mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
a2dc727ac4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12368 91177308-0d34-0410-b5e6-96231b3b80d8
496 lines
19 KiB
C++
496 lines
19 KiB
C++
//===- Parallelize.cpp - Auto parallelization using DS Graphs -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass that automatically parallelizes a program,
|
|
// using the Cilk multi-threaded runtime system to execute parallel code.
|
|
//
|
|
// The pass uses the Program Dependence Graph (class PDGIterator) to
|
|
// identify parallelizable function calls, i.e., calls whose instances
|
|
// can be executed in parallel with instances of other function calls.
|
|
// (In the future, this should also execute different instances of the same
|
|
// function call in parallel, but that requires parallelizing across
|
|
// loop iterations.)
|
|
//
|
|
// The output of the pass is LLVM code with:
|
|
// (1) all parallelizable functions renamed to flag them as parallelizable;
|
|
// (2) calls to a sync() function introduced at synchronization points.
|
|
// The CWriter recognizes these functions and inserts the appropriate Cilk
|
|
// keywords when writing out C code. This C code must be compiled with cilk2c.
|
|
//
|
|
// Current algorithmic limitations:
|
|
// -- no array dependence analysis
|
|
// -- no parallelization for function calls in different loop iterations
|
|
// (except in unlikely trivial cases)
|
|
//
|
|
// Limitations of using Cilk:
|
|
// -- No parallelism within a function body, e.g., in a loop;
|
|
// -- Simplistic synchronization model requiring all parallel threads
|
|
// created within a function to block at a sync().
|
|
// -- Excessive overhead at "spawned" function calls, which has no benefit
|
|
// once all threads are busy (especially common when the degree of
|
|
// parallelism is low).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Analysis/PgmDependenceGraph.h"
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/Analysis/DSGraph.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Support/hash_set"
|
|
#include "Support/hash_map"
|
|
#include <functional>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Global constants used in marking Cilk functions and function calls.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static const char * const CilkSuffix = ".llvm2cilk";
|
|
static const char * const DummySyncFuncName = "__sync.llvm2cilk";
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Routines to identify Cilk functions, calls to Cilk functions, and syncs.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static bool isCilk(const Function& F) {
|
|
return (F.getName().rfind(CilkSuffix) ==
|
|
F.getName().size() - std::strlen(CilkSuffix));
|
|
}
|
|
|
|
static bool isCilkMain(const Function& F) {
|
|
return F.getName() == "main" + std::string(CilkSuffix);
|
|
}
|
|
|
|
|
|
static bool isCilk(const CallInst& CI) {
|
|
return CI.getCalledFunction() && isCilk(*CI.getCalledFunction());
|
|
}
|
|
|
|
static bool isSync(const CallInst& CI) {
|
|
return CI.getCalledFunction() &&
|
|
CI.getCalledFunction()->getName() == DummySyncFuncName;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// class Cilkifier
|
|
//
|
|
// Code generation pass that transforms code to identify where Cilk keywords
|
|
// should be inserted. This relies on `llvm-dis -c' to print out the keywords.
|
|
//----------------------------------------------------------------------------
|
|
class Cilkifier: public InstVisitor<Cilkifier> {
|
|
Function* DummySyncFunc;
|
|
|
|
// Data used when transforming each function.
|
|
hash_set<const Instruction*> stmtsVisited; // Flags for recursive DFS
|
|
hash_map<const CallInst*, hash_set<CallInst*> > spawnToSyncsMap;
|
|
|
|
// Input data for the transformation.
|
|
const hash_set<Function*>* cilkFunctions; // Set of parallel functions
|
|
PgmDependenceGraph* depGraph;
|
|
|
|
void DFSVisitInstr (Instruction* I,
|
|
Instruction* root,
|
|
hash_set<const Instruction*>& depsOfRoot);
|
|
|
|
public:
|
|
/*ctor*/ Cilkifier (Module& M);
|
|
|
|
// Transform a single function including its name, its call sites, and syncs
|
|
//
|
|
void TransformFunc (Function* F,
|
|
const hash_set<Function*>& cilkFunctions,
|
|
PgmDependenceGraph& _depGraph);
|
|
|
|
// The visitor function that does most of the hard work, via DFSVisitInstr
|
|
//
|
|
void visitCallInst(CallInst& CI);
|
|
};
|
|
|
|
|
|
Cilkifier::Cilkifier(Module& M) {
|
|
// create the dummy Sync function and add it to the Module
|
|
DummySyncFunc = M.getOrInsertFunction(DummySyncFuncName, Type::VoidTy, 0);
|
|
}
|
|
|
|
void Cilkifier::TransformFunc(Function* F,
|
|
const hash_set<Function*>& _cilkFunctions,
|
|
PgmDependenceGraph& _depGraph) {
|
|
// Memoize the information for this function
|
|
cilkFunctions = &_cilkFunctions;
|
|
depGraph = &_depGraph;
|
|
|
|
// Add the marker suffix to the Function name
|
|
// This should automatically mark all calls to the function also!
|
|
F->setName(F->getName() + CilkSuffix);
|
|
|
|
// Insert sync operations for each separate spawn
|
|
visit(*F);
|
|
|
|
// Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e.,
|
|
// two consecutive sync's on a straight-line path with no intervening spawn.
|
|
|
|
}
|
|
|
|
|
|
void Cilkifier::DFSVisitInstr(Instruction* I,
|
|
Instruction* root,
|
|
hash_set<const Instruction*>& depsOfRoot)
|
|
{
|
|
assert(stmtsVisited.find(I) == stmtsVisited.end());
|
|
stmtsVisited.insert(I);
|
|
|
|
// If there is a dependence from root to I, insert Sync and return
|
|
if (depsOfRoot.find(I) != depsOfRoot.end()) {
|
|
// Insert a sync before I and stop searching along this path.
|
|
// If I is a Phi instruction, the dependence can only be an SSA dep.
|
|
// and we need to insert the sync in the predecessor on the appropriate
|
|
// incoming edge!
|
|
CallInst* syncI = 0;
|
|
if (PHINode* phiI = dyn_cast<PHINode>(I)) {
|
|
// check all operands of the Phi and insert before each one
|
|
for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i)
|
|
if (phiI->getIncomingValue(i) == root)
|
|
syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "",
|
|
phiI->getIncomingBlock(i)->getTerminator());
|
|
} else
|
|
syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "", I);
|
|
|
|
// Remember the sync for each spawn to eliminate redundant ones later
|
|
spawnToSyncsMap[cast<CallInst>(root)].insert(syncI);
|
|
|
|
return;
|
|
}
|
|
|
|
// else visit unvisited successors
|
|
if (BranchInst* brI = dyn_cast<BranchInst>(I)) {
|
|
// visit first instruction in each successor BB
|
|
for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i)
|
|
if (stmtsVisited.find(&brI->getSuccessor(i)->front())
|
|
== stmtsVisited.end())
|
|
DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot);
|
|
} else
|
|
if (Instruction* nextI = I->getNext())
|
|
if (stmtsVisited.find(nextI) == stmtsVisited.end())
|
|
DFSVisitInstr(nextI, root, depsOfRoot);
|
|
}
|
|
|
|
|
|
void Cilkifier::visitCallInst(CallInst& CI)
|
|
{
|
|
assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned.");
|
|
if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end())
|
|
return; // not a spawn
|
|
|
|
// Find all the outgoing memory dependences.
|
|
hash_set<const Instruction*> depsOfRoot;
|
|
for (PgmDependenceGraph::iterator DI =
|
|
depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI)
|
|
depsOfRoot.insert(&DI->getSink()->getInstr());
|
|
|
|
// Now find all outgoing SSA dependences to the eventual non-Phi users of
|
|
// the call value (i.e., direct users that are not phis, and for any
|
|
// user that is a Phi, direct non-Phi users of that Phi, and recursively).
|
|
std::vector<const PHINode*> phiUsers;
|
|
hash_set<const PHINode*> phisSeen; // ensures we don't visit a phi twice
|
|
for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI)
|
|
if (const PHINode* phiUser = dyn_cast<PHINode>(*UI)) {
|
|
if (phisSeen.find(phiUser) == phisSeen.end()) {
|
|
phiUsers.push_back(phiUser);
|
|
phisSeen.insert(phiUser);
|
|
}
|
|
}
|
|
else
|
|
depsOfRoot.insert(cast<Instruction>(*UI));
|
|
|
|
// Now we've found the non-Phi users and immediate phi users.
|
|
// Recursively walk the phi users and add their non-phi users.
|
|
for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop_back()) {
|
|
phiUser = phiUsers.back();
|
|
for (Value::use_const_iterator UI=phiUser->use_begin(),
|
|
UE=phiUser->use_end(); UI != UE; ++UI)
|
|
if (const PHINode* pn = dyn_cast<PHINode>(*UI)) {
|
|
if (phisSeen.find(pn) == phisSeen.end()) {
|
|
phiUsers.push_back(pn);
|
|
phisSeen.insert(pn);
|
|
}
|
|
} else
|
|
depsOfRoot.insert(cast<Instruction>(*UI));
|
|
}
|
|
|
|
// Walk paths of the CFG starting at the call instruction and insert
|
|
// one sync before the first dependence on each path, if any.
|
|
if (! depsOfRoot.empty()) {
|
|
stmtsVisited.clear(); // start a new DFS for this CallInst
|
|
assert(CI.getNext() && "Call instruction cannot be a terminator!");
|
|
DFSVisitInstr(CI.getNext(), &CI, depsOfRoot);
|
|
}
|
|
|
|
// Now, eliminate all users of the SSA value of the CallInst, i.e.,
|
|
// if the call instruction returns a value, delete the return value
|
|
// register and replace it by a stack slot.
|
|
if (CI.getType() != Type::VoidTy)
|
|
DemoteRegToStack(CI);
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// class FindParallelCalls
|
|
//
|
|
// Find all CallInst instructions that have at least one other CallInst
|
|
// that is independent. These are the instructions that can produce
|
|
// useful parallelism.
|
|
//----------------------------------------------------------------------------
|
|
|
|
class FindParallelCalls : public InstVisitor<FindParallelCalls> {
|
|
typedef hash_set<CallInst*> DependentsSet;
|
|
typedef DependentsSet::iterator Dependents_iterator;
|
|
typedef DependentsSet::const_iterator Dependents_const_iterator;
|
|
|
|
PgmDependenceGraph& depGraph; // dependence graph for the function
|
|
hash_set<Instruction*> stmtsVisited; // flags for DFS walk of depGraph
|
|
hash_map<CallInst*, bool > completed; // flags marking if a CI is done
|
|
hash_map<CallInst*, DependentsSet> dependents; // dependent CIs for each CI
|
|
|
|
void VisitOutEdges(Instruction* I,
|
|
CallInst* root,
|
|
DependentsSet& depsOfRoot);
|
|
|
|
FindParallelCalls(const FindParallelCalls &); // DO NOT IMPLEMENT
|
|
void operator=(const FindParallelCalls&); // DO NOT IMPLEMENT
|
|
public:
|
|
std::vector<CallInst*> parallelCalls;
|
|
|
|
public:
|
|
/*ctor*/ FindParallelCalls (Function& F, PgmDependenceGraph& DG);
|
|
void visitCallInst (CallInst& CI);
|
|
};
|
|
|
|
|
|
FindParallelCalls::FindParallelCalls(Function& F,
|
|
PgmDependenceGraph& DG)
|
|
: depGraph(DG)
|
|
{
|
|
// Find all CallInsts reachable from each CallInst using a recursive DFS
|
|
visit(F);
|
|
|
|
// Now we've found all CallInsts reachable from each CallInst.
|
|
// Find those CallInsts that are parallel with at least one other CallInst
|
|
// by counting total inEdges and outEdges.
|
|
unsigned long totalNumCalls = completed.size();
|
|
|
|
if (totalNumCalls == 1) {
|
|
// Check first for the special case of a single call instruction not
|
|
// in any loop. It is not parallel, even if it has no dependences
|
|
// (this is why it is a special case).
|
|
//
|
|
// FIXME:
|
|
// THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO
|
|
// PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP.
|
|
return;
|
|
}
|
|
|
|
hash_map<CallInst*, unsigned long> numDeps;
|
|
for (hash_map<CallInst*, DependentsSet>::iterator II = dependents.begin(),
|
|
IE = dependents.end(); II != IE; ++II) {
|
|
CallInst* fromCI = II->first;
|
|
numDeps[fromCI] += II->second.size();
|
|
for (Dependents_iterator DI = II->second.begin(), DE = II->second.end();
|
|
DI != DE; ++DI)
|
|
numDeps[*DI]++; // *DI can be reached from II->first
|
|
}
|
|
|
|
for (hash_map<CallInst*, DependentsSet>::iterator
|
|
II = dependents.begin(), IE = dependents.end(); II != IE; ++II)
|
|
|
|
// FIXME: Remove "- 1" when considering parallelism in loops
|
|
if (numDeps[II->first] < totalNumCalls - 1)
|
|
parallelCalls.push_back(II->first);
|
|
}
|
|
|
|
|
|
void FindParallelCalls::VisitOutEdges(Instruction* I,
|
|
CallInst* root,
|
|
DependentsSet& depsOfRoot)
|
|
{
|
|
assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?");
|
|
stmtsVisited.insert(I);
|
|
|
|
if (CallInst* CI = dyn_cast<CallInst>(I))
|
|
// FIXME: Ignoring parallelism in a loop. Here we're actually *ignoring*
|
|
// a self-dependence in order to get the count comparison right above.
|
|
// When we include loop parallelism, self-dependences should be included.
|
|
if (CI != root) {
|
|
// CallInst root has a path to CallInst I and any calls reachable from I
|
|
depsOfRoot.insert(CI);
|
|
if (completed[CI]) {
|
|
// We have already visited I so we know all nodes it can reach!
|
|
DependentsSet& depsOfI = dependents[CI];
|
|
depsOfRoot.insert(depsOfI.begin(), depsOfI.end());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we reach here, we need to visit all children of I
|
|
for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I);
|
|
! DI.fini(); ++DI) {
|
|
Instruction* sink = &DI->getSink()->getInstr();
|
|
if (stmtsVisited.find(sink) == stmtsVisited.end())
|
|
VisitOutEdges(sink, root, depsOfRoot);
|
|
}
|
|
}
|
|
|
|
|
|
void FindParallelCalls::visitCallInst(CallInst& CI) {
|
|
if (completed[&CI])
|
|
return;
|
|
stmtsVisited.clear(); // clear flags to do a fresh DFS
|
|
|
|
// Visit all children of CI using a recursive walk through dep graph
|
|
DependentsSet& depsOfRoot = dependents[&CI];
|
|
for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI);
|
|
! DI.fini(); ++DI) {
|
|
Instruction* sink = &DI->getSink()->getInstr();
|
|
if (stmtsVisited.find(sink) == stmtsVisited.end())
|
|
VisitOutEdges(sink, &CI, depsOfRoot);
|
|
}
|
|
|
|
completed[&CI] = true;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// class Parallelize
|
|
//
|
|
// (1) Find candidate parallel functions: any function F s.t.
|
|
// there is a call C1 to the function F that is followed or preceded
|
|
// by at least one other call C2 that is independent of this one
|
|
// (i.e., there is no dependence path from C1 to C2 or C2 to C1)
|
|
// (2) Label such a function F as a cilk function.
|
|
// (3) Convert every call to F to a spawn
|
|
// (4) For every function X, insert sync statements so that
|
|
// every spawn is postdominated by a sync before any statements
|
|
// with a data dependence to/from the call site for the spawn
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
namespace {
|
|
class Parallelize: public Pass {
|
|
public:
|
|
/// Driver functions to transform a program
|
|
///
|
|
bool run(Module& M);
|
|
|
|
/// getAnalysisUsage - Modifies extensively so preserve nothing.
|
|
/// Uses the DependenceGraph and the Top-down DS Graph (only to find
|
|
/// all functions called via an indirect call).
|
|
///
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TDDataStructures>();
|
|
AU.addRequired<MemoryDepAnalysis>(); // force this not to be released
|
|
AU.addRequired<PgmDependenceGraph>(); // because it is needed by this
|
|
}
|
|
};
|
|
|
|
RegisterOpt<Parallelize> X("parallel", "Parallelize program using Cilk");
|
|
}
|
|
|
|
|
|
bool Parallelize::run(Module& M) {
|
|
hash_set<Function*> parallelFunctions;
|
|
hash_set<Function*> safeParallelFunctions;
|
|
hash_set<const GlobalValue*> indirectlyCalled;
|
|
|
|
// If there is no main (i.e., for an incomplete program), we can do nothing.
|
|
// If there is a main, mark main as a parallel function.
|
|
Function* mainFunc = M.getMainFunction();
|
|
if (!mainFunc)
|
|
return false;
|
|
|
|
// (1) Find candidate parallel functions and mark them as Cilk functions
|
|
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
|
|
if (! FI->isExternal()) {
|
|
Function* F = FI;
|
|
DSGraph& tdg = getAnalysis<TDDataStructures>().getDSGraph(*F);
|
|
|
|
// All the hard analysis work gets done here!
|
|
FindParallelCalls finder(*F,
|
|
getAnalysis<PgmDependenceGraph>().getGraph(*F));
|
|
/* getAnalysis<MemoryDepAnalysis>().getGraph(*F)); */
|
|
|
|
// Now we know which call instructions are useful to parallelize.
|
|
// Remember those callee functions.
|
|
for (std::vector<CallInst*>::iterator
|
|
CII = finder.parallelCalls.begin(),
|
|
CIE = finder.parallelCalls.end(); CII != CIE; ++CII) {
|
|
// Check if this is a direct call...
|
|
if ((*CII)->getCalledFunction() != NULL) {
|
|
// direct call: if this is to a non-external function,
|
|
// mark it as a parallelizable function
|
|
if (! (*CII)->getCalledFunction()->isExternal())
|
|
parallelFunctions.insert((*CII)->getCalledFunction());
|
|
} else {
|
|
// Indirect call: mark all potential callees as bad
|
|
std::vector<GlobalValue*> callees =
|
|
tdg.getNodeForValue((*CII)->getCalledValue())
|
|
.getNode()->getGlobals();
|
|
indirectlyCalled.insert(callees.begin(), callees.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove all indirectly called functions from the list of Cilk functions.
|
|
for (hash_set<Function*>::iterator PFI = parallelFunctions.begin(),
|
|
PFE = parallelFunctions.end(); PFI != PFE; ++PFI)
|
|
if (indirectlyCalled.count(*PFI) == 0)
|
|
safeParallelFunctions.insert(*PFI);
|
|
|
|
#undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
|
|
#ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
|
|
// Use this indecipherable STLese because erase invalidates iterators.
|
|
// Otherwise we have to copy sets as above.
|
|
hash_set<Function*>::iterator extrasBegin =
|
|
std::remove_if(parallelFunctions.begin(), parallelFunctions.end(),
|
|
compose1(std::bind2nd(std::greater<int>(), 0),
|
|
bind_obj(&indirectlyCalled,
|
|
&hash_set<const GlobalValue*>::count)));
|
|
parallelFunctions.erase(extrasBegin, parallelFunctions.end());
|
|
#endif
|
|
|
|
// If there are no parallel functions, we can just give up.
|
|
if (safeParallelFunctions.empty())
|
|
return false;
|
|
|
|
// Add main as a parallel function since Cilk requires this.
|
|
safeParallelFunctions.insert(mainFunc);
|
|
|
|
// (2,3) Transform each Cilk function and all its calls simply by
|
|
// adding a unique suffix to the function name.
|
|
// This should identify both functions and calls to such functions
|
|
// to the code generator.
|
|
// (4) Also, insert calls to sync at appropriate points.
|
|
Cilkifier cilkifier(M);
|
|
for (hash_set<Function*>::iterator CFI = safeParallelFunctions.begin(),
|
|
CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI) {
|
|
cilkifier.TransformFunc(*CFI, safeParallelFunctions,
|
|
getAnalysis<PgmDependenceGraph>().getGraph(**CFI));
|
|
/* getAnalysis<MemoryDepAnalysis>().getGraph(**CFI)); */
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|