStore))
 | |
|       ++NumSunk, MadeChange = true;
 | |
|     
 | |
|     // If we just processed the first instruction in the block, we're done.
 | |
|   } while (!ProcessedBegin);
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine
 | |
| /// instruction out of its current block into a successor.
 | |
| bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
 | |
|   // Check if it's safe to move the instruction.
 | |
|   if (!MI->isSafeToMove(TII, SawStore, AA))
 | |
|     return false;
 | |
|   
 | |
|   // FIXME: This should include support for sinking instructions within the
 | |
|   // block they are currently in to shorten the live ranges.  We often get
 | |
|   // instructions sunk into the top of a large block, but it would be better to
 | |
|   // also sink them down before their first use in the block.  This xform has to
 | |
|   // be careful not to *increase* register pressure though, e.g. sinking
 | |
|   // "x = y + z" down if it kills y and z would increase the live ranges of y
 | |
|   // and z and only shrink the live range of x.
 | |
|   
 | |
|   // Loop over all the operands of the specified instruction.  If there is
 | |
|   // anything we can't handle, bail out.
 | |
|   MachineBasicBlock *ParentBlock = MI->getParent();
 | |
|   
 | |
|   // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | |
|   // decide.
 | |
|   MachineBasicBlock *SuccToSinkTo = 0;
 | |
|   
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;  // Ignore non-register operands.
 | |
|     
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!RegInfo->def_empty(Reg))
 | |
|           return false;
 | |
|         if (AllocatableSet.test(Reg))
 | |
|           return false;
 | |
|         // Check for a def among the register's aliases too.
 | |
|         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|           unsigned AliasReg = *Alias;
 | |
|           if (!RegInfo->def_empty(AliasReg))
 | |
|             return false;
 | |
|           if (AllocatableSet.test(AliasReg))
 | |
|             return false;
 | |
|         }
 | |
|       } else if (!MO.isDead()) {
 | |
|         // A def that isn't dead. We can't move it.
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       // Virtual register uses are always safe to sink.
 | |
|       if (MO.isUse()) continue;
 | |
| 
 | |
|       // If it's not safe to move defs of the register class, then abort.
 | |
|       if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
 | |
|         return false;
 | |
|       
 | |
|       // FIXME: This picks a successor to sink into based on having one
 | |
|       // successor that dominates all the uses.  However, there are cases where
 | |
|       // sinking can happen but where the sink point isn't a successor.  For
 | |
|       // example:
 | |
|       //   x = computation
 | |
|       //   if () {} else {}
 | |
|       //   use x
 | |
|       // the instruction could be sunk over the whole diamond for the 
 | |
|       // if/then/else (or loop, etc), allowing it to be sunk into other blocks
 | |
|       // after that.
 | |
|       
 | |
|       // Virtual register defs can only be sunk if all their uses are in blocks
 | |
|       // dominated by one of the successors.
 | |
|       if (SuccToSinkTo) {
 | |
|         // If a previous operand picked a block to sink to, then this operand
 | |
|         // must be sinkable to the same block.
 | |
|         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) 
 | |
|           return false;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise, we should look at all the successors and decide which one
 | |
|       // we should sink to.
 | |
|       for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
 | |
|            E = ParentBlock->succ_end(); SI != E; ++SI) {
 | |
|         if (AllUsesDominatedByBlock(Reg, *SI)) {
 | |
|           SuccToSinkTo = *SI;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // If we couldn't find a block to sink to, ignore this instruction.
 | |
|       if (SuccToSinkTo == 0)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there are no outputs, it must have side-effects.
 | |
|   if (SuccToSinkTo == 0)
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to sink instructions to EH landing pad. Control flow into
 | |
|   // landing pad is implicitly defined.
 | |
|   if (SuccToSinkTo->isLandingPad())
 | |
|     return false;
 | |
|   
 | |
|   // It is not possible to sink an instruction into its own block.  This can
 | |
|   // happen with loops.
 | |
|   if (MI->getParent() == SuccToSinkTo)
 | |
|     return false;
 | |
|   
 | |
|   DEBUG(dbgs() << "Sink instr " << *MI);
 | |
|   DEBUG(dbgs() << "to block " << *SuccToSinkTo);
 | |
|   
 | |
|   // If the block has multiple predecessors, this would introduce computation on
 | |
|   // a path that it doesn't already exist.  We could split the critical edge,
 | |
|   // but for now we just punt.
 | |
|   // FIXME: Split critical edges if not backedges.
 | |
|   if (SuccToSinkTo->pred_size() > 1) {
 | |
|     DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Determine where to insert into.  Skip phi nodes.
 | |
|   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | |
|   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
 | |
|     ++InsertPos;
 | |
|   
 | |
|   // Move the instruction.
 | |
|   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
 | |
|                        ++MachineBasicBlock::iterator(MI));
 | |
|   return true;
 | |
| }
 |