mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-27 14:34:58 +00:00
4c2a2ac196
by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228421 91177308-0d34-0410-b5e6-96231b3b80d8
1409 lines
45 KiB
C++
1409 lines
45 KiB
C++
//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveRange and LiveInterval classes. Given some
|
|
// numbering of each the machine instructions an interval [i, j) is said to be a
|
|
// live range for register v if there is no instruction with number j' >= j
|
|
// such that v is live at j' and there is no instruction with number i' < i such
|
|
// that v is live at i'. In this implementation ranges can have holes,
|
|
// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
|
|
// individual segment is represented as an instance of LiveRange::Segment,
|
|
// and the whole range is represented as an instance of LiveRange.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "RegisterCoalescer.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of various methods necessary for calculation of live ranges.
|
|
// The implementation of the methods abstracts from the concrete type of the
|
|
// segment collection.
|
|
//
|
|
// Implementation of the class follows the Template design pattern. The base
|
|
// class contains generic algorithms that call collection-specific methods,
|
|
// which are provided in concrete subclasses. In order to avoid virtual calls
|
|
// these methods are provided by means of C++ template instantiation.
|
|
// The base class calls the methods of the subclass through method impl(),
|
|
// which casts 'this' pointer to the type of the subclass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename ImplT, typename IteratorT, typename CollectionT>
|
|
class CalcLiveRangeUtilBase {
|
|
protected:
|
|
LiveRange *LR;
|
|
|
|
protected:
|
|
CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
|
|
|
|
public:
|
|
typedef LiveRange::Segment Segment;
|
|
typedef IteratorT iterator;
|
|
|
|
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
|
|
assert(!Def.isDead() && "Cannot define a value at the dead slot");
|
|
|
|
iterator I = impl().find(Def);
|
|
if (I == segments().end()) {
|
|
VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
|
|
impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
|
|
return VNI;
|
|
}
|
|
|
|
Segment *S = segmentAt(I);
|
|
if (SlotIndex::isSameInstr(Def, S->start)) {
|
|
assert(S->valno->def == S->start && "Inconsistent existing value def");
|
|
|
|
// It is possible to have both normal and early-clobber defs of the same
|
|
// register on an instruction. It doesn't make a lot of sense, but it is
|
|
// possible to specify in inline assembly.
|
|
//
|
|
// Just convert everything to early-clobber.
|
|
Def = std::min(Def, S->start);
|
|
if (Def != S->start)
|
|
S->start = S->valno->def = Def;
|
|
return S->valno;
|
|
}
|
|
assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
|
|
VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
|
|
segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
|
|
return VNI;
|
|
}
|
|
|
|
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
|
|
if (segments().empty())
|
|
return nullptr;
|
|
iterator I =
|
|
impl().findInsertPos(Segment(Kill.getPrevSlot(), Kill, nullptr));
|
|
if (I == segments().begin())
|
|
return nullptr;
|
|
--I;
|
|
if (I->end <= StartIdx)
|
|
return nullptr;
|
|
if (I->end < Kill)
|
|
extendSegmentEndTo(I, Kill);
|
|
return I->valno;
|
|
}
|
|
|
|
/// This method is used when we want to extend the segment specified
|
|
/// by I to end at the specified endpoint. To do this, we should
|
|
/// merge and eliminate all segments that this will overlap
|
|
/// with. The iterator is not invalidated.
|
|
void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
|
|
assert(I != segments().end() && "Not a valid segment!");
|
|
Segment *S = segmentAt(I);
|
|
VNInfo *ValNo = I->valno;
|
|
|
|
// Search for the first segment that we can't merge with.
|
|
iterator MergeTo = std::next(I);
|
|
for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
|
|
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
|
|
|
|
// If NewEnd was in the middle of a segment, make sure to get its endpoint.
|
|
S->end = std::max(NewEnd, std::prev(MergeTo)->end);
|
|
|
|
// If the newly formed segment now touches the segment after it and if they
|
|
// have the same value number, merge the two segments into one segment.
|
|
if (MergeTo != segments().end() && MergeTo->start <= I->end &&
|
|
MergeTo->valno == ValNo) {
|
|
S->end = MergeTo->end;
|
|
++MergeTo;
|
|
}
|
|
|
|
// Erase any dead segments.
|
|
segments().erase(std::next(I), MergeTo);
|
|
}
|
|
|
|
/// This method is used when we want to extend the segment specified
|
|
/// by I to start at the specified endpoint. To do this, we should
|
|
/// merge and eliminate all segments that this will overlap with.
|
|
iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
|
|
assert(I != segments().end() && "Not a valid segment!");
|
|
Segment *S = segmentAt(I);
|
|
VNInfo *ValNo = I->valno;
|
|
|
|
// Search for the first segment that we can't merge with.
|
|
iterator MergeTo = I;
|
|
do {
|
|
if (MergeTo == segments().begin()) {
|
|
S->start = NewStart;
|
|
segments().erase(MergeTo, I);
|
|
return I;
|
|
}
|
|
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
|
|
--MergeTo;
|
|
} while (NewStart <= MergeTo->start);
|
|
|
|
// If we start in the middle of another segment, just delete a range and
|
|
// extend that segment.
|
|
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
|
|
segmentAt(MergeTo)->end = S->end;
|
|
} else {
|
|
// Otherwise, extend the segment right after.
|
|
++MergeTo;
|
|
Segment *MergeToSeg = segmentAt(MergeTo);
|
|
MergeToSeg->start = NewStart;
|
|
MergeToSeg->end = S->end;
|
|
}
|
|
|
|
segments().erase(std::next(MergeTo), std::next(I));
|
|
return MergeTo;
|
|
}
|
|
|
|
iterator addSegment(Segment S) {
|
|
SlotIndex Start = S.start, End = S.end;
|
|
iterator I = impl().findInsertPos(S);
|
|
|
|
// If the inserted segment starts in the middle or right at the end of
|
|
// another segment, just extend that segment to contain the segment of S.
|
|
if (I != segments().begin()) {
|
|
iterator B = std::prev(I);
|
|
if (S.valno == B->valno) {
|
|
if (B->start <= Start && B->end >= Start) {
|
|
extendSegmentEndTo(B, End);
|
|
return B;
|
|
}
|
|
} else {
|
|
// Check to make sure that we are not overlapping two live segments with
|
|
// different valno's.
|
|
assert(B->end <= Start &&
|
|
"Cannot overlap two segments with differing ValID's"
|
|
" (did you def the same reg twice in a MachineInstr?)");
|
|
}
|
|
}
|
|
|
|
// Otherwise, if this segment ends in the middle of, or right next
|
|
// to, another segment, merge it into that segment.
|
|
if (I != segments().end()) {
|
|
if (S.valno == I->valno) {
|
|
if (I->start <= End) {
|
|
I = extendSegmentStartTo(I, Start);
|
|
|
|
// If S is a complete superset of a segment, we may need to grow its
|
|
// endpoint as well.
|
|
if (End > I->end)
|
|
extendSegmentEndTo(I, End);
|
|
return I;
|
|
}
|
|
} else {
|
|
// Check to make sure that we are not overlapping two live segments with
|
|
// different valno's.
|
|
assert(I->start >= End &&
|
|
"Cannot overlap two segments with differing ValID's");
|
|
}
|
|
}
|
|
|
|
// Otherwise, this is just a new segment that doesn't interact with
|
|
// anything.
|
|
// Insert it.
|
|
return segments().insert(I, S);
|
|
}
|
|
|
|
private:
|
|
ImplT &impl() { return *static_cast<ImplT *>(this); }
|
|
|
|
CollectionT &segments() { return impl().segmentsColl(); }
|
|
|
|
Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instantiation of the methods for calculation of live ranges
|
|
// based on a segment vector.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class CalcLiveRangeUtilVector;
|
|
typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
|
|
LiveRange::Segments> CalcLiveRangeUtilVectorBase;
|
|
|
|
class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
|
|
public:
|
|
CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
|
|
|
|
private:
|
|
friend CalcLiveRangeUtilVectorBase;
|
|
|
|
LiveRange::Segments &segmentsColl() { return LR->segments; }
|
|
|
|
void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
|
|
|
|
iterator find(SlotIndex Pos) { return LR->find(Pos); }
|
|
|
|
iterator findInsertPos(Segment S) {
|
|
return std::upper_bound(LR->begin(), LR->end(), S.start);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instantiation of the methods for calculation of live ranges
|
|
// based on a segment set.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class CalcLiveRangeUtilSet;
|
|
typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
|
|
LiveRange::SegmentSet::iterator,
|
|
LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
|
|
|
|
class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
|
|
public:
|
|
CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
|
|
|
|
private:
|
|
friend CalcLiveRangeUtilSetBase;
|
|
|
|
LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
|
|
|
|
void insertAtEnd(const Segment &S) {
|
|
LR->segmentSet->insert(LR->segmentSet->end(), S);
|
|
}
|
|
|
|
iterator find(SlotIndex Pos) {
|
|
iterator I =
|
|
LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
|
|
if (I == LR->segmentSet->begin())
|
|
return I;
|
|
iterator PrevI = std::prev(I);
|
|
if (Pos < (*PrevI).end)
|
|
return PrevI;
|
|
return I;
|
|
}
|
|
|
|
iterator findInsertPos(Segment S) {
|
|
iterator I = LR->segmentSet->upper_bound(S);
|
|
if (I != LR->segmentSet->end() && !(S.start < *I))
|
|
++I;
|
|
return I;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveRange methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LiveRange::iterator LiveRange::find(SlotIndex Pos) {
|
|
// This algorithm is basically std::upper_bound.
|
|
// Unfortunately, std::upper_bound cannot be used with mixed types until we
|
|
// adopt C++0x. Many libraries can do it, but not all.
|
|
if (empty() || Pos >= endIndex())
|
|
return end();
|
|
iterator I = begin();
|
|
size_t Len = size();
|
|
do {
|
|
size_t Mid = Len >> 1;
|
|
if (Pos < I[Mid].end)
|
|
Len = Mid;
|
|
else
|
|
I += Mid + 1, Len -= Mid + 1;
|
|
} while (Len);
|
|
return I;
|
|
}
|
|
|
|
VNInfo *LiveRange::createDeadDef(SlotIndex Def,
|
|
VNInfo::Allocator &VNInfoAllocator) {
|
|
// Use the segment set, if it is available.
|
|
if (segmentSet != nullptr)
|
|
return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
|
|
// Otherwise use the segment vector.
|
|
return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
|
|
}
|
|
|
|
// overlaps - Return true if the intersection of the two live ranges is
|
|
// not empty.
|
|
//
|
|
// An example for overlaps():
|
|
//
|
|
// 0: A = ...
|
|
// 4: B = ...
|
|
// 8: C = A + B ;; last use of A
|
|
//
|
|
// The live ranges should look like:
|
|
//
|
|
// A = [3, 11)
|
|
// B = [7, x)
|
|
// C = [11, y)
|
|
//
|
|
// A->overlaps(C) should return false since we want to be able to join
|
|
// A and C.
|
|
//
|
|
bool LiveRange::overlapsFrom(const LiveRange& other,
|
|
const_iterator StartPos) const {
|
|
assert(!empty() && "empty range");
|
|
const_iterator i = begin();
|
|
const_iterator ie = end();
|
|
const_iterator j = StartPos;
|
|
const_iterator je = other.end();
|
|
|
|
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
|
|
StartPos != other.end() && "Bogus start position hint!");
|
|
|
|
if (i->start < j->start) {
|
|
i = std::upper_bound(i, ie, j->start);
|
|
if (i != begin()) --i;
|
|
} else if (j->start < i->start) {
|
|
++StartPos;
|
|
if (StartPos != other.end() && StartPos->start <= i->start) {
|
|
assert(StartPos < other.end() && i < end());
|
|
j = std::upper_bound(j, je, i->start);
|
|
if (j != other.begin()) --j;
|
|
}
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
if (j == je) return false;
|
|
|
|
while (i != ie) {
|
|
if (i->start > j->start) {
|
|
std::swap(i, j);
|
|
std::swap(ie, je);
|
|
}
|
|
|
|
if (i->end > j->start)
|
|
return true;
|
|
++i;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
|
|
const SlotIndexes &Indexes) const {
|
|
assert(!empty() && "empty range");
|
|
if (Other.empty())
|
|
return false;
|
|
|
|
// Use binary searches to find initial positions.
|
|
const_iterator I = find(Other.beginIndex());
|
|
const_iterator IE = end();
|
|
if (I == IE)
|
|
return false;
|
|
const_iterator J = Other.find(I->start);
|
|
const_iterator JE = Other.end();
|
|
if (J == JE)
|
|
return false;
|
|
|
|
for (;;) {
|
|
// J has just been advanced to satisfy:
|
|
assert(J->end >= I->start);
|
|
// Check for an overlap.
|
|
if (J->start < I->end) {
|
|
// I and J are overlapping. Find the later start.
|
|
SlotIndex Def = std::max(I->start, J->start);
|
|
// Allow the overlap if Def is a coalescable copy.
|
|
if (Def.isBlock() ||
|
|
!CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
|
|
return true;
|
|
}
|
|
// Advance the iterator that ends first to check for more overlaps.
|
|
if (J->end > I->end) {
|
|
std::swap(I, J);
|
|
std::swap(IE, JE);
|
|
}
|
|
// Advance J until J->end >= I->start.
|
|
do
|
|
if (++J == JE)
|
|
return false;
|
|
while (J->end < I->start);
|
|
}
|
|
}
|
|
|
|
/// overlaps - Return true if the live range overlaps an interval specified
|
|
/// by [Start, End).
|
|
bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
|
|
assert(Start < End && "Invalid range");
|
|
const_iterator I = std::lower_bound(begin(), end(), End);
|
|
return I != begin() && (--I)->end > Start;
|
|
}
|
|
|
|
bool LiveRange::covers(const LiveRange &Other) const {
|
|
if (empty())
|
|
return Other.empty();
|
|
|
|
const_iterator I = begin();
|
|
for (const Segment &O : Other.segments) {
|
|
I = advanceTo(I, O.start);
|
|
if (I == end() || I->start > O.start)
|
|
return false;
|
|
|
|
// Check adjacent live segments and see if we can get behind O.end.
|
|
while (I->end < O.end) {
|
|
const_iterator Last = I;
|
|
// Get next segment and abort if it was not adjacent.
|
|
++I;
|
|
if (I == end() || Last->end != I->start)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
|
|
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
|
|
/// it can be nuked later.
|
|
void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
|
|
if (ValNo->id == getNumValNums()-1) {
|
|
do {
|
|
valnos.pop_back();
|
|
} while (!valnos.empty() && valnos.back()->isUnused());
|
|
} else {
|
|
ValNo->markUnused();
|
|
}
|
|
}
|
|
|
|
/// RenumberValues - Renumber all values in order of appearance and delete the
|
|
/// remaining unused values.
|
|
void LiveRange::RenumberValues() {
|
|
SmallPtrSet<VNInfo*, 8> Seen;
|
|
valnos.clear();
|
|
for (const Segment &S : segments) {
|
|
VNInfo *VNI = S.valno;
|
|
if (!Seen.insert(VNI).second)
|
|
continue;
|
|
assert(!VNI->isUnused() && "Unused valno used by live segment");
|
|
VNI->id = (unsigned)valnos.size();
|
|
valnos.push_back(VNI);
|
|
}
|
|
}
|
|
|
|
void LiveRange::addSegmentToSet(Segment S) {
|
|
CalcLiveRangeUtilSet(this).addSegment(S);
|
|
}
|
|
|
|
LiveRange::iterator LiveRange::addSegment(Segment S) {
|
|
// Use the segment set, if it is available.
|
|
if (segmentSet != nullptr) {
|
|
addSegmentToSet(S);
|
|
return end();
|
|
}
|
|
// Otherwise use the segment vector.
|
|
return CalcLiveRangeUtilVector(this).addSegment(S);
|
|
}
|
|
|
|
void LiveRange::append(const Segment S) {
|
|
// Check that the segment belongs to the back of the list.
|
|
assert(segments.empty() || segments.back().end <= S.start);
|
|
segments.push_back(S);
|
|
}
|
|
|
|
/// extendInBlock - If this range is live before Kill in the basic
|
|
/// block that starts at StartIdx, extend it to be live up to Kill and return
|
|
/// the value. If there is no live range before Kill, return NULL.
|
|
VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
|
|
// Use the segment set, if it is available.
|
|
if (segmentSet != nullptr)
|
|
return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
|
|
// Otherwise use the segment vector.
|
|
return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
|
|
}
|
|
|
|
/// Remove the specified segment from this range. Note that the segment must
|
|
/// be in a single Segment in its entirety.
|
|
void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
|
|
bool RemoveDeadValNo) {
|
|
// Find the Segment containing this span.
|
|
iterator I = find(Start);
|
|
assert(I != end() && "Segment is not in range!");
|
|
assert(I->containsInterval(Start, End)
|
|
&& "Segment is not entirely in range!");
|
|
|
|
// If the span we are removing is at the start of the Segment, adjust it.
|
|
VNInfo *ValNo = I->valno;
|
|
if (I->start == Start) {
|
|
if (I->end == End) {
|
|
if (RemoveDeadValNo) {
|
|
// Check if val# is dead.
|
|
bool isDead = true;
|
|
for (const_iterator II = begin(), EE = end(); II != EE; ++II)
|
|
if (II != I && II->valno == ValNo) {
|
|
isDead = false;
|
|
break;
|
|
}
|
|
if (isDead) {
|
|
// Now that ValNo is dead, remove it.
|
|
markValNoForDeletion(ValNo);
|
|
}
|
|
}
|
|
|
|
segments.erase(I); // Removed the whole Segment.
|
|
} else
|
|
I->start = End;
|
|
return;
|
|
}
|
|
|
|
// Otherwise if the span we are removing is at the end of the Segment,
|
|
// adjust the other way.
|
|
if (I->end == End) {
|
|
I->end = Start;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are splitting the Segment into two pieces.
|
|
SlotIndex OldEnd = I->end;
|
|
I->end = Start; // Trim the old segment.
|
|
|
|
// Insert the new one.
|
|
segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
|
|
}
|
|
|
|
/// removeValNo - Remove all the segments defined by the specified value#.
|
|
/// Also remove the value# from value# list.
|
|
void LiveRange::removeValNo(VNInfo *ValNo) {
|
|
if (empty()) return;
|
|
iterator I = end();
|
|
iterator E = begin();
|
|
do {
|
|
--I;
|
|
if (I->valno == ValNo)
|
|
segments.erase(I);
|
|
} while (I != E);
|
|
// Now that ValNo is dead, remove it.
|
|
markValNoForDeletion(ValNo);
|
|
}
|
|
|
|
void LiveRange::join(LiveRange &Other,
|
|
const int *LHSValNoAssignments,
|
|
const int *RHSValNoAssignments,
|
|
SmallVectorImpl<VNInfo *> &NewVNInfo) {
|
|
verify();
|
|
|
|
// Determine if any of our values are mapped. This is uncommon, so we want
|
|
// to avoid the range scan if not.
|
|
bool MustMapCurValNos = false;
|
|
unsigned NumVals = getNumValNums();
|
|
unsigned NumNewVals = NewVNInfo.size();
|
|
for (unsigned i = 0; i != NumVals; ++i) {
|
|
unsigned LHSValID = LHSValNoAssignments[i];
|
|
if (i != LHSValID ||
|
|
(NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
|
|
MustMapCurValNos = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we have to apply a mapping to our base range assignment, rewrite it now.
|
|
if (MustMapCurValNos && !empty()) {
|
|
// Map the first live range.
|
|
|
|
iterator OutIt = begin();
|
|
OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
|
|
for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
|
|
VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
|
|
assert(nextValNo && "Huh?");
|
|
|
|
// If this live range has the same value # as its immediate predecessor,
|
|
// and if they are neighbors, remove one Segment. This happens when we
|
|
// have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
|
|
if (OutIt->valno == nextValNo && OutIt->end == I->start) {
|
|
OutIt->end = I->end;
|
|
} else {
|
|
// Didn't merge. Move OutIt to the next segment,
|
|
++OutIt;
|
|
OutIt->valno = nextValNo;
|
|
if (OutIt != I) {
|
|
OutIt->start = I->start;
|
|
OutIt->end = I->end;
|
|
}
|
|
}
|
|
}
|
|
// If we merge some segments, chop off the end.
|
|
++OutIt;
|
|
segments.erase(OutIt, end());
|
|
}
|
|
|
|
// Rewrite Other values before changing the VNInfo ids.
|
|
// This can leave Other in an invalid state because we're not coalescing
|
|
// touching segments that now have identical values. That's OK since Other is
|
|
// not supposed to be valid after calling join();
|
|
for (Segment &S : Other.segments)
|
|
S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
|
|
|
|
// Update val# info. Renumber them and make sure they all belong to this
|
|
// LiveRange now. Also remove dead val#'s.
|
|
unsigned NumValNos = 0;
|
|
for (unsigned i = 0; i < NumNewVals; ++i) {
|
|
VNInfo *VNI = NewVNInfo[i];
|
|
if (VNI) {
|
|
if (NumValNos >= NumVals)
|
|
valnos.push_back(VNI);
|
|
else
|
|
valnos[NumValNos] = VNI;
|
|
VNI->id = NumValNos++; // Renumber val#.
|
|
}
|
|
}
|
|
if (NumNewVals < NumVals)
|
|
valnos.resize(NumNewVals); // shrinkify
|
|
|
|
// Okay, now insert the RHS live segments into the LHS.
|
|
LiveRangeUpdater Updater(this);
|
|
for (Segment &S : Other.segments)
|
|
Updater.add(S);
|
|
}
|
|
|
|
/// Merge all of the segments in RHS into this live range as the specified
|
|
/// value number. The segments in RHS are allowed to overlap with segments in
|
|
/// the current range, but only if the overlapping segments have the
|
|
/// specified value number.
|
|
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
|
|
VNInfo *LHSValNo) {
|
|
LiveRangeUpdater Updater(this);
|
|
for (const Segment &S : RHS.segments)
|
|
Updater.add(S.start, S.end, LHSValNo);
|
|
}
|
|
|
|
/// MergeValueInAsValue - Merge all of the live segments of a specific val#
|
|
/// in RHS into this live range as the specified value number.
|
|
/// The segments in RHS are allowed to overlap with segments in the
|
|
/// current range, it will replace the value numbers of the overlaped
|
|
/// segments with the specified value number.
|
|
void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
|
|
const VNInfo *RHSValNo,
|
|
VNInfo *LHSValNo) {
|
|
LiveRangeUpdater Updater(this);
|
|
for (const Segment &S : RHS.segments)
|
|
if (S.valno == RHSValNo)
|
|
Updater.add(S.start, S.end, LHSValNo);
|
|
}
|
|
|
|
/// MergeValueNumberInto - This method is called when two value nubmers
|
|
/// are found to be equivalent. This eliminates V1, replacing all
|
|
/// segments with the V1 value number with the V2 value number. This can
|
|
/// cause merging of V1/V2 values numbers and compaction of the value space.
|
|
VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
|
|
assert(V1 != V2 && "Identical value#'s are always equivalent!");
|
|
|
|
// This code actually merges the (numerically) larger value number into the
|
|
// smaller value number, which is likely to allow us to compactify the value
|
|
// space. The only thing we have to be careful of is to preserve the
|
|
// instruction that defines the result value.
|
|
|
|
// Make sure V2 is smaller than V1.
|
|
if (V1->id < V2->id) {
|
|
V1->copyFrom(*V2);
|
|
std::swap(V1, V2);
|
|
}
|
|
|
|
// Merge V1 segments into V2.
|
|
for (iterator I = begin(); I != end(); ) {
|
|
iterator S = I++;
|
|
if (S->valno != V1) continue; // Not a V1 Segment.
|
|
|
|
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
|
|
// range, extend it.
|
|
if (S != begin()) {
|
|
iterator Prev = S-1;
|
|
if (Prev->valno == V2 && Prev->end == S->start) {
|
|
Prev->end = S->end;
|
|
|
|
// Erase this live-range.
|
|
segments.erase(S);
|
|
I = Prev+1;
|
|
S = Prev;
|
|
}
|
|
}
|
|
|
|
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
|
|
// Ensure that it is a V2 live-range.
|
|
S->valno = V2;
|
|
|
|
// If we can merge it into later V2 segments, do so now. We ignore any
|
|
// following V1 segments, as they will be merged in subsequent iterations
|
|
// of the loop.
|
|
if (I != end()) {
|
|
if (I->start == S->end && I->valno == V2) {
|
|
S->end = I->end;
|
|
segments.erase(I);
|
|
I = S+1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that V1 is dead, remove it.
|
|
markValNoForDeletion(V1);
|
|
|
|
return V2;
|
|
}
|
|
|
|
void LiveRange::flushSegmentSet() {
|
|
assert(segmentSet != nullptr && "segment set must have been created");
|
|
assert(
|
|
segments.empty() &&
|
|
"segment set can be used only initially before switching to the array");
|
|
segments.append(segmentSet->begin(), segmentSet->end());
|
|
delete segmentSet;
|
|
segmentSet = nullptr;
|
|
verify();
|
|
}
|
|
|
|
void LiveInterval::freeSubRange(SubRange *S) {
|
|
S->~SubRange();
|
|
// Memory was allocated with BumpPtr allocator and is not freed here.
|
|
}
|
|
|
|
void LiveInterval::removeEmptySubRanges() {
|
|
SubRange **NextPtr = &SubRanges;
|
|
SubRange *I = *NextPtr;
|
|
while (I != nullptr) {
|
|
if (!I->empty()) {
|
|
NextPtr = &I->Next;
|
|
I = *NextPtr;
|
|
continue;
|
|
}
|
|
// Skip empty subranges until we find the first nonempty one.
|
|
do {
|
|
SubRange *Next = I->Next;
|
|
freeSubRange(I);
|
|
I = Next;
|
|
} while (I != nullptr && I->empty());
|
|
*NextPtr = I;
|
|
}
|
|
}
|
|
|
|
void LiveInterval::clearSubRanges() {
|
|
for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
|
|
Next = I->Next;
|
|
freeSubRange(I);
|
|
}
|
|
SubRanges = nullptr;
|
|
}
|
|
|
|
/// Helper function for constructMainRangeFromSubranges(): Search the CFG
|
|
/// backwards until we find a place covered by a LiveRange segment that actually
|
|
/// has a valno set.
|
|
static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
|
|
const MachineBasicBlock *MBB,
|
|
SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
|
|
// We start the search at the end of MBB.
|
|
SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
|
|
// In our use case we can't live the area covered by the live segments without
|
|
// finding an actual VNI def.
|
|
LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
|
|
assert(I != LR.end());
|
|
LiveRange::Segment &S = *I;
|
|
if (S.valno != nullptr)
|
|
return S.valno;
|
|
|
|
VNInfo *VNI = nullptr;
|
|
// Continue at predecessors (we could even go to idom with domtree available).
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
// Avoid going in circles.
|
|
if (!Visited.insert(Pred).second)
|
|
continue;
|
|
|
|
VNI = searchForVNI(Indexes, LR, Pred, Visited);
|
|
if (VNI != nullptr) {
|
|
S.valno = VNI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return VNI;
|
|
}
|
|
|
|
static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
|
|
SmallPtrSet<const MachineBasicBlock*, 5> Visited;
|
|
for (LiveRange::Segment &S : LI.segments) {
|
|
if (S.valno != nullptr)
|
|
continue;
|
|
// This can only happen at the begin of a basic block.
|
|
assert(S.start.isBlock() && "valno should only be missing at block begin");
|
|
|
|
Visited.clear();
|
|
const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
|
|
if (VNI != nullptr) {
|
|
S.valno = VNI;
|
|
break;
|
|
}
|
|
}
|
|
assert(S.valno != nullptr && "could not determine valno");
|
|
}
|
|
}
|
|
|
|
void LiveInterval::constructMainRangeFromSubranges(
|
|
const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
|
|
// The basic observations on which this algorithm is based:
|
|
// - Each Def/ValNo in a subrange must have a corresponding def on the main
|
|
// range, but not further defs/valnos are necessary.
|
|
// - If any of the subranges is live at a point the main liverange has to be
|
|
// live too, conversily if no subrange is live the main range mustn't be
|
|
// live either.
|
|
// We do this by scannig through all the subranges simultaneously creating new
|
|
// segments in the main range as segments start/ends come up in the subranges.
|
|
assert(hasSubRanges() && "expected subranges to be present");
|
|
assert(segments.empty() && valnos.empty() && "expected empty main range");
|
|
|
|
// Collect subrange, iterator pairs for the walk and determine first and last
|
|
// SlotIndex involved.
|
|
SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
|
|
SlotIndex First;
|
|
SlotIndex Last;
|
|
for (const SubRange &SR : subranges()) {
|
|
if (SR.empty())
|
|
continue;
|
|
SRs.push_back(std::make_pair(&SR, SR.begin()));
|
|
if (!First.isValid() || SR.segments.front().start < First)
|
|
First = SR.segments.front().start;
|
|
if (!Last.isValid() || SR.segments.back().end > Last)
|
|
Last = SR.segments.back().end;
|
|
}
|
|
|
|
// Walk over all subranges simultaneously.
|
|
Segment CurrentSegment;
|
|
bool ConstructingSegment = false;
|
|
bool NeedVNIFixup = false;
|
|
unsigned ActiveMask = 0;
|
|
SlotIndex Pos = First;
|
|
while (true) {
|
|
SlotIndex NextPos = Last;
|
|
enum {
|
|
NOTHING,
|
|
BEGIN_SEGMENT,
|
|
END_SEGMENT,
|
|
} Event = NOTHING;
|
|
// Which subregister lanes are affected by the current event.
|
|
unsigned EventMask = 0;
|
|
// Whether a BEGIN_SEGMENT is also a valno definition point.
|
|
bool IsDef = false;
|
|
// Find the next begin or end of a subrange segment. Combine masks if we
|
|
// have multiple begins/ends at the same position. Ends take precedence over
|
|
// Begins.
|
|
for (auto &SRP : SRs) {
|
|
const SubRange &SR = *SRP.first;
|
|
const_iterator &I = SRP.second;
|
|
// Advance iterator of subrange to a segment involving Pos; the earlier
|
|
// segments are already merged at this point.
|
|
while (I != SR.end() &&
|
|
(I->end < Pos ||
|
|
(I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
|
|
++I;
|
|
if (I == SR.end())
|
|
continue;
|
|
if ((ActiveMask & SR.LaneMask) == 0 &&
|
|
Pos <= I->start && I->start <= NextPos) {
|
|
// Merge multiple begins at the same position.
|
|
if (I->start == NextPos && Event == BEGIN_SEGMENT) {
|
|
EventMask |= SR.LaneMask;
|
|
IsDef |= I->valno->def == I->start;
|
|
} else if (I->start < NextPos || Event != END_SEGMENT) {
|
|
Event = BEGIN_SEGMENT;
|
|
NextPos = I->start;
|
|
EventMask = SR.LaneMask;
|
|
IsDef = I->valno->def == I->start;
|
|
}
|
|
}
|
|
if ((ActiveMask & SR.LaneMask) != 0 &&
|
|
Pos <= I->end && I->end <= NextPos) {
|
|
// Merge multiple ends at the same position.
|
|
if (I->end == NextPos && Event == END_SEGMENT)
|
|
EventMask |= SR.LaneMask;
|
|
else {
|
|
Event = END_SEGMENT;
|
|
NextPos = I->end;
|
|
EventMask = SR.LaneMask;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Advance scan position.
|
|
Pos = NextPos;
|
|
if (Event == BEGIN_SEGMENT) {
|
|
if (ConstructingSegment && IsDef) {
|
|
// Finish previous segment because we have to start a new one.
|
|
CurrentSegment.end = Pos;
|
|
append(CurrentSegment);
|
|
ConstructingSegment = false;
|
|
}
|
|
|
|
// Start a new segment if necessary.
|
|
if (!ConstructingSegment) {
|
|
// Determine value number for the segment.
|
|
VNInfo *VNI;
|
|
if (IsDef) {
|
|
VNI = getNextValue(Pos, VNIAllocator);
|
|
} else {
|
|
// We have to reuse an existing value number, if we are lucky
|
|
// then we already passed one of the predecessor blocks and determined
|
|
// its value number (with blocks in reverse postorder this would be
|
|
// always true but we have no such guarantee).
|
|
assert(Pos.isBlock());
|
|
const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
|
|
// See if any of the predecessor blocks has a lower number and a VNI
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
|
|
VNI = getVNInfoBefore(PredEnd);
|
|
if (VNI != nullptr)
|
|
break;
|
|
}
|
|
// Def will come later: We have to do an extra fixup pass.
|
|
if (VNI == nullptr)
|
|
NeedVNIFixup = true;
|
|
}
|
|
|
|
CurrentSegment.start = Pos;
|
|
CurrentSegment.valno = VNI;
|
|
ConstructingSegment = true;
|
|
}
|
|
ActiveMask |= EventMask;
|
|
} else if (Event == END_SEGMENT) {
|
|
assert(ConstructingSegment);
|
|
// Finish segment if no lane is active anymore.
|
|
ActiveMask &= ~EventMask;
|
|
if (ActiveMask == 0) {
|
|
CurrentSegment.end = Pos;
|
|
append(CurrentSegment);
|
|
ConstructingSegment = false;
|
|
}
|
|
} else {
|
|
// We reached the end of the last subranges and can stop.
|
|
assert(Event == NOTHING);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We might not be able to assign new valnos for all segments if the basic
|
|
// block containing the definition comes after a segment using the valno.
|
|
// Do a fixup pass for this uncommon case.
|
|
if (NeedVNIFixup)
|
|
determineMissingVNIs(Indexes, *this);
|
|
|
|
assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
|
|
verify();
|
|
}
|
|
|
|
unsigned LiveInterval::getSize() const {
|
|
unsigned Sum = 0;
|
|
for (const Segment &S : segments)
|
|
Sum += S.start.distance(S.end);
|
|
return Sum;
|
|
}
|
|
|
|
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
|
|
return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void LiveRange::Segment::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
#endif
|
|
|
|
void LiveRange::print(raw_ostream &OS) const {
|
|
if (empty())
|
|
OS << "EMPTY";
|
|
else {
|
|
for (const Segment &S : segments) {
|
|
OS << S;
|
|
assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
|
|
}
|
|
}
|
|
|
|
// Print value number info.
|
|
if (getNumValNums()) {
|
|
OS << " ";
|
|
unsigned vnum = 0;
|
|
for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
|
|
++i, ++vnum) {
|
|
const VNInfo *vni = *i;
|
|
if (vnum) OS << " ";
|
|
OS << vnum << "@";
|
|
if (vni->isUnused()) {
|
|
OS << "x";
|
|
} else {
|
|
OS << vni->def;
|
|
if (vni->isPHIDef())
|
|
OS << "-phi";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LiveInterval::print(raw_ostream &OS) const {
|
|
OS << PrintReg(reg) << ' ';
|
|
super::print(OS);
|
|
// Print subranges
|
|
for (const SubRange &SR : subranges()) {
|
|
OS << format(" L%04X ", SR.LaneMask) << SR;
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void LiveRange::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
|
|
void LiveInterval::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
void LiveRange::verify() const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
assert(I->start.isValid());
|
|
assert(I->end.isValid());
|
|
assert(I->start < I->end);
|
|
assert(I->valno != nullptr);
|
|
assert(I->valno->id < valnos.size());
|
|
assert(I->valno == valnos[I->valno->id]);
|
|
if (std::next(I) != E) {
|
|
assert(I->end <= std::next(I)->start);
|
|
if (I->end == std::next(I)->start)
|
|
assert(I->valno != std::next(I)->valno);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
|
|
super::verify();
|
|
|
|
// Make sure SubRanges are fine and LaneMasks are disjunct.
|
|
unsigned Mask = 0;
|
|
unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
|
|
for (const SubRange &SR : subranges()) {
|
|
// Subrange lanemask should be disjunct to any previous subrange masks.
|
|
assert((Mask & SR.LaneMask) == 0);
|
|
Mask |= SR.LaneMask;
|
|
|
|
// subrange mask should not contained in maximum lane mask for the vreg.
|
|
assert((Mask & ~MaxMask) == 0);
|
|
|
|
SR.verify();
|
|
// Main liverange should cover subrange.
|
|
assert(covers(SR));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveRangeUpdater class
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LiveRangeUpdater class always maintains these invariants:
|
|
//
|
|
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
|
|
// This is the initial state, and the state created by flush().
|
|
// In this state, isDirty() returns false.
|
|
//
|
|
// Otherwise, segments are kept in three separate areas:
|
|
//
|
|
// 1. [begin; WriteI) at the front of LR.
|
|
// 2. [ReadI; end) at the back of LR.
|
|
// 3. Spills.
|
|
//
|
|
// - LR.begin() <= WriteI <= ReadI <= LR.end().
|
|
// - Segments in all three areas are fully ordered and coalesced.
|
|
// - Segments in area 1 precede and can't coalesce with segments in area 2.
|
|
// - Segments in Spills precede and can't coalesce with segments in area 2.
|
|
// - No coalescing is possible between segments in Spills and segments in area
|
|
// 1, and there are no overlapping segments.
|
|
//
|
|
// The segments in Spills are not ordered with respect to the segments in area
|
|
// 1. They need to be merged.
|
|
//
|
|
// When they exist, Spills.back().start <= LastStart,
|
|
// and WriteI[-1].start <= LastStart.
|
|
|
|
void LiveRangeUpdater::print(raw_ostream &OS) const {
|
|
if (!isDirty()) {
|
|
if (LR)
|
|
OS << "Clean updater: " << *LR << '\n';
|
|
else
|
|
OS << "Null updater.\n";
|
|
return;
|
|
}
|
|
assert(LR && "Can't have null LR in dirty updater.");
|
|
OS << " updater with gap = " << (ReadI - WriteI)
|
|
<< ", last start = " << LastStart
|
|
<< ":\n Area 1:";
|
|
for (const auto &S : make_range(LR->begin(), WriteI))
|
|
OS << ' ' << S;
|
|
OS << "\n Spills:";
|
|
for (unsigned I = 0, E = Spills.size(); I != E; ++I)
|
|
OS << ' ' << Spills[I];
|
|
OS << "\n Area 2:";
|
|
for (const auto &S : make_range(ReadI, LR->end()))
|
|
OS << ' ' << S;
|
|
OS << '\n';
|
|
}
|
|
|
|
void LiveRangeUpdater::dump() const
|
|
{
|
|
print(errs());
|
|
}
|
|
|
|
// Determine if A and B should be coalesced.
|
|
static inline bool coalescable(const LiveRange::Segment &A,
|
|
const LiveRange::Segment &B) {
|
|
assert(A.start <= B.start && "Unordered live segments.");
|
|
if (A.end == B.start)
|
|
return A.valno == B.valno;
|
|
if (A.end < B.start)
|
|
return false;
|
|
assert(A.valno == B.valno && "Cannot overlap different values");
|
|
return true;
|
|
}
|
|
|
|
void LiveRangeUpdater::add(LiveRange::Segment Seg) {
|
|
assert(LR && "Cannot add to a null destination");
|
|
|
|
// Fall back to the regular add method if the live range
|
|
// is using the segment set instead of the segment vector.
|
|
if (LR->segmentSet != nullptr) {
|
|
LR->addSegmentToSet(Seg);
|
|
return;
|
|
}
|
|
|
|
// Flush the state if Start moves backwards.
|
|
if (!LastStart.isValid() || LastStart > Seg.start) {
|
|
if (isDirty())
|
|
flush();
|
|
// This brings us to an uninitialized state. Reinitialize.
|
|
assert(Spills.empty() && "Leftover spilled segments");
|
|
WriteI = ReadI = LR->begin();
|
|
}
|
|
|
|
// Remember start for next time.
|
|
LastStart = Seg.start;
|
|
|
|
// Advance ReadI until it ends after Seg.start.
|
|
LiveRange::iterator E = LR->end();
|
|
if (ReadI != E && ReadI->end <= Seg.start) {
|
|
// First try to close the gap between WriteI and ReadI with spills.
|
|
if (ReadI != WriteI)
|
|
mergeSpills();
|
|
// Then advance ReadI.
|
|
if (ReadI == WriteI)
|
|
ReadI = WriteI = LR->find(Seg.start);
|
|
else
|
|
while (ReadI != E && ReadI->end <= Seg.start)
|
|
*WriteI++ = *ReadI++;
|
|
}
|
|
|
|
assert(ReadI == E || ReadI->end > Seg.start);
|
|
|
|
// Check if the ReadI segment begins early.
|
|
if (ReadI != E && ReadI->start <= Seg.start) {
|
|
assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
|
|
// Bail if Seg is completely contained in ReadI.
|
|
if (ReadI->end >= Seg.end)
|
|
return;
|
|
// Coalesce into Seg.
|
|
Seg.start = ReadI->start;
|
|
++ReadI;
|
|
}
|
|
|
|
// Coalesce as much as possible from ReadI into Seg.
|
|
while (ReadI != E && coalescable(Seg, *ReadI)) {
|
|
Seg.end = std::max(Seg.end, ReadI->end);
|
|
++ReadI;
|
|
}
|
|
|
|
// Try coalescing Spills.back() into Seg.
|
|
if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
|
|
Seg.start = Spills.back().start;
|
|
Seg.end = std::max(Spills.back().end, Seg.end);
|
|
Spills.pop_back();
|
|
}
|
|
|
|
// Try coalescing Seg into WriteI[-1].
|
|
if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
|
|
WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
|
|
return;
|
|
}
|
|
|
|
// Seg doesn't coalesce with anything, and needs to be inserted somewhere.
|
|
if (WriteI != ReadI) {
|
|
*WriteI++ = Seg;
|
|
return;
|
|
}
|
|
|
|
// Finally, append to LR or Spills.
|
|
if (WriteI == E) {
|
|
LR->segments.push_back(Seg);
|
|
WriteI = ReadI = LR->end();
|
|
} else
|
|
Spills.push_back(Seg);
|
|
}
|
|
|
|
// Merge as many spilled segments as possible into the gap between WriteI
|
|
// and ReadI. Advance WriteI to reflect the inserted instructions.
|
|
void LiveRangeUpdater::mergeSpills() {
|
|
// Perform a backwards merge of Spills and [SpillI;WriteI).
|
|
size_t GapSize = ReadI - WriteI;
|
|
size_t NumMoved = std::min(Spills.size(), GapSize);
|
|
LiveRange::iterator Src = WriteI;
|
|
LiveRange::iterator Dst = Src + NumMoved;
|
|
LiveRange::iterator SpillSrc = Spills.end();
|
|
LiveRange::iterator B = LR->begin();
|
|
|
|
// This is the new WriteI position after merging spills.
|
|
WriteI = Dst;
|
|
|
|
// Now merge Src and Spills backwards.
|
|
while (Src != Dst) {
|
|
if (Src != B && Src[-1].start > SpillSrc[-1].start)
|
|
*--Dst = *--Src;
|
|
else
|
|
*--Dst = *--SpillSrc;
|
|
}
|
|
assert(NumMoved == size_t(Spills.end() - SpillSrc));
|
|
Spills.erase(SpillSrc, Spills.end());
|
|
}
|
|
|
|
void LiveRangeUpdater::flush() {
|
|
if (!isDirty())
|
|
return;
|
|
// Clear the dirty state.
|
|
LastStart = SlotIndex();
|
|
|
|
assert(LR && "Cannot add to a null destination");
|
|
|
|
// Nothing to merge?
|
|
if (Spills.empty()) {
|
|
LR->segments.erase(WriteI, ReadI);
|
|
LR->verify();
|
|
return;
|
|
}
|
|
|
|
// Resize the WriteI - ReadI gap to match Spills.
|
|
size_t GapSize = ReadI - WriteI;
|
|
if (GapSize < Spills.size()) {
|
|
// The gap is too small. Make some room.
|
|
size_t WritePos = WriteI - LR->begin();
|
|
LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
|
|
// This also invalidated ReadI, but it is recomputed below.
|
|
WriteI = LR->begin() + WritePos;
|
|
} else {
|
|
// Shrink the gap if necessary.
|
|
LR->segments.erase(WriteI + Spills.size(), ReadI);
|
|
}
|
|
ReadI = WriteI + Spills.size();
|
|
mergeSpills();
|
|
LR->verify();
|
|
}
|
|
|
|
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
|
|
// Create initial equivalence classes.
|
|
EqClass.clear();
|
|
EqClass.grow(LI->getNumValNums());
|
|
|
|
const VNInfo *used = nullptr, *unused = nullptr;
|
|
|
|
// Determine connections.
|
|
for (const VNInfo *VNI : LI->valnos) {
|
|
// Group all unused values into one class.
|
|
if (VNI->isUnused()) {
|
|
if (unused)
|
|
EqClass.join(unused->id, VNI->id);
|
|
unused = VNI;
|
|
continue;
|
|
}
|
|
used = VNI;
|
|
if (VNI->isPHIDef()) {
|
|
const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
|
|
assert(MBB && "Phi-def has no defining MBB");
|
|
// Connect to values live out of predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI)
|
|
if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
|
|
EqClass.join(VNI->id, PVNI->id);
|
|
} else {
|
|
// Normal value defined by an instruction. Check for two-addr redef.
|
|
// FIXME: This could be coincidental. Should we really check for a tied
|
|
// operand constraint?
|
|
// Note that VNI->def may be a use slot for an early clobber def.
|
|
if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
|
|
EqClass.join(VNI->id, UVNI->id);
|
|
}
|
|
}
|
|
|
|
// Lump all the unused values in with the last used value.
|
|
if (used && unused)
|
|
EqClass.join(used->id, unused->id);
|
|
|
|
EqClass.compress();
|
|
return EqClass.getNumClasses();
|
|
}
|
|
|
|
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
|
|
MachineRegisterInfo &MRI) {
|
|
assert(LIV[0] && "LIV[0] must be set");
|
|
LiveInterval &LI = *LIV[0];
|
|
|
|
// Rewrite instructions.
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = *RI;
|
|
MachineInstr *MI = RI->getParent();
|
|
++RI;
|
|
// DBG_VALUE instructions don't have slot indexes, so get the index of the
|
|
// instruction before them.
|
|
// Normally, DBG_VALUE instructions are removed before this function is
|
|
// called, but it is not a requirement.
|
|
SlotIndex Idx;
|
|
if (MI->isDebugValue())
|
|
Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
|
|
else
|
|
Idx = LIS.getInstructionIndex(MI);
|
|
LiveQueryResult LRQ = LI.Query(Idx);
|
|
const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
|
|
// In the case of an <undef> use that isn't tied to any def, VNI will be
|
|
// NULL. If the use is tied to a def, VNI will be the defined value.
|
|
if (!VNI)
|
|
continue;
|
|
MO.setReg(LIV[getEqClass(VNI)]->reg);
|
|
}
|
|
|
|
// Move runs to new intervals.
|
|
LiveInterval::iterator J = LI.begin(), E = LI.end();
|
|
while (J != E && EqClass[J->valno->id] == 0)
|
|
++J;
|
|
for (LiveInterval::iterator I = J; I != E; ++I) {
|
|
if (unsigned eq = EqClass[I->valno->id]) {
|
|
assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
|
|
"New intervals should be empty");
|
|
LIV[eq]->segments.push_back(*I);
|
|
} else
|
|
*J++ = *I;
|
|
}
|
|
// TODO: do not cheat anymore by simply cleaning all subranges
|
|
LI.clearSubRanges();
|
|
LI.segments.erase(J, E);
|
|
|
|
// Transfer VNInfos to their new owners and renumber them.
|
|
unsigned j = 0, e = LI.getNumValNums();
|
|
while (j != e && EqClass[j] == 0)
|
|
++j;
|
|
for (unsigned i = j; i != e; ++i) {
|
|
VNInfo *VNI = LI.getValNumInfo(i);
|
|
if (unsigned eq = EqClass[i]) {
|
|
VNI->id = LIV[eq]->getNumValNums();
|
|
LIV[eq]->valnos.push_back(VNI);
|
|
} else {
|
|
VNI->id = j;
|
|
LI.valnos[j++] = VNI;
|
|
}
|
|
}
|
|
LI.valnos.resize(j);
|
|
}
|