mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218421 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1826 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1826 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is a part of AddressSanitizer, an address sanity checker.
 | 
						|
// Details of the algorithm:
 | 
						|
//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <string>
 | 
						|
#include <system_error>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "asan"
 | 
						|
 | 
						|
static const uint64_t kDefaultShadowScale = 3;
 | 
						|
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
 | 
						|
static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
 | 
						|
static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
 | 
						|
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
 | 
						|
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
 | 
						|
 | 
						|
static const size_t kMinStackMallocSize = 1 << 6;  // 64B
 | 
						|
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
 | 
						|
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
 | 
						|
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
 | 
						|
 | 
						|
static const char *const kAsanModuleCtorName = "asan.module_ctor";
 | 
						|
static const char *const kAsanModuleDtorName = "asan.module_dtor";
 | 
						|
static const uint64_t    kAsanCtorAndDtorPriority = 1;
 | 
						|
static const char *const kAsanReportErrorTemplate = "__asan_report_";
 | 
						|
static const char *const kAsanReportLoadN = "__asan_report_load_n";
 | 
						|
static const char *const kAsanReportStoreN = "__asan_report_store_n";
 | 
						|
static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
 | 
						|
static const char *const kAsanUnregisterGlobalsName =
 | 
						|
    "__asan_unregister_globals";
 | 
						|
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
 | 
						|
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
 | 
						|
static const char *const kAsanInitName = "__asan_init_v4";
 | 
						|
static const char *const kAsanCovModuleInitName = "__sanitizer_cov_module_init";
 | 
						|
static const char *const kAsanCovName = "__sanitizer_cov";
 | 
						|
static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
 | 
						|
static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
 | 
						|
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
 | 
						|
static const int         kMaxAsanStackMallocSizeClass = 10;
 | 
						|
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
 | 
						|
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
 | 
						|
static const char *const kAsanGenPrefix = "__asan_gen_";
 | 
						|
static const char *const kAsanPoisonStackMemoryName =
 | 
						|
    "__asan_poison_stack_memory";
 | 
						|
static const char *const kAsanUnpoisonStackMemoryName =
 | 
						|
    "__asan_unpoison_stack_memory";
 | 
						|
 | 
						|
static const char *const kAsanOptionDetectUAR =
 | 
						|
    "__asan_option_detect_stack_use_after_return";
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static const int kAsanStackAfterReturnMagic = 0xf5;
 | 
						|
#endif
 | 
						|
 | 
						|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | 
						|
static const size_t kNumberOfAccessSizes = 5;
 | 
						|
 | 
						|
// Command-line flags.
 | 
						|
 | 
						|
// This flag may need to be replaced with -f[no-]asan-reads.
 | 
						|
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
 | 
						|
       cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
 | 
						|
       cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
 | 
						|
       cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
 | 
						|
       cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
 | 
						|
       cl::desc("use instrumentation with slow path for all accesses"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
// This flag limits the number of instructions to be instrumented
 | 
						|
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
 | 
						|
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
 | 
						|
// set it to 10000.
 | 
						|
static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
 | 
						|
       cl::init(10000),
 | 
						|
       cl::desc("maximal number of instructions to instrument in any given BB"),
 | 
						|
       cl::Hidden);
 | 
						|
// This flag may need to be replaced with -f[no]asan-stack.
 | 
						|
static cl::opt<bool> ClStack("asan-stack",
 | 
						|
       cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
 | 
						|
       cl::desc("Check return-after-free"), cl::Hidden, cl::init(true));
 | 
						|
// This flag may need to be replaced with -f[no]asan-globals.
 | 
						|
static cl::opt<bool> ClGlobals("asan-globals",
 | 
						|
       cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<int> ClCoverage("asan-coverage",
 | 
						|
       cl::desc("ASan coverage. 0: none, 1: entry block, 2: all blocks, "
 | 
						|
                "3: all blocks and critical edges"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<int> ClCoverageBlockThreshold("asan-coverage-block-threshold",
 | 
						|
       cl::desc("Add coverage instrumentation only to the entry block if there "
 | 
						|
                "are more than this number of blocks."),
 | 
						|
       cl::Hidden, cl::init(1500));
 | 
						|
static cl::opt<bool> ClInitializers("asan-initialization-order",
 | 
						|
       cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair",
 | 
						|
       cl::desc("Instrument <, <=, >, >=, - with pointer operands"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<unsigned> ClRealignStack("asan-realign-stack",
 | 
						|
       cl::desc("Realign stack to the value of this flag (power of two)"),
 | 
						|
       cl::Hidden, cl::init(32));
 | 
						|
static cl::opt<int> ClInstrumentationWithCallsThreshold(
 | 
						|
    "asan-instrumentation-with-call-threshold",
 | 
						|
       cl::desc("If the function being instrumented contains more than "
 | 
						|
                "this number of memory accesses, use callbacks instead of "
 | 
						|
                "inline checks (-1 means never use callbacks)."),
 | 
						|
       cl::Hidden, cl::init(7000));
 | 
						|
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
 | 
						|
       "asan-memory-access-callback-prefix",
 | 
						|
       cl::desc("Prefix for memory access callbacks"), cl::Hidden,
 | 
						|
       cl::init("__asan_"));
 | 
						|
 | 
						|
// This is an experimental feature that will allow to choose between
 | 
						|
// instrumented and non-instrumented code at link-time.
 | 
						|
// If this option is on, just before instrumenting a function we create its
 | 
						|
// clone; if the function is not changed by asan the clone is deleted.
 | 
						|
// If we end up with a clone, we put the instrumented function into a section
 | 
						|
// called "ASAN" and the uninstrumented function into a section called "NOASAN".
 | 
						|
//
 | 
						|
// This is still a prototype, we need to figure out a way to keep two copies of
 | 
						|
// a function so that the linker can easily choose one of them.
 | 
						|
static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
 | 
						|
       cl::desc("Keep uninstrumented copies of functions"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// These flags allow to change the shadow mapping.
 | 
						|
// The shadow mapping looks like
 | 
						|
//    Shadow = (Mem >> scale) + (1 << offset_log)
 | 
						|
static cl::opt<int> ClMappingScale("asan-mapping-scale",
 | 
						|
       cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
 | 
						|
 | 
						|
// Optimization flags. Not user visible, used mostly for testing
 | 
						|
// and benchmarking the tool.
 | 
						|
static cl::opt<bool> ClOpt("asan-opt",
 | 
						|
       cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
 | 
						|
       cl::desc("Instrument the same temp just once"), cl::Hidden,
 | 
						|
       cl::init(true));
 | 
						|
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
 | 
						|
       cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
 | 
						|
       cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// Debug flags.
 | 
						|
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
 | 
						|
                            cl::init(0));
 | 
						|
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
 | 
						|
                                 cl::Hidden, cl::init(0));
 | 
						|
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
 | 
						|
                                        cl::Hidden, cl::desc("Debug func"));
 | 
						|
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
 | 
						|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | 
						|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | 
						|
STATISTIC(NumOptimizedAccessesToGlobalArray,
 | 
						|
          "Number of optimized accesses to global arrays");
 | 
						|
STATISTIC(NumOptimizedAccessesToGlobalVar,
 | 
						|
          "Number of optimized accesses to global vars");
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Frontend-provided metadata for source location.
 | 
						|
struct LocationMetadata {
 | 
						|
  StringRef Filename;
 | 
						|
  int LineNo;
 | 
						|
  int ColumnNo;
 | 
						|
 | 
						|
  LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
 | 
						|
 | 
						|
  bool empty() const { return Filename.empty(); }
 | 
						|
 | 
						|
  void parse(MDNode *MDN) {
 | 
						|
    assert(MDN->getNumOperands() == 3);
 | 
						|
    MDString *MDFilename = cast<MDString>(MDN->getOperand(0));
 | 
						|
    Filename = MDFilename->getString();
 | 
						|
    LineNo = cast<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
 | 
						|
    ColumnNo = cast<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Frontend-provided metadata for global variables.
 | 
						|
class GlobalsMetadata {
 | 
						|
 public:
 | 
						|
  struct Entry {
 | 
						|
    Entry()
 | 
						|
        : SourceLoc(), Name(), IsDynInit(false),
 | 
						|
          IsBlacklisted(false) {}
 | 
						|
    LocationMetadata SourceLoc;
 | 
						|
    StringRef Name;
 | 
						|
    bool IsDynInit;
 | 
						|
    bool IsBlacklisted;
 | 
						|
  };
 | 
						|
 | 
						|
  GlobalsMetadata() : inited_(false) {}
 | 
						|
 | 
						|
  void init(Module& M) {
 | 
						|
    assert(!inited_);
 | 
						|
    inited_ = true;
 | 
						|
    NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
 | 
						|
    if (!Globals)
 | 
						|
      return;
 | 
						|
    for (auto MDN : Globals->operands()) {
 | 
						|
      // Metadata node contains the global and the fields of "Entry".
 | 
						|
      assert(MDN->getNumOperands() == 5);
 | 
						|
      Value *V = MDN->getOperand(0);
 | 
						|
      // The optimizer may optimize away a global entirely.
 | 
						|
      if (!V)
 | 
						|
        continue;
 | 
						|
      GlobalVariable *GV = cast<GlobalVariable>(V);
 | 
						|
      // We can already have an entry for GV if it was merged with another
 | 
						|
      // global.
 | 
						|
      Entry &E = Entries[GV];
 | 
						|
      if (Value *Loc = MDN->getOperand(1))
 | 
						|
        E.SourceLoc.parse(cast<MDNode>(Loc));
 | 
						|
      if (Value *Name = MDN->getOperand(2)) {
 | 
						|
        MDString *MDName = cast<MDString>(Name);
 | 
						|
        E.Name = MDName->getString();
 | 
						|
      }
 | 
						|
      ConstantInt *IsDynInit = cast<ConstantInt>(MDN->getOperand(3));
 | 
						|
      E.IsDynInit |= IsDynInit->isOne();
 | 
						|
      ConstantInt *IsBlacklisted = cast<ConstantInt>(MDN->getOperand(4));
 | 
						|
      E.IsBlacklisted |= IsBlacklisted->isOne();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns metadata entry for a given global.
 | 
						|
  Entry get(GlobalVariable *G) const {
 | 
						|
    auto Pos = Entries.find(G);
 | 
						|
    return (Pos != Entries.end()) ? Pos->second : Entry();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  bool inited_;
 | 
						|
  DenseMap<GlobalVariable*, Entry> Entries;
 | 
						|
};
 | 
						|
 | 
						|
/// This struct defines the shadow mapping using the rule:
 | 
						|
///   shadow = (mem >> Scale) ADD-or-OR Offset.
 | 
						|
struct ShadowMapping {
 | 
						|
  int Scale;
 | 
						|
  uint64_t Offset;
 | 
						|
  bool OrShadowOffset;
 | 
						|
};
 | 
						|
 | 
						|
static ShadowMapping getShadowMapping(const Module &M, int LongSize) {
 | 
						|
  llvm::Triple TargetTriple(M.getTargetTriple());
 | 
						|
  bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
 | 
						|
  bool IsIOS = TargetTriple.getOS() == llvm::Triple::IOS;
 | 
						|
  bool IsFreeBSD = TargetTriple.getOS() == llvm::Triple::FreeBSD;
 | 
						|
  bool IsLinux = TargetTriple.getOS() == llvm::Triple::Linux;
 | 
						|
  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
 | 
						|
                 TargetTriple.getArch() == llvm::Triple::ppc64le;
 | 
						|
  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
 | 
						|
  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
 | 
						|
                  TargetTriple.getArch() == llvm::Triple::mipsel;
 | 
						|
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  if (LongSize == 32) {
 | 
						|
    if (IsAndroid)
 | 
						|
      Mapping.Offset = 0;
 | 
						|
    else if (IsMIPS32)
 | 
						|
      Mapping.Offset = kMIPS32_ShadowOffset32;
 | 
						|
    else if (IsFreeBSD)
 | 
						|
      Mapping.Offset = kFreeBSD_ShadowOffset32;
 | 
						|
    else if (IsIOS)
 | 
						|
      Mapping.Offset = kIOSShadowOffset32;
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset32;
 | 
						|
  } else {  // LongSize == 64
 | 
						|
    if (IsPPC64)
 | 
						|
      Mapping.Offset = kPPC64_ShadowOffset64;
 | 
						|
    else if (IsFreeBSD)
 | 
						|
      Mapping.Offset = kFreeBSD_ShadowOffset64;
 | 
						|
    else if (IsLinux && IsX86_64)
 | 
						|
      Mapping.Offset = kSmallX86_64ShadowOffset;
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset64;
 | 
						|
  }
 | 
						|
 | 
						|
  Mapping.Scale = kDefaultShadowScale;
 | 
						|
  if (ClMappingScale) {
 | 
						|
    Mapping.Scale = ClMappingScale;
 | 
						|
  }
 | 
						|
 | 
						|
  // OR-ing shadow offset if more efficient (at least on x86) if the offset
 | 
						|
  // is a power of two, but on ppc64 we have to use add since the shadow
 | 
						|
  // offset is not necessary 1/8-th of the address space.
 | 
						|
  Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1));
 | 
						|
 | 
						|
  return Mapping;
 | 
						|
}
 | 
						|
 | 
						|
static size_t RedzoneSizeForScale(int MappingScale) {
 | 
						|
  // Redzone used for stack and globals is at least 32 bytes.
 | 
						|
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
 | 
						|
  return std::max(32U, 1U << MappingScale);
 | 
						|
}
 | 
						|
 | 
						|
/// AddressSanitizer: instrument the code in module to find memory bugs.
 | 
						|
struct AddressSanitizer : public FunctionPass {
 | 
						|
  AddressSanitizer() : FunctionPass(ID) {
 | 
						|
    initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "AddressSanitizerFunctionPass";
 | 
						|
  }
 | 
						|
  void instrumentMop(Instruction *I, bool UseCalls);
 | 
						|
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
 | 
						|
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
 | 
						|
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
 | 
						|
                         Value *SizeArgument, bool UseCalls);
 | 
						|
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                           Value *ShadowValue, uint32_t TypeSize);
 | 
						|
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
 | 
						|
                                 bool IsWrite, size_t AccessSizeIndex,
 | 
						|
                                 Value *SizeArgument);
 | 
						|
  void instrumentMemIntrinsic(MemIntrinsic *MI);
 | 
						|
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
 | 
						|
  bool doInitialization(Module &M) override;
 | 
						|
  static char ID;  // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    if (ClCoverage >= 3)
 | 
						|
      AU.addRequiredID(BreakCriticalEdgesID);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool LooksLikeCodeInBug11395(Instruction *I);
 | 
						|
  bool GlobalIsLinkerInitialized(GlobalVariable *G);
 | 
						|
  bool InjectCoverage(Function &F, ArrayRef<BasicBlock*> AllBlocks);
 | 
						|
  void InjectCoverageAtBlock(Function &F, BasicBlock &BB);
 | 
						|
 | 
						|
  LLVMContext *C;
 | 
						|
  const DataLayout *DL;
 | 
						|
  int LongSize;
 | 
						|
  Type *IntptrTy;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  Function *AsanCtorFunction;
 | 
						|
  Function *AsanInitFunction;
 | 
						|
  Function *AsanHandleNoReturnFunc;
 | 
						|
  Function *AsanCovFunction;
 | 
						|
  Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
 | 
						|
  // This array is indexed by AccessIsWrite and log2(AccessSize).
 | 
						|
  Function *AsanErrorCallback[2][kNumberOfAccessSizes];
 | 
						|
  Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes];
 | 
						|
  // This array is indexed by AccessIsWrite.
 | 
						|
  Function *AsanErrorCallbackSized[2],
 | 
						|
           *AsanMemoryAccessCallbackSized[2];
 | 
						|
  Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
 | 
						|
  InlineAsm *EmptyAsm;
 | 
						|
  GlobalsMetadata GlobalsMD;
 | 
						|
 | 
						|
  friend struct FunctionStackPoisoner;
 | 
						|
};
 | 
						|
 | 
						|
class AddressSanitizerModule : public ModulePass {
 | 
						|
 public:
 | 
						|
  AddressSanitizerModule() : ModulePass(ID) {}
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
  static char ID;  // Pass identification, replacement for typeid
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "AddressSanitizerModule";
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
 | 
						|
  bool ShouldInstrumentGlobal(GlobalVariable *G);
 | 
						|
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
 | 
						|
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
 | 
						|
  size_t MinRedzoneSizeForGlobal() const {
 | 
						|
    return RedzoneSizeForScale(Mapping.Scale);
 | 
						|
  }
 | 
						|
 | 
						|
  GlobalsMetadata GlobalsMD;
 | 
						|
  Type *IntptrTy;
 | 
						|
  LLVMContext *C;
 | 
						|
  const DataLayout *DL;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  Function *AsanPoisonGlobals;
 | 
						|
  Function *AsanUnpoisonGlobals;
 | 
						|
  Function *AsanRegisterGlobals;
 | 
						|
  Function *AsanUnregisterGlobals;
 | 
						|
  Function *AsanCovModuleInit;
 | 
						|
};
 | 
						|
 | 
						|
// Stack poisoning does not play well with exception handling.
 | 
						|
// When an exception is thrown, we essentially bypass the code
 | 
						|
// that unpoisones the stack. This is why the run-time library has
 | 
						|
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
 | 
						|
// stack in the interceptor. This however does not work inside the
 | 
						|
// actual function which catches the exception. Most likely because the
 | 
						|
// compiler hoists the load of the shadow value somewhere too high.
 | 
						|
// This causes asan to report a non-existing bug on 453.povray.
 | 
						|
// It sounds like an LLVM bug.
 | 
						|
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
 | 
						|
  Function &F;
 | 
						|
  AddressSanitizer &ASan;
 | 
						|
  DIBuilder DIB;
 | 
						|
  LLVMContext *C;
 | 
						|
  Type *IntptrTy;
 | 
						|
  Type *IntptrPtrTy;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  SmallVector<AllocaInst*, 16> AllocaVec;
 | 
						|
  SmallVector<Instruction*, 8> RetVec;
 | 
						|
  unsigned StackAlignment;
 | 
						|
 | 
						|
  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
 | 
						|
           *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
 | 
						|
  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
 | 
						|
 | 
						|
  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
 | 
						|
  struct AllocaPoisonCall {
 | 
						|
    IntrinsicInst *InsBefore;
 | 
						|
    AllocaInst *AI;
 | 
						|
    uint64_t Size;
 | 
						|
    bool DoPoison;
 | 
						|
  };
 | 
						|
  SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
 | 
						|
 | 
						|
  // Maps Value to an AllocaInst from which the Value is originated.
 | 
						|
  typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
 | 
						|
  AllocaForValueMapTy AllocaForValue;
 | 
						|
 | 
						|
  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
 | 
						|
      : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
 | 
						|
        IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
 | 
						|
        Mapping(ASan.Mapping),
 | 
						|
        StackAlignment(1 << Mapping.Scale) {}
 | 
						|
 | 
						|
  bool runOnFunction() {
 | 
						|
    if (!ClStack) return false;
 | 
						|
    // Collect alloca, ret, lifetime instructions etc.
 | 
						|
    for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
 | 
						|
      visit(*BB);
 | 
						|
 | 
						|
    if (AllocaVec.empty()) return false;
 | 
						|
 | 
						|
    initializeCallbacks(*F.getParent());
 | 
						|
 | 
						|
    poisonStack();
 | 
						|
 | 
						|
    if (ClDebugStack) {
 | 
						|
      DEBUG(dbgs() << F);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds all static Alloca instructions and puts
 | 
						|
  // poisoned red zones around all of them.
 | 
						|
  // Then unpoison everything back before the function returns.
 | 
						|
  void poisonStack();
 | 
						|
 | 
						|
  // ----------------------- Visitors.
 | 
						|
  /// \brief Collect all Ret instructions.
 | 
						|
  void visitReturnInst(ReturnInst &RI) {
 | 
						|
    RetVec.push_back(&RI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Collect Alloca instructions we want (and can) handle.
 | 
						|
  void visitAllocaInst(AllocaInst &AI) {
 | 
						|
    if (!isInterestingAlloca(AI)) return;
 | 
						|
 | 
						|
    StackAlignment = std::max(StackAlignment, AI.getAlignment());
 | 
						|
    AllocaVec.push_back(&AI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
 | 
						|
  /// errors.
 | 
						|
  void visitIntrinsicInst(IntrinsicInst &II) {
 | 
						|
    if (!ClCheckLifetime) return;
 | 
						|
    Intrinsic::ID ID = II.getIntrinsicID();
 | 
						|
    if (ID != Intrinsic::lifetime_start &&
 | 
						|
        ID != Intrinsic::lifetime_end)
 | 
						|
      return;
 | 
						|
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
 | 
						|
    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
 | 
						|
    // If size argument is undefined, don't do anything.
 | 
						|
    if (Size->isMinusOne()) return;
 | 
						|
    // Check that size doesn't saturate uint64_t and can
 | 
						|
    // be stored in IntptrTy.
 | 
						|
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
 | 
						|
    if (SizeValue == ~0ULL ||
 | 
						|
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
 | 
						|
      return;
 | 
						|
    // Find alloca instruction that corresponds to llvm.lifetime argument.
 | 
						|
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
 | 
						|
    if (!AI) return;
 | 
						|
    bool DoPoison = (ID == Intrinsic::lifetime_end);
 | 
						|
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
 | 
						|
    AllocaPoisonCallVec.push_back(APC);
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------- Helpers.
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  // Check if we want (and can) handle this alloca.
 | 
						|
  bool isInterestingAlloca(AllocaInst &AI) const {
 | 
						|
    return (!AI.isArrayAllocation() && AI.isStaticAlloca() &&
 | 
						|
            AI.getAllocatedType()->isSized() &&
 | 
						|
            // alloca() may be called with 0 size, ignore it.
 | 
						|
            getAllocaSizeInBytes(&AI) > 0);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
 | 
						|
    Type *Ty = AI->getAllocatedType();
 | 
						|
    uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty);
 | 
						|
    return SizeInBytes;
 | 
						|
  }
 | 
						|
  /// Finds alloca where the value comes from.
 | 
						|
  AllocaInst *findAllocaForValue(Value *V);
 | 
						|
  void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
 | 
						|
                      Value *ShadowBase, bool DoPoison);
 | 
						|
  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
 | 
						|
 | 
						|
  void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
 | 
						|
                                          int Size);
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
char AddressSanitizer::ID = 0;
 | 
						|
INITIALIZE_PASS(AddressSanitizer, "asan",
 | 
						|
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
 | 
						|
    false, false)
 | 
						|
FunctionPass *llvm::createAddressSanitizerFunctionPass() {
 | 
						|
  return new AddressSanitizer();
 | 
						|
}
 | 
						|
 | 
						|
char AddressSanitizerModule::ID = 0;
 | 
						|
INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
 | 
						|
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
 | 
						|
    "ModulePass", false, false)
 | 
						|
ModulePass *llvm::createAddressSanitizerModulePass() {
 | 
						|
  return new AddressSanitizerModule();
 | 
						|
}
 | 
						|
 | 
						|
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
 | 
						|
  size_t Res = countTrailingZeros(TypeSize / 8);
 | 
						|
  assert(Res < kNumberOfAccessSizes);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// \brief Create a constant for Str so that we can pass it to the run-time lib.
 | 
						|
static GlobalVariable *createPrivateGlobalForString(
 | 
						|
    Module &M, StringRef Str, bool AllowMerging) {
 | 
						|
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | 
						|
  // We use private linkage for module-local strings. If they can be merged
 | 
						|
  // with another one, we set the unnamed_addr attribute.
 | 
						|
  GlobalVariable *GV =
 | 
						|
      new GlobalVariable(M, StrConst->getType(), true,
 | 
						|
                         GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
 | 
						|
  if (AllowMerging)
 | 
						|
    GV->setUnnamedAddr(true);
 | 
						|
  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a global describing a source location.
 | 
						|
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
 | 
						|
                                                       LocationMetadata MD) {
 | 
						|
  Constant *LocData[] = {
 | 
						|
      createPrivateGlobalForString(M, MD.Filename, true),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
 | 
						|
  };
 | 
						|
  auto LocStruct = ConstantStruct::getAnon(LocData);
 | 
						|
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
 | 
						|
                               GlobalValue::PrivateLinkage, LocStruct,
 | 
						|
                               kAsanGenPrefix);
 | 
						|
  GV->setUnnamedAddr(true);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
 | 
						|
  return G->getName().find(kAsanGenPrefix) == 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
 | 
						|
  // Shadow >> scale
 | 
						|
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
 | 
						|
  if (Mapping.Offset == 0)
 | 
						|
    return Shadow;
 | 
						|
  // (Shadow >> scale) | offset
 | 
						|
  if (Mapping.OrShadowOffset)
 | 
						|
    return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
 | 
						|
  else
 | 
						|
    return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
 | 
						|
}
 | 
						|
 | 
						|
// Instrument memset/memmove/memcpy
 | 
						|
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
 | 
						|
  IRBuilder<> IRB(MI);
 | 
						|
  if (isa<MemTransferInst>(MI)) {
 | 
						|
    IRB.CreateCall3(
 | 
						|
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
 | 
						|
        IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
        IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
 | 
						|
        IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
 | 
						|
  } else if (isa<MemSetInst>(MI)) {
 | 
						|
    IRB.CreateCall3(
 | 
						|
        AsanMemset,
 | 
						|
        IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
        IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
 | 
						|
        IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
 | 
						|
  }
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// If I is an interesting memory access, return the PointerOperand
 | 
						|
// and set IsWrite/Alignment. Otherwise return NULL.
 | 
						|
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
 | 
						|
                                        unsigned *Alignment) {
 | 
						|
  // Skip memory accesses inserted by another instrumentation.
 | 
						|
  if (I->getMetadata("nosanitize"))
 | 
						|
    return nullptr;
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (!ClInstrumentReads) return nullptr;
 | 
						|
    *IsWrite = false;
 | 
						|
    *Alignment = LI->getAlignment();
 | 
						|
    return LI->getPointerOperand();
 | 
						|
  }
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    if (!ClInstrumentWrites) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *Alignment = SI->getAlignment();
 | 
						|
    return SI->getPointerOperand();
 | 
						|
  }
 | 
						|
  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *Alignment = 0;
 | 
						|
    return RMW->getPointerOperand();
 | 
						|
  }
 | 
						|
  if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *Alignment = 0;
 | 
						|
    return XCHG->getPointerOperand();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPointerOperand(Value *V) {
 | 
						|
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
 | 
						|
}
 | 
						|
 | 
						|
// This is a rough heuristic; it may cause both false positives and
 | 
						|
// false negatives. The proper implementation requires cooperation with
 | 
						|
// the frontend.
 | 
						|
static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
 | 
						|
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
 | 
						|
    if (!Cmp->isRelational())
 | 
						|
      return false;
 | 
						|
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    if (BO->getOpcode() != Instruction::Sub)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (!isPointerOperand(I->getOperand(0)) ||
 | 
						|
      !isPointerOperand(I->getOperand(1)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
 | 
						|
  // If a global variable does not have dynamic initialization we don't
 | 
						|
  // have to instrument it.  However, if a global does not have initializer
 | 
						|
  // at all, we assume it has dynamic initializer (in other TU).
 | 
						|
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) {
 | 
						|
  IRBuilder<> IRB(I);
 | 
						|
  Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
 | 
						|
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
 | 
						|
  for (int i = 0; i < 2; i++) {
 | 
						|
    if (Param[i]->getType()->isPointerTy())
 | 
						|
      Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
 | 
						|
  }
 | 
						|
  IRB.CreateCall2(F, Param[0], Param[1]);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) {
 | 
						|
  bool IsWrite = false;
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment);
 | 
						|
  assert(Addr);
 | 
						|
  if (ClOpt && ClOptGlobals) {
 | 
						|
    if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
 | 
						|
      // If initialization order checking is disabled, a simple access to a
 | 
						|
      // dynamically initialized global is always valid.
 | 
						|
      if (!ClInitializers || GlobalIsLinkerInitialized(G)) {
 | 
						|
        NumOptimizedAccessesToGlobalVar++;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
 | 
						|
    if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
 | 
						|
      if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
 | 
						|
        if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
 | 
						|
          NumOptimizedAccessesToGlobalArray++;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Type *OrigPtrTy = Addr->getType();
 | 
						|
  Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
 | 
						|
 | 
						|
  assert(OrigTy->isSized());
 | 
						|
  uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
 | 
						|
 | 
						|
  assert((TypeSize % 8) == 0);
 | 
						|
 | 
						|
  if (IsWrite)
 | 
						|
    NumInstrumentedWrites++;
 | 
						|
  else
 | 
						|
    NumInstrumentedReads++;
 | 
						|
 | 
						|
  unsigned Granularity = 1 << Mapping.Scale;
 | 
						|
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
 | 
						|
  // if the data is properly aligned.
 | 
						|
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
 | 
						|
       TypeSize == 128) &&
 | 
						|
      (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
 | 
						|
    return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls);
 | 
						|
  // Instrument unusual size or unusual alignment.
 | 
						|
  // We can not do it with a single check, so we do 1-byte check for the first
 | 
						|
  // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
 | 
						|
  // to report the actual access size.
 | 
						|
  IRBuilder<> IRB(I);
 | 
						|
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  if (UseCalls) {
 | 
						|
    IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size);
 | 
						|
  } else {
 | 
						|
    Value *LastByte = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
 | 
						|
        OrigPtrTy);
 | 
						|
    instrumentAddress(I, I, Addr, 8, IsWrite, Size, false);
 | 
						|
    instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Validate the result of Module::getOrInsertFunction called for an interface
 | 
						|
// function of AddressSanitizer. If the instrumented module defines a function
 | 
						|
// with the same name, their prototypes must match, otherwise
 | 
						|
// getOrInsertFunction returns a bitcast.
 | 
						|
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
 | 
						|
  if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
 | 
						|
  FuncOrBitcast->dump();
 | 
						|
  report_fatal_error("trying to redefine an AddressSanitizer "
 | 
						|
                     "interface function");
 | 
						|
}
 | 
						|
 | 
						|
Instruction *AddressSanitizer::generateCrashCode(
 | 
						|
    Instruction *InsertBefore, Value *Addr,
 | 
						|
    bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  CallInst *Call = SizeArgument
 | 
						|
    ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
 | 
						|
    : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
 | 
						|
 | 
						|
  // We don't do Call->setDoesNotReturn() because the BB already has
 | 
						|
  // UnreachableInst at the end.
 | 
						|
  // This EmptyAsm is required to avoid callback merge.
 | 
						|
  IRB.CreateCall(EmptyAsm);
 | 
						|
  return Call;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                                            Value *ShadowValue,
 | 
						|
                                            uint32_t TypeSize) {
 | 
						|
  size_t Granularity = 1 << Mapping.Scale;
 | 
						|
  // Addr & (Granularity - 1)
 | 
						|
  Value *LastAccessedByte = IRB.CreateAnd(
 | 
						|
      AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
 | 
						|
  // (Addr & (Granularity - 1)) + size - 1
 | 
						|
  if (TypeSize / 8 > 1)
 | 
						|
    LastAccessedByte = IRB.CreateAdd(
 | 
						|
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
 | 
						|
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
 | 
						|
  LastAccessedByte = IRB.CreateIntCast(
 | 
						|
      LastAccessedByte, ShadowValue->getType(), false);
 | 
						|
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
 | 
						|
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
 | 
						|
                                         Instruction *InsertBefore, Value *Addr,
 | 
						|
                                         uint32_t TypeSize, bool IsWrite,
 | 
						|
                                         Value *SizeArgument, bool UseCalls) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
 | 
						|
 | 
						|
  if (UseCalls) {
 | 
						|
    IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex],
 | 
						|
                   AddrLong);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ShadowTy  = IntegerType::get(
 | 
						|
      *C, std::max(8U, TypeSize >> Mapping.Scale));
 | 
						|
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
 | 
						|
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
 | 
						|
  Value *CmpVal = Constant::getNullValue(ShadowTy);
 | 
						|
  Value *ShadowValue = IRB.CreateLoad(
 | 
						|
      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
 | 
						|
 | 
						|
  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
 | 
						|
  size_t Granularity = 1 << Mapping.Scale;
 | 
						|
  TerminatorInst *CrashTerm = nullptr;
 | 
						|
 | 
						|
  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
 | 
						|
    // We use branch weights for the slow path check, to indicate that the slow
 | 
						|
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
 | 
						|
    TerminatorInst *CheckTerm =
 | 
						|
        SplitBlockAndInsertIfThen(Cmp, InsertBefore, false,
 | 
						|
            MDBuilder(*C).createBranchWeights(1, 100000));
 | 
						|
    assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
 | 
						|
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
 | 
						|
    IRB.SetInsertPoint(CheckTerm);
 | 
						|
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
 | 
						|
    BasicBlock *CrashBlock =
 | 
						|
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
 | 
						|
    CrashTerm = new UnreachableInst(*C, CrashBlock);
 | 
						|
    BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
 | 
						|
    ReplaceInstWithInst(CheckTerm, NewTerm);
 | 
						|
  } else {
 | 
						|
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true);
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *Crash = generateCrashCode(
 | 
						|
      CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
 | 
						|
  Crash->setDebugLoc(OrigIns->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
 | 
						|
                                                  GlobalValue *ModuleName) {
 | 
						|
  // Set up the arguments to our poison/unpoison functions.
 | 
						|
  IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt());
 | 
						|
 | 
						|
  // Add a call to poison all external globals before the given function starts.
 | 
						|
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
 | 
						|
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
 | 
						|
 | 
						|
  // Add calls to unpoison all globals before each return instruction.
 | 
						|
  for (auto &BB : GlobalInit.getBasicBlockList())
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
 | 
						|
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::createInitializerPoisonCalls(
 | 
						|
    Module &M, GlobalValue *ModuleName) {
 | 
						|
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | 
						|
 | 
						|
  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
 | 
						|
  for (Use &OP : CA->operands()) {
 | 
						|
    if (isa<ConstantAggregateZero>(OP))
 | 
						|
      continue;
 | 
						|
    ConstantStruct *CS = cast<ConstantStruct>(OP);
 | 
						|
 | 
						|
    // Must have a function or null ptr.
 | 
						|
    if (Function* F = dyn_cast<Function>(CS->getOperand(1))) {
 | 
						|
      if (F->getName() == kAsanModuleCtorName) continue;
 | 
						|
      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
 | 
						|
      // Don't instrument CTORs that will run before asan.module_ctor.
 | 
						|
      if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
 | 
						|
      poisonOneInitializer(*F, ModuleName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
 | 
						|
  Type *Ty = cast<PointerType>(G->getType())->getElementType();
 | 
						|
  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
 | 
						|
 | 
						|
  if (GlobalsMD.get(G).IsBlacklisted) return false;
 | 
						|
  if (!Ty->isSized()) return false;
 | 
						|
  if (!G->hasInitializer()) return false;
 | 
						|
  if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
 | 
						|
  // Touch only those globals that will not be defined in other modules.
 | 
						|
  // Don't handle ODR linkage types and COMDATs since other modules may be built
 | 
						|
  // without ASan.
 | 
						|
  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
 | 
						|
      G->getLinkage() != GlobalVariable::PrivateLinkage &&
 | 
						|
      G->getLinkage() != GlobalVariable::InternalLinkage)
 | 
						|
    return false;
 | 
						|
  if (G->hasComdat())
 | 
						|
    return false;
 | 
						|
  // Two problems with thread-locals:
 | 
						|
  //   - The address of the main thread's copy can't be computed at link-time.
 | 
						|
  //   - Need to poison all copies, not just the main thread's one.
 | 
						|
  if (G->isThreadLocal())
 | 
						|
    return false;
 | 
						|
  // For now, just ignore this Global if the alignment is large.
 | 
						|
  if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
 | 
						|
 | 
						|
  // Ignore all the globals with the names starting with "\01L_OBJC_".
 | 
						|
  // Many of those are put into the .cstring section. The linker compresses
 | 
						|
  // that section by removing the spare \0s after the string terminator, so
 | 
						|
  // our redzones get broken.
 | 
						|
  if ((G->getName().find("\01L_OBJC_") == 0) ||
 | 
						|
      (G->getName().find("\01l_OBJC_") == 0)) {
 | 
						|
    DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (G->hasSection()) {
 | 
						|
    StringRef Section(G->getSection());
 | 
						|
    // Ignore the globals from the __OBJC section. The ObjC runtime assumes
 | 
						|
    // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
 | 
						|
    // them.
 | 
						|
    if (Section.startswith("__OBJC,") ||
 | 
						|
        Section.startswith("__DATA, __objc_")) {
 | 
						|
      DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
 | 
						|
    // Constant CFString instances are compiled in the following way:
 | 
						|
    //  -- the string buffer is emitted into
 | 
						|
    //     __TEXT,__cstring,cstring_literals
 | 
						|
    //  -- the constant NSConstantString structure referencing that buffer
 | 
						|
    //     is placed into __DATA,__cfstring
 | 
						|
    // Therefore there's no point in placing redzones into __DATA,__cfstring.
 | 
						|
    // Moreover, it causes the linker to crash on OS X 10.7
 | 
						|
    if (Section.startswith("__DATA,__cfstring")) {
 | 
						|
      DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // The linker merges the contents of cstring_literals and removes the
 | 
						|
    // trailing zeroes.
 | 
						|
    if (Section.startswith("__TEXT,__cstring,cstring_literals")) {
 | 
						|
      DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Callbacks put into the CRT initializer/terminator sections
 | 
						|
    // should not be instrumented.
 | 
						|
    // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
 | 
						|
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
 | 
						|
    if (Section.startswith(".CRT")) {
 | 
						|
      DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Globals from llvm.metadata aren't emitted, do not instrument them.
 | 
						|
    if (Section == "llvm.metadata") return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  // Declare our poisoning and unpoisoning functions.
 | 
						|
  AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
 | 
						|
  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
 | 
						|
  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  // Declare functions that register/unregister globals.
 | 
						|
  AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanRegisterGlobalsName, IRB.getVoidTy(),
 | 
						|
      IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanUnregisterGlobalsName,
 | 
						|
      IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  AsanCovModuleInit = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanCovModuleInitName,
 | 
						|
      IRB.getVoidTy(), IntptrTy, NULL));
 | 
						|
  AsanCovModuleInit->setLinkage(Function::ExternalLinkage);
 | 
						|
}
 | 
						|
 | 
						|
// This function replaces all global variables with new variables that have
 | 
						|
// trailing redzones. It also creates a function that poisons
 | 
						|
// redzones and inserts this function into llvm.global_ctors.
 | 
						|
bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
 | 
						|
  GlobalsMD.init(M);
 | 
						|
 | 
						|
  SmallVector<GlobalVariable *, 16> GlobalsToChange;
 | 
						|
 | 
						|
  for (auto &G : M.globals()) {
 | 
						|
    if (ShouldInstrumentGlobal(&G))
 | 
						|
      GlobalsToChange.push_back(&G);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t n = GlobalsToChange.size();
 | 
						|
  if (n == 0) return false;
 | 
						|
 | 
						|
  // A global is described by a structure
 | 
						|
  //   size_t beg;
 | 
						|
  //   size_t size;
 | 
						|
  //   size_t size_with_redzone;
 | 
						|
  //   const char *name;
 | 
						|
  //   const char *module_name;
 | 
						|
  //   size_t has_dynamic_init;
 | 
						|
  //   void *source_location;
 | 
						|
  // We initialize an array of such structures and pass it to a run-time call.
 | 
						|
  StructType *GlobalStructTy =
 | 
						|
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
 | 
						|
                      IntptrTy, IntptrTy, NULL);
 | 
						|
  SmallVector<Constant *, 16> Initializers(n);
 | 
						|
 | 
						|
  bool HasDynamicallyInitializedGlobals = false;
 | 
						|
 | 
						|
  // We shouldn't merge same module names, as this string serves as unique
 | 
						|
  // module ID in runtime.
 | 
						|
  GlobalVariable *ModuleName = createPrivateGlobalForString(
 | 
						|
      M, M.getModuleIdentifier(), /*AllowMerging*/false);
 | 
						|
 | 
						|
  for (size_t i = 0; i < n; i++) {
 | 
						|
    static const uint64_t kMaxGlobalRedzone = 1 << 18;
 | 
						|
    GlobalVariable *G = GlobalsToChange[i];
 | 
						|
 | 
						|
    auto MD = GlobalsMD.get(G);
 | 
						|
    // Create string holding the global name (use global name from metadata
 | 
						|
    // if it's available, otherwise just write the name of global variable).
 | 
						|
    GlobalVariable *Name = createPrivateGlobalForString(
 | 
						|
        M, MD.Name.empty() ? G->getName() : MD.Name,
 | 
						|
        /*AllowMerging*/ true);
 | 
						|
 | 
						|
    PointerType *PtrTy = cast<PointerType>(G->getType());
 | 
						|
    Type *Ty = PtrTy->getElementType();
 | 
						|
    uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
 | 
						|
    uint64_t MinRZ = MinRedzoneSizeForGlobal();
 | 
						|
    // MinRZ <= RZ <= kMaxGlobalRedzone
 | 
						|
    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
 | 
						|
    uint64_t RZ = std::max(MinRZ,
 | 
						|
                         std::min(kMaxGlobalRedzone,
 | 
						|
                                  (SizeInBytes / MinRZ / 4) * MinRZ));
 | 
						|
    uint64_t RightRedzoneSize = RZ;
 | 
						|
    // Round up to MinRZ
 | 
						|
    if (SizeInBytes % MinRZ)
 | 
						|
      RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
 | 
						|
    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
 | 
						|
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
 | 
						|
 | 
						|
    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
 | 
						|
    Constant *NewInitializer = ConstantStruct::get(
 | 
						|
        NewTy, G->getInitializer(),
 | 
						|
        Constant::getNullValue(RightRedZoneTy), NULL);
 | 
						|
 | 
						|
    // Create a new global variable with enough space for a redzone.
 | 
						|
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
 | 
						|
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
 | 
						|
      Linkage = GlobalValue::InternalLinkage;
 | 
						|
    GlobalVariable *NewGlobal = new GlobalVariable(
 | 
						|
        M, NewTy, G->isConstant(), Linkage,
 | 
						|
        NewInitializer, "", G, G->getThreadLocalMode());
 | 
						|
    NewGlobal->copyAttributesFrom(G);
 | 
						|
    NewGlobal->setAlignment(MinRZ);
 | 
						|
 | 
						|
    Value *Indices2[2];
 | 
						|
    Indices2[0] = IRB.getInt32(0);
 | 
						|
    Indices2[1] = IRB.getInt32(0);
 | 
						|
 | 
						|
    G->replaceAllUsesWith(
 | 
						|
        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
 | 
						|
    NewGlobal->takeName(G);
 | 
						|
    G->eraseFromParent();
 | 
						|
 | 
						|
    Constant *SourceLoc;
 | 
						|
    if (!MD.SourceLoc.empty()) {
 | 
						|
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
 | 
						|
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
 | 
						|
    } else {
 | 
						|
      SourceLoc = ConstantInt::get(IntptrTy, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    Initializers[i] = ConstantStruct::get(
 | 
						|
        GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
 | 
						|
        ConstantExpr::getPointerCast(Name, IntptrTy),
 | 
						|
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, NULL);
 | 
						|
 | 
						|
    if (ClInitializers && MD.IsDynInit)
 | 
						|
      HasDynamicallyInitializedGlobals = true;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
 | 
						|
  GlobalVariable *AllGlobals = new GlobalVariable(
 | 
						|
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
 | 
						|
      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
 | 
						|
 | 
						|
  // Create calls for poisoning before initializers run and unpoisoning after.
 | 
						|
  if (HasDynamicallyInitializedGlobals)
 | 
						|
    createInitializerPoisonCalls(M, ModuleName);
 | 
						|
  IRB.CreateCall2(AsanRegisterGlobals,
 | 
						|
                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                  ConstantInt::get(IntptrTy, n));
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g. when a shared library
 | 
						|
  // gets closed.
 | 
						|
  Function *AsanDtorFunction = Function::Create(
 | 
						|
      FunctionType::get(Type::getVoidTy(*C), false),
 | 
						|
      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
 | 
						|
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
 | 
						|
  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
 | 
						|
  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
 | 
						|
                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                       ConstantInt::get(IntptrTy, n));
 | 
						|
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
 | 
						|
 | 
						|
  DEBUG(dbgs() << M);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizerModule::runOnModule(Module &M) {
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  if (!DLP)
 | 
						|
    return false;
 | 
						|
  DL = &DLP->getDataLayout();
 | 
						|
  C = &(M.getContext());
 | 
						|
  int LongSize = DL->getPointerSizeInBits();
 | 
						|
  IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
  Mapping = getShadowMapping(M, LongSize);
 | 
						|
  initializeCallbacks(M);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
 | 
						|
  assert(CtorFunc);
 | 
						|
  IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
 | 
						|
 | 
						|
  if (ClCoverage > 0) {
 | 
						|
    Function *CovFunc = M.getFunction(kAsanCovName);
 | 
						|
    int nCov = CovFunc ? CovFunc->getNumUses() : 0;
 | 
						|
    IRB.CreateCall(AsanCovModuleInit, ConstantInt::get(IntptrTy, nCov));
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClGlobals)
 | 
						|
    Changed |= InstrumentGlobals(IRB, M);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  // Create __asan_report* callbacks.
 | 
						|
  for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
 | 
						|
    for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | 
						|
         AccessSizeIndex++) {
 | 
						|
      // IsWrite and TypeSize are encoded in the function name.
 | 
						|
      std::string Suffix =
 | 
						|
          (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
 | 
						|
      AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
 | 
						|
          checkInterfaceFunction(
 | 
						|
              M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix,
 | 
						|
                                    IRB.getVoidTy(), IntptrTy, NULL));
 | 
						|
      AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
 | 
						|
          checkInterfaceFunction(
 | 
						|
              M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix,
 | 
						|
                                    IRB.getVoidTy(), IntptrTy, NULL));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
              kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
              kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
 | 
						|
  AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN",
 | 
						|
                            IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN",
 | 
						|
                            IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
 | 
						|
  AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
 | 
						|
  AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
 | 
						|
  AsanMemset = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, NULL));
 | 
						|
 | 
						|
  AsanHandleNoReturnFunc = checkInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
 | 
						|
  AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanCovName, IRB.getVoidTy(), NULL));
 | 
						|
  AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  // We insert an empty inline asm after __asan_report* to avoid callback merge.
 | 
						|
  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | 
						|
                            StringRef(""), StringRef(""),
 | 
						|
                            /*hasSideEffects=*/true);
 | 
						|
}
 | 
						|
 | 
						|
// virtual
 | 
						|
bool AddressSanitizer::doInitialization(Module &M) {
 | 
						|
  // Initialize the private fields. No one has accessed them before.
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  if (!DLP)
 | 
						|
    report_fatal_error("data layout missing");
 | 
						|
  DL = &DLP->getDataLayout();
 | 
						|
 | 
						|
  GlobalsMD.init(M);
 | 
						|
 | 
						|
  C = &(M.getContext());
 | 
						|
  LongSize = DL->getPointerSizeInBits();
 | 
						|
  IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
 | 
						|
  AsanCtorFunction = Function::Create(
 | 
						|
      FunctionType::get(Type::getVoidTy(*C), false),
 | 
						|
      GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
 | 
						|
  BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
 | 
						|
  // call __asan_init in the module ctor.
 | 
						|
  IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
 | 
						|
  AsanInitFunction = checkInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
 | 
						|
  AsanInitFunction->setLinkage(Function::ExternalLinkage);
 | 
						|
  IRB.CreateCall(AsanInitFunction);
 | 
						|
 | 
						|
  Mapping = getShadowMapping(M, LongSize);
 | 
						|
 | 
						|
  appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
 | 
						|
  // For each NSObject descendant having a +load method, this method is invoked
 | 
						|
  // by the ObjC runtime before any of the static constructors is called.
 | 
						|
  // Therefore we need to instrument such methods with a call to __asan_init
 | 
						|
  // at the beginning in order to initialize our runtime before any access to
 | 
						|
  // the shadow memory.
 | 
						|
  // We cannot just ignore these methods, because they may call other
 | 
						|
  // instrumented functions.
 | 
						|
  if (F.getName().find(" load]") != std::string::npos) {
 | 
						|
    IRBuilder<> IRB(F.begin()->begin());
 | 
						|
    IRB.CreateCall(AsanInitFunction);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::InjectCoverageAtBlock(Function &F, BasicBlock &BB) {
 | 
						|
  BasicBlock::iterator IP = BB.getFirstInsertionPt(), BE = BB.end();
 | 
						|
  // Skip static allocas at the top of the entry block so they don't become
 | 
						|
  // dynamic when we split the block.  If we used our optimized stack layout,
 | 
						|
  // then there will only be one alloca and it will come first.
 | 
						|
  for (; IP != BE; ++IP) {
 | 
						|
    AllocaInst *AI = dyn_cast<AllocaInst>(IP);
 | 
						|
    if (!AI || !AI->isStaticAlloca())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc EntryLoc = &BB == &F.getEntryBlock()
 | 
						|
                          ? IP->getDebugLoc().getFnDebugLoc(*C)
 | 
						|
                          : IP->getDebugLoc();
 | 
						|
  IRBuilder<> IRB(IP);
 | 
						|
  IRB.SetCurrentDebugLocation(EntryLoc);
 | 
						|
  Type *Int8Ty = IRB.getInt8Ty();
 | 
						|
  GlobalVariable *Guard = new GlobalVariable(
 | 
						|
      *F.getParent(), Int8Ty, false, GlobalValue::PrivateLinkage,
 | 
						|
      Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName());
 | 
						|
  LoadInst *Load = IRB.CreateLoad(Guard);
 | 
						|
  Load->setAtomic(Monotonic);
 | 
						|
  Load->setAlignment(1);
 | 
						|
  Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load);
 | 
						|
  Instruction *Ins = SplitBlockAndInsertIfThen(
 | 
						|
      Cmp, IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
 | 
						|
  IRB.SetInsertPoint(Ins);
 | 
						|
  IRB.SetCurrentDebugLocation(EntryLoc);
 | 
						|
  // __sanitizer_cov gets the PC of the instruction using GET_CALLER_PC.
 | 
						|
  IRB.CreateCall(AsanCovFunction);
 | 
						|
  StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard);
 | 
						|
  Store->setAtomic(Monotonic);
 | 
						|
  Store->setAlignment(1);
 | 
						|
}
 | 
						|
 | 
						|
// Poor man's coverage that works with ASan.
 | 
						|
// We create a Guard boolean variable with the same linkage
 | 
						|
// as the function and inject this code into the entry block (-asan-coverage=1)
 | 
						|
// or all blocks (-asan-coverage=2):
 | 
						|
// if (*Guard) {
 | 
						|
//    __sanitizer_cov();
 | 
						|
//    *Guard = 1;
 | 
						|
// }
 | 
						|
// The accesses to Guard are atomic. The rest of the logic is
 | 
						|
// in __sanitizer_cov (it's fine to call it more than once).
 | 
						|
//
 | 
						|
// This coverage implementation provides very limited data:
 | 
						|
// it only tells if a given function (block) was ever executed.
 | 
						|
// No counters, no per-edge data.
 | 
						|
// But for many use cases this is what we need and the added slowdown
 | 
						|
// is negligible. This simple implementation will probably be obsoleted
 | 
						|
// by the upcoming Clang-based coverage implementation.
 | 
						|
// By having it here and now we hope to
 | 
						|
//  a) get the functionality to users earlier and
 | 
						|
//  b) collect usage statistics to help improve Clang coverage design.
 | 
						|
bool AddressSanitizer::InjectCoverage(Function &F,
 | 
						|
                                      ArrayRef<BasicBlock *> AllBlocks) {
 | 
						|
  if (!ClCoverage) return false;
 | 
						|
 | 
						|
  if (ClCoverage == 1 ||
 | 
						|
      (unsigned)ClCoverageBlockThreshold < AllBlocks.size()) {
 | 
						|
    InjectCoverageAtBlock(F, F.getEntryBlock());
 | 
						|
  } else {
 | 
						|
    for (auto BB : AllBlocks)
 | 
						|
      InjectCoverageAtBlock(F, *BB);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::runOnFunction(Function &F) {
 | 
						|
  if (&F == AsanCtorFunction) return false;
 | 
						|
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
 | 
						|
  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
 | 
						|
  initializeCallbacks(*F.getParent());
 | 
						|
 | 
						|
  // If needed, insert __asan_init before checking for SanitizeAddress attr.
 | 
						|
  maybeInsertAsanInitAtFunctionEntry(F);
 | 
						|
 | 
						|
  if (!F.hasFnAttribute(Attribute::SanitizeAddress))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We want to instrument every address only once per basic block (unless there
 | 
						|
  // are calls between uses).
 | 
						|
  SmallSet<Value*, 16> TempsToInstrument;
 | 
						|
  SmallVector<Instruction*, 16> ToInstrument;
 | 
						|
  SmallVector<Instruction*, 8> NoReturnCalls;
 | 
						|
  SmallVector<BasicBlock*, 16> AllBlocks;
 | 
						|
  SmallVector<Instruction*, 16> PointerComparisonsOrSubtracts;
 | 
						|
  int NumAllocas = 0;
 | 
						|
  bool IsWrite;
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  // Fill the set of memory operations to instrument.
 | 
						|
  for (auto &BB : F) {
 | 
						|
    AllBlocks.push_back(&BB);
 | 
						|
    TempsToInstrument.clear();
 | 
						|
    int NumInsnsPerBB = 0;
 | 
						|
    for (auto &Inst : BB) {
 | 
						|
      if (LooksLikeCodeInBug11395(&Inst)) return false;
 | 
						|
      if (Value *Addr =
 | 
						|
              isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) {
 | 
						|
        if (ClOpt && ClOptSameTemp) {
 | 
						|
          if (!TempsToInstrument.insert(Addr))
 | 
						|
            continue;  // We've seen this temp in the current BB.
 | 
						|
        }
 | 
						|
      } else if (ClInvalidPointerPairs &&
 | 
						|
                 isInterestingPointerComparisonOrSubtraction(&Inst)) {
 | 
						|
        PointerComparisonsOrSubtracts.push_back(&Inst);
 | 
						|
        continue;
 | 
						|
      } else if (isa<MemIntrinsic>(Inst)) {
 | 
						|
        // ok, take it.
 | 
						|
      } else {
 | 
						|
        if (isa<AllocaInst>(Inst))
 | 
						|
          NumAllocas++;
 | 
						|
        CallSite CS(&Inst);
 | 
						|
        if (CS) {
 | 
						|
          // A call inside BB.
 | 
						|
          TempsToInstrument.clear();
 | 
						|
          if (CS.doesNotReturn())
 | 
						|
            NoReturnCalls.push_back(CS.getInstruction());
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ToInstrument.push_back(&Inst);
 | 
						|
      NumInsnsPerBB++;
 | 
						|
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Function *UninstrumentedDuplicate = nullptr;
 | 
						|
  bool LikelyToInstrument =
 | 
						|
      !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
 | 
						|
  if (ClKeepUninstrumented && LikelyToInstrument) {
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
    UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
 | 
						|
    UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
 | 
						|
    UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
 | 
						|
    F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
 | 
						|
  }
 | 
						|
 | 
						|
  bool UseCalls = false;
 | 
						|
  if (ClInstrumentationWithCallsThreshold >= 0 &&
 | 
						|
      ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
 | 
						|
    UseCalls = true;
 | 
						|
 | 
						|
  // Instrument.
 | 
						|
  int NumInstrumented = 0;
 | 
						|
  for (auto Inst : ToInstrument) {
 | 
						|
    if (ClDebugMin < 0 || ClDebugMax < 0 ||
 | 
						|
        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
 | 
						|
      if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment))
 | 
						|
        instrumentMop(Inst, UseCalls);
 | 
						|
      else
 | 
						|
        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
 | 
						|
    }
 | 
						|
    NumInstrumented++;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionStackPoisoner FSP(F, *this);
 | 
						|
  bool ChangedStack = FSP.runOnFunction();
 | 
						|
 | 
						|
  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
 | 
						|
  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
 | 
						|
  for (auto CI : NoReturnCalls) {
 | 
						|
    IRBuilder<> IRB(CI);
 | 
						|
    IRB.CreateCall(AsanHandleNoReturnFunc);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto Inst : PointerComparisonsOrSubtracts) {
 | 
						|
    instrumentPointerComparisonOrSubtraction(Inst);
 | 
						|
    NumInstrumented++;
 | 
						|
  }
 | 
						|
 | 
						|
  bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
 | 
						|
 | 
						|
  if (InjectCoverage(F, AllBlocks))
 | 
						|
    res = true;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
 | 
						|
 | 
						|
  if (ClKeepUninstrumented) {
 | 
						|
    if (!res) {
 | 
						|
      // No instrumentation is done, no need for the duplicate.
 | 
						|
      if (UninstrumentedDuplicate)
 | 
						|
        UninstrumentedDuplicate->eraseFromParent();
 | 
						|
    } else {
 | 
						|
      // The function was instrumented. We must have the duplicate.
 | 
						|
      assert(UninstrumentedDuplicate);
 | 
						|
      UninstrumentedDuplicate->setSection("NOASAN");
 | 
						|
      assert(!F.hasSection());
 | 
						|
      F.setSection("ASAN");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
// Workaround for bug 11395: we don't want to instrument stack in functions
 | 
						|
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
 | 
						|
// FIXME: remove once the bug 11395 is fixed.
 | 
						|
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
 | 
						|
  if (LongSize != 32) return false;
 | 
						|
  CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
  if (!CI || !CI->isInlineAsm()) return false;
 | 
						|
  if (CI->getNumArgOperands() <= 5) return false;
 | 
						|
  // We have inline assembly with quite a few arguments.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
 | 
						|
    std::string Suffix = itostr(i);
 | 
						|
    AsanStackMallocFunc[i] = checkInterfaceFunction(
 | 
						|
        M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
 | 
						|
                              IntptrTy, IntptrTy, NULL));
 | 
						|
    AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
        kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy,
 | 
						|
        IntptrTy, IntptrTy, NULL));
 | 
						|
  }
 | 
						|
  AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
  AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                      IRBuilder<> &IRB, Value *ShadowBase,
 | 
						|
                                      bool DoPoison) {
 | 
						|
  size_t n = ShadowBytes.size();
 | 
						|
  size_t i = 0;
 | 
						|
  // We need to (un)poison n bytes of stack shadow. Poison as many as we can
 | 
						|
  // using 64-bit stores (if we are on 64-bit arch), then poison the rest
 | 
						|
  // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
 | 
						|
  for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
 | 
						|
       LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
 | 
						|
    for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
 | 
						|
      uint64_t Val = 0;
 | 
						|
      for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
 | 
						|
        if (ASan.DL->isLittleEndian())
 | 
						|
          Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
 | 
						|
        else
 | 
						|
          Val = (Val << 8) | ShadowBytes[i + j];
 | 
						|
      }
 | 
						|
      if (!Val) continue;
 | 
						|
      Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | 
						|
      Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
 | 
						|
      Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
 | 
						|
      IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
 | 
						|
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
 | 
						|
static int StackMallocSizeClass(uint64_t LocalStackSize) {
 | 
						|
  assert(LocalStackSize <= kMaxStackMallocSize);
 | 
						|
  uint64_t MaxSize = kMinStackMallocSize;
 | 
						|
  for (int i = 0; ; i++, MaxSize *= 2)
 | 
						|
    if (LocalStackSize <= MaxSize)
 | 
						|
      return i;
 | 
						|
  llvm_unreachable("impossible LocalStackSize");
 | 
						|
}
 | 
						|
 | 
						|
// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
 | 
						|
// We can not use MemSet intrinsic because it may end up calling the actual
 | 
						|
// memset. Size is a multiple of 8.
 | 
						|
// Currently this generates 8-byte stores on x86_64; it may be better to
 | 
						|
// generate wider stores.
 | 
						|
void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
 | 
						|
    IRBuilder<> &IRB, Value *ShadowBase, int Size) {
 | 
						|
  assert(!(Size % 8));
 | 
						|
  assert(kAsanStackAfterReturnMagic == 0xf5);
 | 
						|
  for (int i = 0; i < Size; i += 8) {
 | 
						|
    Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | 
						|
    IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
 | 
						|
                    IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static DebugLoc getFunctionEntryDebugLocation(Function &F) {
 | 
						|
  for (const auto &Inst : F.getEntryBlock())
 | 
						|
    if (!isa<AllocaInst>(Inst))
 | 
						|
      return Inst.getDebugLoc();
 | 
						|
  return DebugLoc();
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::poisonStack() {
 | 
						|
  int StackMallocIdx = -1;
 | 
						|
  DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);
 | 
						|
 | 
						|
  assert(AllocaVec.size() > 0);
 | 
						|
  Instruction *InsBefore = AllocaVec[0];
 | 
						|
  IRBuilder<> IRB(InsBefore);
 | 
						|
  IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
 | 
						|
  SmallVector<ASanStackVariableDescription, 16> SVD;
 | 
						|
  SVD.reserve(AllocaVec.size());
 | 
						|
  for (AllocaInst *AI : AllocaVec) {
 | 
						|
    ASanStackVariableDescription D = { AI->getName().data(),
 | 
						|
                                   getAllocaSizeInBytes(AI),
 | 
						|
                                   AI->getAlignment(), AI, 0};
 | 
						|
    SVD.push_back(D);
 | 
						|
  }
 | 
						|
  // Minimal header size (left redzone) is 4 pointers,
 | 
						|
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
 | 
						|
  size_t MinHeaderSize = ASan.LongSize / 2;
 | 
						|
  ASanStackFrameLayout L;
 | 
						|
  ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
 | 
						|
  DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
 | 
						|
  uint64_t LocalStackSize = L.FrameSize;
 | 
						|
  bool DoStackMalloc =
 | 
						|
      ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
 | 
						|
 | 
						|
  Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
 | 
						|
  AllocaInst *MyAlloca =
 | 
						|
      new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
 | 
						|
  MyAlloca->setDebugLoc(EntryDebugLocation);
 | 
						|
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
 | 
						|
  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
 | 
						|
  MyAlloca->setAlignment(FrameAlignment);
 | 
						|
  assert(MyAlloca->isStaticAlloca());
 | 
						|
  Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
 | 
						|
  Value *LocalStackBase = OrigStackBase;
 | 
						|
 | 
						|
  if (DoStackMalloc) {
 | 
						|
    // LocalStackBase = OrigStackBase
 | 
						|
    // if (__asan_option_detect_stack_use_after_return)
 | 
						|
    //   LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase);
 | 
						|
    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | 
						|
    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
 | 
						|
    Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
 | 
						|
        kAsanOptionDetectUAR, IRB.getInt32Ty());
 | 
						|
    Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
 | 
						|
                                  Constant::getNullValue(IRB.getInt32Ty()));
 | 
						|
    Instruction *Term = SplitBlockAndInsertIfThen(Cmp, InsBefore, false);
 | 
						|
    BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent();
 | 
						|
    IRBuilder<> IRBIf(Term);
 | 
						|
    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    LocalStackBase = IRBIf.CreateCall2(
 | 
						|
        AsanStackMallocFunc[StackMallocIdx],
 | 
						|
        ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
 | 
						|
    BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent();
 | 
						|
    IRB.SetInsertPoint(InsBefore);
 | 
						|
    IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    PHINode *Phi = IRB.CreatePHI(IntptrTy, 2);
 | 
						|
    Phi->addIncoming(OrigStackBase, CmpBlock);
 | 
						|
    Phi->addIncoming(LocalStackBase, SetBlock);
 | 
						|
    LocalStackBase = Phi;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert poison calls for lifetime intrinsics for alloca.
 | 
						|
  bool HavePoisonedAllocas = false;
 | 
						|
  for (const auto &APC : AllocaPoisonCallVec) {
 | 
						|
    assert(APC.InsBefore);
 | 
						|
    assert(APC.AI);
 | 
						|
    IRBuilder<> IRB(APC.InsBefore);
 | 
						|
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
 | 
						|
    HavePoisonedAllocas |= APC.DoPoison;
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace Alloca instructions with base+offset.
 | 
						|
  for (const auto &Desc : SVD) {
 | 
						|
    AllocaInst *AI = Desc.AI;
 | 
						|
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
 | 
						|
        AI->getType());
 | 
						|
    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
 | 
						|
    AI->replaceAllUsesWith(NewAllocaPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // The left-most redzone has enough space for at least 4 pointers.
 | 
						|
  // Write the Magic value to redzone[0].
 | 
						|
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
 | 
						|
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
 | 
						|
                  BasePlus0);
 | 
						|
  // Write the frame description constant to redzone[1].
 | 
						|
  Value *BasePlus1 = IRB.CreateIntToPtr(
 | 
						|
    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
 | 
						|
    IntptrPtrTy);
 | 
						|
  GlobalVariable *StackDescriptionGlobal =
 | 
						|
      createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
 | 
						|
                                   /*AllowMerging*/true);
 | 
						|
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
 | 
						|
                                             IntptrTy);
 | 
						|
  IRB.CreateStore(Description, BasePlus1);
 | 
						|
  // Write the PC to redzone[2].
 | 
						|
  Value *BasePlus2 = IRB.CreateIntToPtr(
 | 
						|
    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
 | 
						|
                                                   2 * ASan.LongSize/8)),
 | 
						|
    IntptrPtrTy);
 | 
						|
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
 | 
						|
 | 
						|
  // Poison the stack redzones at the entry.
 | 
						|
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
 | 
						|
  poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
 | 
						|
 | 
						|
  // (Un)poison the stack before all ret instructions.
 | 
						|
  for (auto Ret : RetVec) {
 | 
						|
    IRBuilder<> IRBRet(Ret);
 | 
						|
    // Mark the current frame as retired.
 | 
						|
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
 | 
						|
                       BasePlus0);
 | 
						|
    if (DoStackMalloc) {
 | 
						|
      assert(StackMallocIdx >= 0);
 | 
						|
      // if LocalStackBase != OrigStackBase:
 | 
						|
      //     // In use-after-return mode, poison the whole stack frame.
 | 
						|
      //     if StackMallocIdx <= 4
 | 
						|
      //         // For small sizes inline the whole thing:
 | 
						|
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
 | 
						|
      //         **SavedFlagPtr(LocalStackBase) = 0
 | 
						|
      //     else
 | 
						|
      //         __asan_stack_free_N(LocalStackBase, OrigStackBase)
 | 
						|
      // else
 | 
						|
      //     <This is not a fake stack; unpoison the redzones>
 | 
						|
      Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase);
 | 
						|
      TerminatorInst *ThenTerm, *ElseTerm;
 | 
						|
      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
 | 
						|
 | 
						|
      IRBuilder<> IRBPoison(ThenTerm);
 | 
						|
      if (StackMallocIdx <= 4) {
 | 
						|
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
 | 
						|
        SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
 | 
						|
                                           ClassSize >> Mapping.Scale);
 | 
						|
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
 | 
						|
            LocalStackBase,
 | 
						|
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
 | 
						|
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
 | 
						|
            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
 | 
						|
        IRBPoison.CreateStore(
 | 
						|
            Constant::getNullValue(IRBPoison.getInt8Ty()),
 | 
						|
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
 | 
						|
      } else {
 | 
						|
        // For larger frames call __asan_stack_free_*.
 | 
						|
        IRBPoison.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase,
 | 
						|
                              ConstantInt::get(IntptrTy, LocalStackSize),
 | 
						|
                              OrigStackBase);
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> IRBElse(ElseTerm);
 | 
						|
      poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
 | 
						|
    } else if (HavePoisonedAllocas) {
 | 
						|
      // If we poisoned some allocas in llvm.lifetime analysis,
 | 
						|
      // unpoison whole stack frame now.
 | 
						|
      assert(LocalStackBase == OrigStackBase);
 | 
						|
      poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
 | 
						|
    } else {
 | 
						|
      poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We are done. Remove the old unused alloca instructions.
 | 
						|
  for (auto AI : AllocaVec)
 | 
						|
    AI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
 | 
						|
                                         IRBuilder<> &IRB, bool DoPoison) {
 | 
						|
  // For now just insert the call to ASan runtime.
 | 
						|
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
 | 
						|
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
 | 
						|
  IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
 | 
						|
                           : AsanUnpoisonStackMemoryFunc,
 | 
						|
                  AddrArg, SizeArg);
 | 
						|
}
 | 
						|
 | 
						|
// Handling llvm.lifetime intrinsics for a given %alloca:
 | 
						|
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
 | 
						|
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
 | 
						|
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
 | 
						|
//     could be poisoned by previous llvm.lifetime.end instruction, as the
 | 
						|
//     variable may go in and out of scope several times, e.g. in loops).
 | 
						|
// (3) if we poisoned at least one %alloca in a function,
 | 
						|
//     unpoison the whole stack frame at function exit.
 | 
						|
 | 
						|
AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | 
						|
    // We're intested only in allocas we can handle.
 | 
						|
    return isInterestingAlloca(*AI) ? AI : nullptr;
 | 
						|
  // See if we've already calculated (or started to calculate) alloca for a
 | 
						|
  // given value.
 | 
						|
  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
 | 
						|
  if (I != AllocaForValue.end())
 | 
						|
    return I->second;
 | 
						|
  // Store 0 while we're calculating alloca for value V to avoid
 | 
						|
  // infinite recursion if the value references itself.
 | 
						|
  AllocaForValue[V] = nullptr;
 | 
						|
  AllocaInst *Res = nullptr;
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    Res = findAllocaForValue(CI->getOperand(0));
 | 
						|
  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *IncValue = PN->getIncomingValue(i);
 | 
						|
      // Allow self-referencing phi-nodes.
 | 
						|
      if (IncValue == PN) continue;
 | 
						|
      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
 | 
						|
      // AI for incoming values should exist and should all be equal.
 | 
						|
      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
 | 
						|
        return nullptr;
 | 
						|
      Res = IncValueAI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Res)
 | 
						|
    AllocaForValue[V] = Res;
 | 
						|
  return Res;
 | 
						|
}
 |