mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2187 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2187 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the implementation of the FastISel class.
 | 
						|
//
 | 
						|
// "Fast" instruction selection is designed to emit very poor code quickly.
 | 
						|
// Also, it is not designed to be able to do much lowering, so most illegal
 | 
						|
// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
 | 
						|
// also not intended to be able to do much optimization, except in a few cases
 | 
						|
// where doing optimizations reduces overall compile time.  For example, folding
 | 
						|
// constants into immediate fields is often done, because it's cheap and it
 | 
						|
// reduces the number of instructions later phases have to examine.
 | 
						|
//
 | 
						|
// "Fast" instruction selection is able to fail gracefully and transfer
 | 
						|
// control to the SelectionDAG selector for operations that it doesn't
 | 
						|
// support.  In many cases, this allows us to avoid duplicating a lot of
 | 
						|
// the complicated lowering logic that SelectionDAG currently has.
 | 
						|
//
 | 
						|
// The intended use for "fast" instruction selection is "-O0" mode
 | 
						|
// compilation, where the quality of the generated code is irrelevant when
 | 
						|
// weighed against the speed at which the code can be generated.  Also,
 | 
						|
// at -O0, the LLVM optimizers are not running, and this makes the
 | 
						|
// compile time of codegen a much higher portion of the overall compile
 | 
						|
// time.  Despite its limitations, "fast" instruction selection is able to
 | 
						|
// handle enough code on its own to provide noticeable overall speedups
 | 
						|
// in -O0 compiles.
 | 
						|
//
 | 
						|
// Basic operations are supported in a target-independent way, by reading
 | 
						|
// the same instruction descriptions that the SelectionDAG selector reads,
 | 
						|
// and identifying simple arithmetic operations that can be directly selected
 | 
						|
// from simple operators.  More complicated operations currently require
 | 
						|
// target-specific code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/FastISel.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
 | 
						|
STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
 | 
						|
                                         "target-independent selector");
 | 
						|
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
 | 
						|
                                    "target-specific selector");
 | 
						|
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
 | 
						|
 | 
						|
void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
 | 
						|
                                           unsigned AttrIdx) {
 | 
						|
  IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
 | 
						|
  IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
 | 
						|
  IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
 | 
						|
  IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
 | 
						|
  IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
 | 
						|
  IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
 | 
						|
  IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
 | 
						|
  IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
 | 
						|
  Alignment = CS->getParamAlignment(AttrIdx);
 | 
						|
}
 | 
						|
 | 
						|
/// Set the current block to which generated machine instructions will be
 | 
						|
/// appended, and clear the local CSE map.
 | 
						|
void FastISel::startNewBlock() {
 | 
						|
  LocalValueMap.clear();
 | 
						|
 | 
						|
  // Instructions are appended to FuncInfo.MBB. If the basic block already
 | 
						|
  // contains labels or copies, use the last instruction as the last local
 | 
						|
  // value.
 | 
						|
  EmitStartPt = nullptr;
 | 
						|
  if (!FuncInfo.MBB->empty())
 | 
						|
    EmitStartPt = &FuncInfo.MBB->back();
 | 
						|
  LastLocalValue = EmitStartPt;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::lowerArguments() {
 | 
						|
  if (!FuncInfo.CanLowerReturn)
 | 
						|
    // Fallback to SDISel argument lowering code to deal with sret pointer
 | 
						|
    // parameter.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!fastLowerArguments())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Enter arguments into ValueMap for uses in non-entry BBs.
 | 
						|
  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
 | 
						|
                                    E = FuncInfo.Fn->arg_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
 | 
						|
    assert(VI != LocalValueMap.end() && "Missed an argument?");
 | 
						|
    FuncInfo.ValueMap[I] = VI->second;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void FastISel::flushLocalValueMap() {
 | 
						|
  LocalValueMap.clear();
 | 
						|
  LastLocalValue = EmitStartPt;
 | 
						|
  recomputeInsertPt();
 | 
						|
  SavedInsertPt = FuncInfo.InsertPt;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::hasTrivialKill(const Value *V) {
 | 
						|
  // Don't consider constants or arguments to have trivial kills.
 | 
						|
  const Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No-op casts are trivially coalesced by fast-isel.
 | 
						|
  if (const auto *Cast = dyn_cast<CastInst>(I))
 | 
						|
    if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
 | 
						|
        !hasTrivialKill(Cast->getOperand(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Even the value might have only one use in the LLVM IR, it is possible that
 | 
						|
  // FastISel might fold the use into another instruction and now there is more
 | 
						|
  // than one use at the Machine Instruction level.
 | 
						|
  unsigned Reg = lookUpRegForValue(V);
 | 
						|
  if (Reg && !MRI.use_empty(Reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // GEPs with all zero indices are trivially coalesced by fast-isel.
 | 
						|
  if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
 | 
						|
    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Only instructions with a single use in the same basic block are considered
 | 
						|
  // to have trivial kills.
 | 
						|
  return I->hasOneUse() &&
 | 
						|
         !(I->getOpcode() == Instruction::BitCast ||
 | 
						|
           I->getOpcode() == Instruction::PtrToInt ||
 | 
						|
           I->getOpcode() == Instruction::IntToPtr) &&
 | 
						|
         cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::getRegForValue(const Value *V) {
 | 
						|
  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
 | 
						|
  // Don't handle non-simple values in FastISel.
 | 
						|
  if (!RealVT.isSimple())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Ignore illegal types. We must do this before looking up the value
 | 
						|
  // in ValueMap because Arguments are given virtual registers regardless
 | 
						|
  // of whether FastISel can handle them.
 | 
						|
  MVT VT = RealVT.getSimpleVT();
 | 
						|
  if (!TLI.isTypeLegal(VT)) {
 | 
						|
    // Handle integer promotions, though, because they're common and easy.
 | 
						|
    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
 | 
						|
      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
 | 
						|
    else
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look up the value to see if we already have a register for it.
 | 
						|
  unsigned Reg = lookUpRegForValue(V);
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  // In bottom-up mode, just create the virtual register which will be used
 | 
						|
  // to hold the value. It will be materialized later.
 | 
						|
  if (isa<Instruction>(V) &&
 | 
						|
      (!isa<AllocaInst>(V) ||
 | 
						|
       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
 | 
						|
    return FuncInfo.InitializeRegForValue(V);
 | 
						|
 | 
						|
  SavePoint SaveInsertPt = enterLocalValueArea();
 | 
						|
 | 
						|
  // Materialize the value in a register. Emit any instructions in the
 | 
						|
  // local value area.
 | 
						|
  Reg = materializeRegForValue(V, VT);
 | 
						|
 | 
						|
  leaveLocalValueArea(SaveInsertPt);
 | 
						|
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
 | 
						|
  unsigned Reg = 0;
 | 
						|
  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    if (CI->getValue().getActiveBits() <= 64)
 | 
						|
      Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | 
						|
  } else if (isa<AllocaInst>(V))
 | 
						|
    Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
 | 
						|
  else if (isa<ConstantPointerNull>(V))
 | 
						|
    // Translate this as an integer zero so that it can be
 | 
						|
    // local-CSE'd with actual integer zeros.
 | 
						|
    Reg = getRegForValue(
 | 
						|
        Constant::getNullValue(DL.getIntPtrType(V->getContext())));
 | 
						|
  else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
 | 
						|
    if (CF->isNullValue())
 | 
						|
      Reg = fastMaterializeFloatZero(CF);
 | 
						|
    else
 | 
						|
      // Try to emit the constant directly.
 | 
						|
      Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
 | 
						|
 | 
						|
    if (!Reg) {
 | 
						|
      // Try to emit the constant by using an integer constant with a cast.
 | 
						|
      const APFloat &Flt = CF->getValueAPF();
 | 
						|
      EVT IntVT = TLI.getPointerTy();
 | 
						|
 | 
						|
      uint64_t x[2];
 | 
						|
      uint32_t IntBitWidth = IntVT.getSizeInBits();
 | 
						|
      bool isExact;
 | 
						|
      (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | 
						|
                                 APFloat::rmTowardZero, &isExact);
 | 
						|
      if (isExact) {
 | 
						|
        APInt IntVal(IntBitWidth, x);
 | 
						|
 | 
						|
        unsigned IntegerReg =
 | 
						|
            getRegForValue(ConstantInt::get(V->getContext(), IntVal));
 | 
						|
        if (IntegerReg != 0)
 | 
						|
          Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
 | 
						|
                           /*Kill=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const auto *Op = dyn_cast<Operator>(V)) {
 | 
						|
    if (!selectOperator(Op, Op->getOpcode()))
 | 
						|
      if (!isa<Instruction>(Op) ||
 | 
						|
          !fastSelectInstruction(cast<Instruction>(Op)))
 | 
						|
        return 0;
 | 
						|
    Reg = lookUpRegForValue(Op);
 | 
						|
  } else if (isa<UndefValue>(V)) {
 | 
						|
    Reg = createResultReg(TLI.getRegClassFor(VT));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
 | 
						|
  }
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper for getRegForValue. This function is called when the value isn't
 | 
						|
/// already available in a register and must be materialized with new
 | 
						|
/// instructions.
 | 
						|
unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
 | 
						|
  unsigned Reg = 0;
 | 
						|
  // Give the target-specific code a try first.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    Reg = fastMaterializeConstant(cast<Constant>(V));
 | 
						|
 | 
						|
  // If target-specific code couldn't or didn't want to handle the value, then
 | 
						|
  // give target-independent code a try.
 | 
						|
  if (!Reg)
 | 
						|
    Reg = materializeConstant(V, VT);
 | 
						|
 | 
						|
  // Don't cache constant materializations in the general ValueMap.
 | 
						|
  // To do so would require tracking what uses they dominate.
 | 
						|
  if (Reg) {
 | 
						|
    LocalValueMap[V] = Reg;
 | 
						|
    LastLocalValue = MRI.getVRegDef(Reg);
 | 
						|
  }
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::lookUpRegForValue(const Value *V) {
 | 
						|
  // Look up the value to see if we already have a register for it. We
 | 
						|
  // cache values defined by Instructions across blocks, and other values
 | 
						|
  // only locally. This is because Instructions already have the SSA
 | 
						|
  // def-dominates-use requirement enforced.
 | 
						|
  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
 | 
						|
  if (I != FuncInfo.ValueMap.end())
 | 
						|
    return I->second;
 | 
						|
  return LocalValueMap[V];
 | 
						|
}
 | 
						|
 | 
						|
void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
 | 
						|
  if (!isa<Instruction>(I)) {
 | 
						|
    LocalValueMap[I] = Reg;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned &AssignedReg = FuncInfo.ValueMap[I];
 | 
						|
  if (AssignedReg == 0)
 | 
						|
    // Use the new register.
 | 
						|
    AssignedReg = Reg;
 | 
						|
  else if (Reg != AssignedReg) {
 | 
						|
    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
 | 
						|
    for (unsigned i = 0; i < NumRegs; i++)
 | 
						|
      FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
 | 
						|
 | 
						|
    AssignedReg = Reg;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
 | 
						|
  unsigned IdxN = getRegForValue(Idx);
 | 
						|
  if (IdxN == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return std::pair<unsigned, bool>(0, false);
 | 
						|
 | 
						|
  bool IdxNIsKill = hasTrivialKill(Idx);
 | 
						|
 | 
						|
  // If the index is smaller or larger than intptr_t, truncate or extend it.
 | 
						|
  MVT PtrVT = TLI.getPointerTy();
 | 
						|
  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
 | 
						|
  if (IdxVT.bitsLT(PtrVT)) {
 | 
						|
    IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
 | 
						|
                      IdxNIsKill);
 | 
						|
    IdxNIsKill = true;
 | 
						|
  } else if (IdxVT.bitsGT(PtrVT)) {
 | 
						|
    IdxN =
 | 
						|
        fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
 | 
						|
    IdxNIsKill = true;
 | 
						|
  }
 | 
						|
  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
 | 
						|
}
 | 
						|
 | 
						|
void FastISel::recomputeInsertPt() {
 | 
						|
  if (getLastLocalValue()) {
 | 
						|
    FuncInfo.InsertPt = getLastLocalValue();
 | 
						|
    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
 | 
						|
    ++FuncInfo.InsertPt;
 | 
						|
  } else
 | 
						|
    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
 | 
						|
 | 
						|
  // Now skip past any EH_LABELs, which must remain at the beginning.
 | 
						|
  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
 | 
						|
         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
 | 
						|
    ++FuncInfo.InsertPt;
 | 
						|
}
 | 
						|
 | 
						|
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
 | 
						|
                              MachineBasicBlock::iterator E) {
 | 
						|
  assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
 | 
						|
  while (I != E) {
 | 
						|
    MachineInstr *Dead = &*I;
 | 
						|
    ++I;
 | 
						|
    Dead->eraseFromParent();
 | 
						|
    ++NumFastIselDead;
 | 
						|
  }
 | 
						|
  recomputeInsertPt();
 | 
						|
}
 | 
						|
 | 
						|
FastISel::SavePoint FastISel::enterLocalValueArea() {
 | 
						|
  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
 | 
						|
  DebugLoc OldDL = DbgLoc;
 | 
						|
  recomputeInsertPt();
 | 
						|
  DbgLoc = DebugLoc();
 | 
						|
  SavePoint SP = {OldInsertPt, OldDL};
 | 
						|
  return SP;
 | 
						|
}
 | 
						|
 | 
						|
void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
 | 
						|
  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
 | 
						|
    LastLocalValue = std::prev(FuncInfo.InsertPt);
 | 
						|
 | 
						|
  // Restore the previous insert position.
 | 
						|
  FuncInfo.InsertPt = OldInsertPt.InsertPt;
 | 
						|
  DbgLoc = OldInsertPt.DL;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
 | 
						|
  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !VT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only handle legal types. For example, on x86-32 the instruction
 | 
						|
  // selector contains all of the 64-bit instructions from x86-64,
 | 
						|
  // under the assumption that i64 won't be used if the target doesn't
 | 
						|
  // support it.
 | 
						|
  if (!TLI.isTypeLegal(VT)) {
 | 
						|
    // MVT::i1 is special. Allow AND, OR, or XOR because they
 | 
						|
    // don't require additional zeroing, which makes them easy.
 | 
						|
    if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
 | 
						|
                          ISDOpcode == ISD::XOR))
 | 
						|
      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
 | 
						|
  // we don't have anything that canonicalizes operand order.
 | 
						|
  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
 | 
						|
    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
 | 
						|
      unsigned Op1 = getRegForValue(I->getOperand(1));
 | 
						|
      if (!Op1)
 | 
						|
        return false;
 | 
						|
      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | 
						|
 | 
						|
      unsigned ResultReg =
 | 
						|
          fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
 | 
						|
                       CI->getZExtValue(), VT.getSimpleVT());
 | 
						|
      if (!ResultReg)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // We successfully emitted code for the given LLVM Instruction.
 | 
						|
      updateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  unsigned Op0 = getRegForValue(I->getOperand(0));
 | 
						|
  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  // Check if the second operand is a constant and handle it appropriately.
 | 
						|
  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
    uint64_t Imm = CI->getZExtValue();
 | 
						|
 | 
						|
    // Transform "sdiv exact X, 8" -> "sra X, 3".
 | 
						|
    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
 | 
						|
        cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
 | 
						|
      Imm = Log2_64(Imm);
 | 
						|
      ISDOpcode = ISD::SRA;
 | 
						|
    }
 | 
						|
 | 
						|
    // Transform "urem x, pow2" -> "and x, pow2-1".
 | 
						|
    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
 | 
						|
        isPowerOf2_64(Imm)) {
 | 
						|
      --Imm;
 | 
						|
      ISDOpcode = ISD::AND;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
 | 
						|
                                      Op0IsKill, Imm, VT.getSimpleVT());
 | 
						|
    if (!ResultReg)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We successfully emitted code for the given LLVM Instruction.
 | 
						|
    updateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the second operand is a constant float.
 | 
						|
  if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
 | 
						|
    unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                     ISDOpcode, Op0, Op0IsKill, CF);
 | 
						|
    if (ResultReg) {
 | 
						|
      // We successfully emitted code for the given LLVM Instruction.
 | 
						|
      updateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op1 = getRegForValue(I->getOperand(1));
 | 
						|
  if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | 
						|
 | 
						|
  // Now we have both operands in registers. Emit the instruction.
 | 
						|
  unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                   ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
 | 
						|
  if (!ResultReg)
 | 
						|
    // Target-specific code wasn't able to find a machine opcode for
 | 
						|
    // the given ISD opcode and type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We successfully emitted code for the given LLVM Instruction.
 | 
						|
  updateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectGetElementPtr(const User *I) {
 | 
						|
  unsigned N = getRegForValue(I->getOperand(0));
 | 
						|
  if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  bool NIsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
 | 
						|
  // into a single N = N + TotalOffset.
 | 
						|
  uint64_t TotalOffs = 0;
 | 
						|
  // FIXME: What's a good SWAG number for MaxOffs?
 | 
						|
  uint64_t MaxOffs = 2048;
 | 
						|
  Type *Ty = I->getOperand(0)->getType();
 | 
						|
  MVT VT = TLI.getPointerTy();
 | 
						|
  for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
 | 
						|
                                            E = I->op_end();
 | 
						|
       OI != E; ++OI) {
 | 
						|
    const Value *Idx = *OI;
 | 
						|
    if (auto *StTy = dyn_cast<StructType>(Ty)) {
 | 
						|
      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | 
						|
      if (Field) {
 | 
						|
        // N = N + Offset
 | 
						|
        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
 | 
						|
        if (TotalOffs >= MaxOffs) {
 | 
						|
          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | 
						|
          if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
            return false;
 | 
						|
          NIsKill = true;
 | 
						|
          TotalOffs = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
 | 
						|
      // If this is a constant subscript, handle it quickly.
 | 
						|
      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
        if (CI->isZero())
 | 
						|
          continue;
 | 
						|
        // N = N + Offset
 | 
						|
        TotalOffs +=
 | 
						|
            DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
 | 
						|
        if (TotalOffs >= MaxOffs) {
 | 
						|
          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | 
						|
          if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
            return false;
 | 
						|
          NIsKill = true;
 | 
						|
          TotalOffs = 0;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (TotalOffs) {
 | 
						|
        N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | 
						|
        if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
          return false;
 | 
						|
        NIsKill = true;
 | 
						|
        TotalOffs = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // N = N + Idx * ElementSize;
 | 
						|
      uint64_t ElementSize = DL.getTypeAllocSize(Ty);
 | 
						|
      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
 | 
						|
      unsigned IdxN = Pair.first;
 | 
						|
      bool IdxNIsKill = Pair.second;
 | 
						|
      if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (ElementSize != 1) {
 | 
						|
        IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
 | 
						|
        if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
          return false;
 | 
						|
        IdxNIsKill = true;
 | 
						|
      }
 | 
						|
      N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
 | 
						|
      if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TotalOffs) {
 | 
						|
    N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
 | 
						|
    if (!N) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We successfully emitted code for the given LLVM Instruction.
 | 
						|
  updateValueMap(I, N);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
 | 
						|
                                   const CallInst *CI, unsigned StartIdx) {
 | 
						|
  for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
 | 
						|
    Value *Val = CI->getArgOperand(i);
 | 
						|
    // Check for constants and encode them with a StackMaps::ConstantOp prefix.
 | 
						|
    if (const auto *C = dyn_cast<ConstantInt>(Val)) {
 | 
						|
      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
 | 
						|
      Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
 | 
						|
    } else if (isa<ConstantPointerNull>(Val)) {
 | 
						|
      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
 | 
						|
      Ops.push_back(MachineOperand::CreateImm(0));
 | 
						|
    } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
 | 
						|
      // Values coming from a stack location also require a sepcial encoding,
 | 
						|
      // but that is added later on by the target specific frame index
 | 
						|
      // elimination implementation.
 | 
						|
      auto SI = FuncInfo.StaticAllocaMap.find(AI);
 | 
						|
      if (SI != FuncInfo.StaticAllocaMap.end())
 | 
						|
        Ops.push_back(MachineOperand::CreateFI(SI->second));
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      unsigned Reg = getRegForValue(Val);
 | 
						|
      if (!Reg)
 | 
						|
        return false;
 | 
						|
      Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectStackmap(const CallInst *I) {
 | 
						|
  // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
 | 
						|
  //                                  [live variables...])
 | 
						|
  assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
 | 
						|
         "Stackmap cannot return a value.");
 | 
						|
 | 
						|
  // The stackmap intrinsic only records the live variables (the arguments
 | 
						|
  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
 | 
						|
  // intrinsic, this won't be lowered to a function call. This means we don't
 | 
						|
  // have to worry about calling conventions and target-specific lowering code.
 | 
						|
  // Instead we perform the call lowering right here.
 | 
						|
  //
 | 
						|
  // CALLSEQ_START(0)
 | 
						|
  // STACKMAP(id, nbytes, ...)
 | 
						|
  // CALLSEQ_END(0, 0)
 | 
						|
  //
 | 
						|
  SmallVector<MachineOperand, 32> Ops;
 | 
						|
 | 
						|
  // Add the <id> and <numBytes> constants.
 | 
						|
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
 | 
						|
         "Expected a constant integer.");
 | 
						|
  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
 | 
						|
 | 
						|
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
 | 
						|
         "Expected a constant integer.");
 | 
						|
  const auto *NumBytes =
 | 
						|
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
 | 
						|
 | 
						|
  // Push live variables for the stack map (skipping the first two arguments
 | 
						|
  // <id> and <numBytes>).
 | 
						|
  if (!addStackMapLiveVars(Ops, I, 2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We are not adding any register mask info here, because the stackmap doesn't
 | 
						|
  // clobber anything.
 | 
						|
 | 
						|
  // Add scratch registers as implicit def and early clobber.
 | 
						|
  CallingConv::ID CC = I->getCallingConv();
 | 
						|
  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
 | 
						|
  for (unsigned i = 0; ScratchRegs[i]; ++i)
 | 
						|
    Ops.push_back(MachineOperand::CreateReg(
 | 
						|
        ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
 | 
						|
        /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
 | 
						|
 | 
						|
  // Issue CALLSEQ_START
 | 
						|
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
 | 
						|
      .addImm(0);
 | 
						|
 | 
						|
  // Issue STACKMAP.
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
                                    TII.get(TargetOpcode::STACKMAP));
 | 
						|
  for (auto const &MO : Ops)
 | 
						|
    MIB.addOperand(MO);
 | 
						|
 | 
						|
  // Issue CALLSEQ_END
 | 
						|
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
 | 
						|
      .addImm(0)
 | 
						|
      .addImm(0);
 | 
						|
 | 
						|
  // Inform the Frame Information that we have a stackmap in this function.
 | 
						|
  FuncInfo.MF->getFrameInfo()->setHasStackMap();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower an argument list according to the target calling convention.
 | 
						|
///
 | 
						|
/// This is a helper for lowering intrinsics that follow a target calling
 | 
						|
/// convention or require stack pointer adjustment. Only a subset of the
 | 
						|
/// intrinsic's operands need to participate in the calling convention.
 | 
						|
bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
 | 
						|
                                 unsigned NumArgs, const Value *Callee,
 | 
						|
                                 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
 | 
						|
  ArgListTy Args;
 | 
						|
  Args.reserve(NumArgs);
 | 
						|
 | 
						|
  // Populate the argument list.
 | 
						|
  // Attributes for args start at offset 1, after the return attribute.
 | 
						|
  ImmutableCallSite CS(CI);
 | 
						|
  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
 | 
						|
       ArgI != ArgE; ++ArgI) {
 | 
						|
    Value *V = CI->getOperand(ArgI);
 | 
						|
 | 
						|
    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
 | 
						|
 | 
						|
    ArgListEntry Entry;
 | 
						|
    Entry.Val = V;
 | 
						|
    Entry.Ty = V->getType();
 | 
						|
    Entry.setAttributes(&CS, AttrI);
 | 
						|
    Args.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
 | 
						|
                               : CI->getType();
 | 
						|
  CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
 | 
						|
 | 
						|
  return lowerCallTo(CLI);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectPatchpoint(const CallInst *I) {
 | 
						|
  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
 | 
						|
  //                                                 i32 <numBytes>,
 | 
						|
  //                                                 i8* <target>,
 | 
						|
  //                                                 i32 <numArgs>,
 | 
						|
  //                                                 [Args...],
 | 
						|
  //                                                 [live variables...])
 | 
						|
  CallingConv::ID CC = I->getCallingConv();
 | 
						|
  bool IsAnyRegCC = CC == CallingConv::AnyReg;
 | 
						|
  bool HasDef = !I->getType()->isVoidTy();
 | 
						|
  Value *Callee = I->getOperand(PatchPointOpers::TargetPos);
 | 
						|
 | 
						|
  // Get the real number of arguments participating in the call <numArgs>
 | 
						|
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
 | 
						|
         "Expected a constant integer.");
 | 
						|
  const auto *NumArgsVal =
 | 
						|
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
 | 
						|
  unsigned NumArgs = NumArgsVal->getZExtValue();
 | 
						|
 | 
						|
  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
 | 
						|
  // This includes all meta-operands up to but not including CC.
 | 
						|
  unsigned NumMetaOpers = PatchPointOpers::CCPos;
 | 
						|
  assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
 | 
						|
         "Not enough arguments provided to the patchpoint intrinsic");
 | 
						|
 | 
						|
  // For AnyRegCC the arguments are lowered later on manually.
 | 
						|
  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
 | 
						|
  CallLoweringInfo CLI;
 | 
						|
  if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(CLI.Call && "No call instruction specified.");
 | 
						|
 | 
						|
  SmallVector<MachineOperand, 32> Ops;
 | 
						|
 | 
						|
  // Add an explicit result reg if we use the anyreg calling convention.
 | 
						|
  if (IsAnyRegCC && HasDef) {
 | 
						|
    assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
 | 
						|
    CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
 | 
						|
    CLI.NumResultRegs = 1;
 | 
						|
    Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the <id> and <numBytes> constants.
 | 
						|
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
 | 
						|
         "Expected a constant integer.");
 | 
						|
  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
 | 
						|
 | 
						|
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
 | 
						|
         "Expected a constant integer.");
 | 
						|
  const auto *NumBytes =
 | 
						|
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
 | 
						|
 | 
						|
  // Assume that the callee is a constant address or null pointer.
 | 
						|
  // FIXME: handle function symbols in the future.
 | 
						|
  uint64_t CalleeAddr;
 | 
						|
  if (const auto *C = dyn_cast<IntToPtrInst>(Callee))
 | 
						|
    CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
 | 
						|
  else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
 | 
						|
    if (C->getOpcode() == Instruction::IntToPtr)
 | 
						|
      CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unsupported ConstantExpr.");
 | 
						|
  } else if (isa<ConstantPointerNull>(Callee))
 | 
						|
    CalleeAddr = 0;
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unsupported callee address.");
 | 
						|
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(CalleeAddr));
 | 
						|
 | 
						|
  // Adjust <numArgs> to account for any arguments that have been passed on
 | 
						|
  // the stack instead.
 | 
						|
  unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
 | 
						|
  Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
 | 
						|
 | 
						|
  // Add the calling convention
 | 
						|
  Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
 | 
						|
 | 
						|
  // Add the arguments we omitted previously. The register allocator should
 | 
						|
  // place these in any free register.
 | 
						|
  if (IsAnyRegCC) {
 | 
						|
    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
 | 
						|
      unsigned Reg = getRegForValue(I->getArgOperand(i));
 | 
						|
      if (!Reg)
 | 
						|
        return false;
 | 
						|
      Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Push the arguments from the call instruction.
 | 
						|
  for (auto Reg : CLI.OutRegs)
 | 
						|
    Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
 | 
						|
 | 
						|
  // Push live variables for the stack map.
 | 
						|
  if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Push the register mask info.
 | 
						|
  Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC)));
 | 
						|
 | 
						|
  // Add scratch registers as implicit def and early clobber.
 | 
						|
  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
 | 
						|
  for (unsigned i = 0; ScratchRegs[i]; ++i)
 | 
						|
    Ops.push_back(MachineOperand::CreateReg(
 | 
						|
        ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
 | 
						|
        /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
 | 
						|
 | 
						|
  // Add implicit defs (return values).
 | 
						|
  for (auto Reg : CLI.InRegs)
 | 
						|
    Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
 | 
						|
                                            /*IsImpl=*/true));
 | 
						|
 | 
						|
  // Insert the patchpoint instruction before the call generated by the target.
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
 | 
						|
                                    TII.get(TargetOpcode::PATCHPOINT));
 | 
						|
 | 
						|
  for (auto &MO : Ops)
 | 
						|
    MIB.addOperand(MO);
 | 
						|
 | 
						|
  MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
 | 
						|
 | 
						|
  // Delete the original call instruction.
 | 
						|
  CLI.Call->eraseFromParent();
 | 
						|
 | 
						|
  // Inform the Frame Information that we have a patchpoint in this function.
 | 
						|
  FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
 | 
						|
 | 
						|
  if (CLI.NumResultRegs)
 | 
						|
    updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns an AttributeSet representing the attributes applied to the return
 | 
						|
/// value of the given call.
 | 
						|
static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
 | 
						|
  SmallVector<Attribute::AttrKind, 2> Attrs;
 | 
						|
  if (CLI.RetSExt)
 | 
						|
    Attrs.push_back(Attribute::SExt);
 | 
						|
  if (CLI.RetZExt)
 | 
						|
    Attrs.push_back(Attribute::ZExt);
 | 
						|
  if (CLI.IsInReg)
 | 
						|
    Attrs.push_back(Attribute::InReg);
 | 
						|
 | 
						|
  return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
 | 
						|
                           Attrs);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
 | 
						|
                           unsigned NumArgs) {
 | 
						|
  ImmutableCallSite CS(CI);
 | 
						|
 | 
						|
  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | 
						|
  Type *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
  ArgListTy Args;
 | 
						|
  Args.reserve(NumArgs);
 | 
						|
 | 
						|
  // Populate the argument list.
 | 
						|
  // Attributes for args start at offset 1, after the return attribute.
 | 
						|
  for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
 | 
						|
    Value *V = CI->getOperand(ArgI);
 | 
						|
 | 
						|
    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
 | 
						|
 | 
						|
    ArgListEntry Entry;
 | 
						|
    Entry.Val = V;
 | 
						|
    Entry.Ty = V->getType();
 | 
						|
    Entry.setAttributes(&CS, ArgI + 1);
 | 
						|
    Args.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  CallLoweringInfo CLI;
 | 
						|
  CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs);
 | 
						|
 | 
						|
  return lowerCallTo(CLI);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
 | 
						|
  // Handle the incoming return values from the call.
 | 
						|
  CLI.clearIns();
 | 
						|
  SmallVector<EVT, 4> RetTys;
 | 
						|
  ComputeValueVTs(TLI, CLI.RetTy, RetTys);
 | 
						|
 | 
						|
  SmallVector<ISD::OutputArg, 4> Outs;
 | 
						|
  GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI);
 | 
						|
 | 
						|
  bool CanLowerReturn = TLI.CanLowerReturn(
 | 
						|
      CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
 | 
						|
 | 
						|
  // FIXME: sret demotion isn't supported yet - bail out.
 | 
						|
  if (!CanLowerReturn)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | 
						|
    EVT VT = RetTys[I];
 | 
						|
    MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
 | 
						|
    unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      ISD::InputArg MyFlags;
 | 
						|
      MyFlags.VT = RegisterVT;
 | 
						|
      MyFlags.ArgVT = VT;
 | 
						|
      MyFlags.Used = CLI.IsReturnValueUsed;
 | 
						|
      if (CLI.RetSExt)
 | 
						|
        MyFlags.Flags.setSExt();
 | 
						|
      if (CLI.RetZExt)
 | 
						|
        MyFlags.Flags.setZExt();
 | 
						|
      if (CLI.IsInReg)
 | 
						|
        MyFlags.Flags.setInReg();
 | 
						|
      CLI.Ins.push_back(MyFlags);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle all of the outgoing arguments.
 | 
						|
  CLI.clearOuts();
 | 
						|
  for (auto &Arg : CLI.getArgs()) {
 | 
						|
    Type *FinalType = Arg.Ty;
 | 
						|
    if (Arg.IsByVal)
 | 
						|
      FinalType = cast<PointerType>(Arg.Ty)->getElementType();
 | 
						|
    bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
 | 
						|
        FinalType, CLI.CallConv, CLI.IsVarArg);
 | 
						|
 | 
						|
    ISD::ArgFlagsTy Flags;
 | 
						|
    if (Arg.IsZExt)
 | 
						|
      Flags.setZExt();
 | 
						|
    if (Arg.IsSExt)
 | 
						|
      Flags.setSExt();
 | 
						|
    if (Arg.IsInReg)
 | 
						|
      Flags.setInReg();
 | 
						|
    if (Arg.IsSRet)
 | 
						|
      Flags.setSRet();
 | 
						|
    if (Arg.IsByVal)
 | 
						|
      Flags.setByVal();
 | 
						|
    if (Arg.IsInAlloca) {
 | 
						|
      Flags.setInAlloca();
 | 
						|
      // Set the byval flag for CCAssignFn callbacks that don't know about
 | 
						|
      // inalloca. This way we can know how many bytes we should've allocated
 | 
						|
      // and how many bytes a callee cleanup function will pop.  If we port
 | 
						|
      // inalloca to more targets, we'll have to add custom inalloca handling in
 | 
						|
      // the various CC lowering callbacks.
 | 
						|
      Flags.setByVal();
 | 
						|
    }
 | 
						|
    if (Arg.IsByVal || Arg.IsInAlloca) {
 | 
						|
      PointerType *Ty = cast<PointerType>(Arg.Ty);
 | 
						|
      Type *ElementTy = Ty->getElementType();
 | 
						|
      unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
 | 
						|
      // For ByVal, alignment should come from FE. BE will guess if this info is
 | 
						|
      // not there, but there are cases it cannot get right.
 | 
						|
      unsigned FrameAlign = Arg.Alignment;
 | 
						|
      if (!FrameAlign)
 | 
						|
        FrameAlign = TLI.getByValTypeAlignment(ElementTy);
 | 
						|
      Flags.setByValSize(FrameSize);
 | 
						|
      Flags.setByValAlign(FrameAlign);
 | 
						|
    }
 | 
						|
    if (Arg.IsNest)
 | 
						|
      Flags.setNest();
 | 
						|
    if (NeedsRegBlock)
 | 
						|
      Flags.setInConsecutiveRegs();
 | 
						|
    unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
 | 
						|
    Flags.setOrigAlign(OriginalAlignment);
 | 
						|
 | 
						|
    CLI.OutVals.push_back(Arg.Val);
 | 
						|
    CLI.OutFlags.push_back(Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!fastLowerCall(CLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Set all unused physreg defs as dead.
 | 
						|
  assert(CLI.Call && "No call instruction specified.");
 | 
						|
  CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
 | 
						|
 | 
						|
  if (CLI.NumResultRegs && CLI.CS)
 | 
						|
    updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::lowerCall(const CallInst *CI) {
 | 
						|
  ImmutableCallSite CS(CI);
 | 
						|
 | 
						|
  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
  FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
 | 
						|
  Type *RetTy = FuncTy->getReturnType();
 | 
						|
 | 
						|
  ArgListTy Args;
 | 
						|
  ArgListEntry Entry;
 | 
						|
  Args.reserve(CS.arg_size());
 | 
						|
 | 
						|
  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    Value *V = *i;
 | 
						|
 | 
						|
    // Skip empty types
 | 
						|
    if (V->getType()->isEmptyTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Entry.Val = V;
 | 
						|
    Entry.Ty = V->getType();
 | 
						|
 | 
						|
    // Skip the first return-type Attribute to get to params.
 | 
						|
    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
 | 
						|
    Args.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if target-independent constraints permit a tail call here.
 | 
						|
  // Target-dependent constraints are checked within fastLowerCall.
 | 
						|
  bool IsTailCall = CI->isTailCall();
 | 
						|
  if (IsTailCall && !isInTailCallPosition(CS, TM))
 | 
						|
    IsTailCall = false;
 | 
						|
 | 
						|
  CallLoweringInfo CLI;
 | 
						|
  CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
 | 
						|
      .setTailCall(IsTailCall);
 | 
						|
 | 
						|
  return lowerCallTo(CLI);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectCall(const User *I) {
 | 
						|
  const CallInst *Call = cast<CallInst>(I);
 | 
						|
 | 
						|
  // Handle simple inline asms.
 | 
						|
  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
 | 
						|
    // If the inline asm has side effects, then make sure that no local value
 | 
						|
    // lives across by flushing the local value map.
 | 
						|
    if (IA->hasSideEffects())
 | 
						|
      flushLocalValueMap();
 | 
						|
 | 
						|
    // Don't attempt to handle constraints.
 | 
						|
    if (!IA->getConstraintString().empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned ExtraInfo = 0;
 | 
						|
    if (IA->hasSideEffects())
 | 
						|
      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
 | 
						|
    if (IA->isAlignStack())
 | 
						|
      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
 | 
						|
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::INLINEASM))
 | 
						|
        .addExternalSymbol(IA->getAsmString().c_str())
 | 
						|
        .addImm(ExtraInfo);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
 | 
						|
  ComputeUsesVAFloatArgument(*Call, &MMI);
 | 
						|
 | 
						|
  // Handle intrinsic function calls.
 | 
						|
  if (const auto *II = dyn_cast<IntrinsicInst>(Call))
 | 
						|
    return selectIntrinsicCall(II);
 | 
						|
 | 
						|
  // Usually, it does not make sense to initialize a value,
 | 
						|
  // make an unrelated function call and use the value, because
 | 
						|
  // it tends to be spilled on the stack. So, we move the pointer
 | 
						|
  // to the last local value to the beginning of the block, so that
 | 
						|
  // all the values which have already been materialized,
 | 
						|
  // appear after the call. It also makes sense to skip intrinsics
 | 
						|
  // since they tend to be inlined.
 | 
						|
  flushLocalValueMap();
 | 
						|
 | 
						|
  return lowerCall(Call);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  // At -O0 we don't care about the lifetime intrinsics.
 | 
						|
  case Intrinsic::lifetime_start:
 | 
						|
  case Intrinsic::lifetime_end:
 | 
						|
  // The donothing intrinsic does, well, nothing.
 | 
						|
  case Intrinsic::donothing:
 | 
						|
    return true;
 | 
						|
  case Intrinsic::dbg_declare: {
 | 
						|
    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
 | 
						|
    DIVariable DIVar(DI->getVariable());
 | 
						|
    assert((!DIVar || DIVar.isVariable()) &&
 | 
						|
           "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | 
						|
    if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) {
 | 
						|
      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    const Value *Address = DI->getAddress();
 | 
						|
    if (!Address || isa<UndefValue>(Address)) {
 | 
						|
      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Offset = 0;
 | 
						|
    Optional<MachineOperand> Op;
 | 
						|
    if (const auto *Arg = dyn_cast<Argument>(Address))
 | 
						|
      // Some arguments' frame index is recorded during argument lowering.
 | 
						|
      Offset = FuncInfo.getArgumentFrameIndex(Arg);
 | 
						|
    if (Offset)
 | 
						|
      Op = MachineOperand::CreateFI(Offset);
 | 
						|
    if (!Op)
 | 
						|
      if (unsigned Reg = lookUpRegForValue(Address))
 | 
						|
        Op = MachineOperand::CreateReg(Reg, false);
 | 
						|
 | 
						|
    // If we have a VLA that has a "use" in a metadata node that's then used
 | 
						|
    // here but it has no other uses, then we have a problem. E.g.,
 | 
						|
    //
 | 
						|
    //   int foo (const int *x) {
 | 
						|
    //     char a[*x];
 | 
						|
    //     return 0;
 | 
						|
    //   }
 | 
						|
    //
 | 
						|
    // If we assign 'a' a vreg and fast isel later on has to use the selection
 | 
						|
    // DAG isel, it will want to copy the value to the vreg. However, there are
 | 
						|
    // no uses, which goes counter to what selection DAG isel expects.
 | 
						|
    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
 | 
						|
        (!isa<AllocaInst>(Address) ||
 | 
						|
         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
 | 
						|
      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
 | 
						|
                                     false);
 | 
						|
 | 
						|
    if (Op) {
 | 
						|
      if (Op->isReg()) {
 | 
						|
        Op->setIsDebug(true);
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
                TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
 | 
						|
                DI->getVariable(), DI->getExpression());
 | 
						|
      } else
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
                TII.get(TargetOpcode::DBG_VALUE))
 | 
						|
            .addOperand(*Op)
 | 
						|
            .addImm(0)
 | 
						|
            .addMetadata(DI->getVariable())
 | 
						|
            .addMetadata(DI->getExpression());
 | 
						|
    } else {
 | 
						|
      // We can't yet handle anything else here because it would require
 | 
						|
      // generating code, thus altering codegen because of debug info.
 | 
						|
      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_value: {
 | 
						|
    // This form of DBG_VALUE is target-independent.
 | 
						|
    const DbgValueInst *DI = cast<DbgValueInst>(II);
 | 
						|
    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | 
						|
    const Value *V = DI->getValue();
 | 
						|
    if (!V) {
 | 
						|
      // Currently the optimizer can produce this; insert an undef to
 | 
						|
      // help debugging.  Probably the optimizer should not do this.
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
          .addReg(0U)
 | 
						|
          .addImm(DI->getOffset())
 | 
						|
          .addMetadata(DI->getVariable())
 | 
						|
          .addMetadata(DI->getExpression());
 | 
						|
    } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
      if (CI->getBitWidth() > 64)
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
            .addCImm(CI)
 | 
						|
            .addImm(DI->getOffset())
 | 
						|
            .addMetadata(DI->getVariable())
 | 
						|
            .addMetadata(DI->getExpression());
 | 
						|
      else
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
            .addImm(CI->getZExtValue())
 | 
						|
            .addImm(DI->getOffset())
 | 
						|
            .addMetadata(DI->getVariable())
 | 
						|
            .addMetadata(DI->getExpression());
 | 
						|
    } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
          .addFPImm(CF)
 | 
						|
          .addImm(DI->getOffset())
 | 
						|
          .addMetadata(DI->getVariable())
 | 
						|
          .addMetadata(DI->getExpression());
 | 
						|
    } else if (unsigned Reg = lookUpRegForValue(V)) {
 | 
						|
      // FIXME: This does not handle register-indirect values at offset 0.
 | 
						|
      bool IsIndirect = DI->getOffset() != 0;
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
 | 
						|
              DI->getOffset(), DI->getVariable(), DI->getExpression());
 | 
						|
    } else {
 | 
						|
      // We can't yet handle anything else here because it would require
 | 
						|
      // generating code, thus altering codegen because of debug info.
 | 
						|
      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::objectsize: {
 | 
						|
    ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
 | 
						|
    unsigned long long Res = CI->isZero() ? -1ULL : 0;
 | 
						|
    Constant *ResCI = ConstantInt::get(II->getType(), Res);
 | 
						|
    unsigned ResultReg = getRegForValue(ResCI);
 | 
						|
    if (!ResultReg)
 | 
						|
      return false;
 | 
						|
    updateValueMap(II, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::expect: {
 | 
						|
    unsigned ResultReg = getRegForValue(II->getArgOperand(0));
 | 
						|
    if (!ResultReg)
 | 
						|
      return false;
 | 
						|
    updateValueMap(II, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
    return selectStackmap(II);
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    return selectPatchpoint(II);
 | 
						|
  }
 | 
						|
 | 
						|
  return fastLowerIntrinsicCall(II);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectCast(const User *I, unsigned Opcode) {
 | 
						|
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
 | 
						|
  if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
 | 
						|
      !DstVT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the destination type is legal.
 | 
						|
  if (!TLI.isTypeLegal(DstVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the source operand is legal.
 | 
						|
  if (!TLI.isTypeLegal(SrcVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned InputReg = getRegForValue(I->getOperand(0));
 | 
						|
  if (!InputReg)
 | 
						|
    // Unhandled operand.  Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
 | 
						|
                                  Opcode, InputReg, InputRegIsKill);
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  updateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectBitCast(const User *I) {
 | 
						|
  // If the bitcast doesn't change the type, just use the operand value.
 | 
						|
  if (I->getType() == I->getOperand(0)->getType()) {
 | 
						|
    unsigned Reg = getRegForValue(I->getOperand(0));
 | 
						|
    if (!Reg)
 | 
						|
      return false;
 | 
						|
    updateValueMap(I, Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitcasts of other values become reg-reg copies or BITCAST operators.
 | 
						|
  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  EVT DstEVT = TLI.getValueType(I->getType());
 | 
						|
  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
 | 
						|
      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT SrcVT = SrcEVT.getSimpleVT();
 | 
						|
  MVT DstVT = DstEVT.getSimpleVT();
 | 
						|
  unsigned Op0 = getRegForValue(I->getOperand(0));
 | 
						|
  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  // First, try to perform the bitcast by inserting a reg-reg copy.
 | 
						|
  unsigned ResultReg = 0;
 | 
						|
  if (SrcVT == DstVT) {
 | 
						|
    const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
 | 
						|
    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
 | 
						|
    // Don't attempt a cross-class copy. It will likely fail.
 | 
						|
    if (SrcClass == DstClass) {
 | 
						|
      ResultReg = createResultReg(DstClass);
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the reg-reg copy failed, select a BITCAST opcode.
 | 
						|
  if (!ResultReg)
 | 
						|
    ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
 | 
						|
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  updateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectInstruction(const Instruction *I) {
 | 
						|
  // Just before the terminator instruction, insert instructions to
 | 
						|
  // feed PHI nodes in successor blocks.
 | 
						|
  if (isa<TerminatorInst>(I))
 | 
						|
    if (!handlePHINodesInSuccessorBlocks(I->getParent()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  DbgLoc = I->getDebugLoc();
 | 
						|
 | 
						|
  SavedInsertPt = FuncInfo.InsertPt;
 | 
						|
 | 
						|
  if (const auto *Call = dyn_cast<CallInst>(I)) {
 | 
						|
    const Function *F = Call->getCalledFunction();
 | 
						|
    LibFunc::Func Func;
 | 
						|
 | 
						|
    // As a special case, don't handle calls to builtin library functions that
 | 
						|
    // may be translated directly to target instructions.
 | 
						|
    if (F && !F->hasLocalLinkage() && F->hasName() &&
 | 
						|
        LibInfo->getLibFunc(F->getName(), Func) &&
 | 
						|
        LibInfo->hasOptimizedCodeGen(Func))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Don't handle Intrinsic::trap if a trap funciton is specified.
 | 
						|
    if (F && F->getIntrinsicID() == Intrinsic::trap &&
 | 
						|
        !TM.Options.getTrapFunctionName().empty())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // First, try doing target-independent selection.
 | 
						|
  if (!SkipTargetIndependentISel) {
 | 
						|
    if (selectOperator(I, I->getOpcode())) {
 | 
						|
      ++NumFastIselSuccessIndependent;
 | 
						|
      DbgLoc = DebugLoc();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Remove dead code.
 | 
						|
    recomputeInsertPt();
 | 
						|
    if (SavedInsertPt != FuncInfo.InsertPt)
 | 
						|
      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
 | 
						|
    SavedInsertPt = FuncInfo.InsertPt;
 | 
						|
  }
 | 
						|
  // Next, try calling the target to attempt to handle the instruction.
 | 
						|
  if (fastSelectInstruction(I)) {
 | 
						|
    ++NumFastIselSuccessTarget;
 | 
						|
    DbgLoc = DebugLoc();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Remove dead code.
 | 
						|
  recomputeInsertPt();
 | 
						|
  if (SavedInsertPt != FuncInfo.InsertPt)
 | 
						|
    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
 | 
						|
 | 
						|
  DbgLoc = DebugLoc();
 | 
						|
  // Undo phi node updates, because they will be added again by SelectionDAG.
 | 
						|
  if (isa<TerminatorInst>(I))
 | 
						|
    FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit an unconditional branch to the given block, unless it is the immediate
 | 
						|
/// (fall-through) successor, and update the CFG.
 | 
						|
void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
 | 
						|
  if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
 | 
						|
      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
 | 
						|
    // For more accurate line information if this is the only instruction
 | 
						|
    // in the block then emit it, otherwise we have the unconditional
 | 
						|
    // fall-through case, which needs no instructions.
 | 
						|
  } else {
 | 
						|
    // The unconditional branch case.
 | 
						|
    TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
 | 
						|
                     SmallVector<MachineOperand, 0>(), DbgLoc);
 | 
						|
  }
 | 
						|
  uint32_t BranchWeight = 0;
 | 
						|
  if (FuncInfo.BPI)
 | 
						|
    BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(),
 | 
						|
                                               MSucc->getBasicBlock());
 | 
						|
  FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit an FNeg operation.
 | 
						|
bool FastISel::selectFNeg(const User *I) {
 | 
						|
  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
 | 
						|
  if (!OpReg)
 | 
						|
    return false;
 | 
						|
  bool OpRegIsKill = hasTrivialKill(I);
 | 
						|
 | 
						|
  // If the target has ISD::FNEG, use it.
 | 
						|
  EVT VT = TLI.getValueType(I->getType());
 | 
						|
  unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
 | 
						|
                                  OpReg, OpRegIsKill);
 | 
						|
  if (ResultReg) {
 | 
						|
    updateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitcast the value to integer, twiddle the sign bit with xor,
 | 
						|
  // and then bitcast it back to floating-point.
 | 
						|
  if (VT.getSizeInBits() > 64)
 | 
						|
    return false;
 | 
						|
  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
 | 
						|
  if (!TLI.isTypeLegal(IntVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
 | 
						|
                               ISD::BITCAST, OpReg, OpRegIsKill);
 | 
						|
  if (!IntReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned IntResultReg = fastEmit_ri_(
 | 
						|
      IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
 | 
						|
      UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
 | 
						|
  if (!IntResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
 | 
						|
                         IntResultReg, /*IsKill=*/true);
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  updateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectExtractValue(const User *U) {
 | 
						|
  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
 | 
						|
  if (!EVI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure we only try to handle extracts with a legal result.  But also
 | 
						|
  // allow i1 because it's easy.
 | 
						|
  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
 | 
						|
  if (!RealVT.isSimple())
 | 
						|
    return false;
 | 
						|
  MVT VT = RealVT.getSimpleVT();
 | 
						|
  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Value *Op0 = EVI->getOperand(0);
 | 
						|
  Type *AggTy = Op0->getType();
 | 
						|
 | 
						|
  // Get the base result register.
 | 
						|
  unsigned ResultReg;
 | 
						|
  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
 | 
						|
  if (I != FuncInfo.ValueMap.end())
 | 
						|
    ResultReg = I->second;
 | 
						|
  else if (isa<Instruction>(Op0))
 | 
						|
    ResultReg = FuncInfo.InitializeRegForValue(Op0);
 | 
						|
  else
 | 
						|
    return false; // fast-isel can't handle aggregate constants at the moment
 | 
						|
 | 
						|
  // Get the actual result register, which is an offset from the base register.
 | 
						|
  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
 | 
						|
 | 
						|
  SmallVector<EVT, 4> AggValueVTs;
 | 
						|
  ComputeValueVTs(TLI, AggTy, AggValueVTs);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < VTIndex; i++)
 | 
						|
    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
 | 
						|
 | 
						|
  updateValueMap(EVI, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::selectOperator(const User *I, unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return selectBinaryOp(I, ISD::ADD);
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return selectBinaryOp(I, ISD::FADD);
 | 
						|
  case Instruction::Sub:
 | 
						|
    return selectBinaryOp(I, ISD::SUB);
 | 
						|
  case Instruction::FSub:
 | 
						|
    // FNeg is currently represented in LLVM IR as a special case of FSub.
 | 
						|
    if (BinaryOperator::isFNeg(I))
 | 
						|
      return selectFNeg(I);
 | 
						|
    return selectBinaryOp(I, ISD::FSUB);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return selectBinaryOp(I, ISD::MUL);
 | 
						|
  case Instruction::FMul:
 | 
						|
    return selectBinaryOp(I, ISD::FMUL);
 | 
						|
  case Instruction::SDiv:
 | 
						|
    return selectBinaryOp(I, ISD::SDIV);
 | 
						|
  case Instruction::UDiv:
 | 
						|
    return selectBinaryOp(I, ISD::UDIV);
 | 
						|
  case Instruction::FDiv:
 | 
						|
    return selectBinaryOp(I, ISD::FDIV);
 | 
						|
  case Instruction::SRem:
 | 
						|
    return selectBinaryOp(I, ISD::SREM);
 | 
						|
  case Instruction::URem:
 | 
						|
    return selectBinaryOp(I, ISD::UREM);
 | 
						|
  case Instruction::FRem:
 | 
						|
    return selectBinaryOp(I, ISD::FREM);
 | 
						|
  case Instruction::Shl:
 | 
						|
    return selectBinaryOp(I, ISD::SHL);
 | 
						|
  case Instruction::LShr:
 | 
						|
    return selectBinaryOp(I, ISD::SRL);
 | 
						|
  case Instruction::AShr:
 | 
						|
    return selectBinaryOp(I, ISD::SRA);
 | 
						|
  case Instruction::And:
 | 
						|
    return selectBinaryOp(I, ISD::AND);
 | 
						|
  case Instruction::Or:
 | 
						|
    return selectBinaryOp(I, ISD::OR);
 | 
						|
  case Instruction::Xor:
 | 
						|
    return selectBinaryOp(I, ISD::XOR);
 | 
						|
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return selectGetElementPtr(I);
 | 
						|
 | 
						|
  case Instruction::Br: {
 | 
						|
    const BranchInst *BI = cast<BranchInst>(I);
 | 
						|
 | 
						|
    if (BI->isUnconditional()) {
 | 
						|
      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
 | 
						|
      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
 | 
						|
      fastEmitBranch(MSucc, BI->getDebugLoc());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Conditional branches are not handed yet.
 | 
						|
    // Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Unreachable:
 | 
						|
    if (TM.Options.TrapUnreachable)
 | 
						|
      return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
 | 
						|
  case Instruction::Alloca:
 | 
						|
    // FunctionLowering has the static-sized case covered.
 | 
						|
    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Dynamic-sized alloca is not handled yet.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::Call:
 | 
						|
    return selectCall(I);
 | 
						|
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return selectBitCast(I);
 | 
						|
 | 
						|
  case Instruction::FPToSI:
 | 
						|
    return selectCast(I, ISD::FP_TO_SINT);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return selectCast(I, ISD::ZERO_EXTEND);
 | 
						|
  case Instruction::SExt:
 | 
						|
    return selectCast(I, ISD::SIGN_EXTEND);
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return selectCast(I, ISD::TRUNCATE);
 | 
						|
  case Instruction::SIToFP:
 | 
						|
    return selectCast(I, ISD::SINT_TO_FP);
 | 
						|
 | 
						|
  case Instruction::IntToPtr: // Deliberate fall-through.
 | 
						|
  case Instruction::PtrToInt: {
 | 
						|
    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
    EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
    if (DstVT.bitsGT(SrcVT))
 | 
						|
      return selectCast(I, ISD::ZERO_EXTEND);
 | 
						|
    if (DstVT.bitsLT(SrcVT))
 | 
						|
      return selectCast(I, ISD::TRUNCATE);
 | 
						|
    unsigned Reg = getRegForValue(I->getOperand(0));
 | 
						|
    if (!Reg)
 | 
						|
      return false;
 | 
						|
    updateValueMap(I, Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    return selectExtractValue(I);
 | 
						|
 | 
						|
  case Instruction::PHI:
 | 
						|
    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
 | 
						|
 | 
						|
  default:
 | 
						|
    // Unhandled instruction. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
 | 
						|
                   const TargetLibraryInfo *LibInfo,
 | 
						|
                   bool SkipTargetIndependentISel)
 | 
						|
    : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
 | 
						|
      MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
 | 
						|
      TM(FuncInfo.MF->getTarget()), DL(*MF->getSubtarget().getDataLayout()),
 | 
						|
      TII(*MF->getSubtarget().getInstrInfo()),
 | 
						|
      TLI(*MF->getSubtarget().getTargetLowering()),
 | 
						|
      TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
 | 
						|
      SkipTargetIndependentISel(SkipTargetIndependentISel) {}
 | 
						|
 | 
						|
FastISel::~FastISel() {}
 | 
						|
 | 
						|
bool FastISel::fastLowerArguments() { return false; }
 | 
						|
 | 
						|
bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
 | 
						|
 | 
						|
bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
 | 
						|
                              bool /*Op0IsKill*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
 | 
						|
                               bool /*Op0IsKill*/, unsigned /*Op1*/,
 | 
						|
                               bool /*Op1IsKill*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
 | 
						|
                              const ConstantFP * /*FPImm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
 | 
						|
                               bool /*Op0IsKill*/, uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
 | 
						|
                               bool /*Op0IsKill*/,
 | 
						|
                               const ConstantFP * /*FPImm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
 | 
						|
                                bool /*Op0IsKill*/, unsigned /*Op1*/,
 | 
						|
                                bool /*Op1IsKill*/, uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This method is a wrapper of fastEmit_ri. It first tries to emit an
 | 
						|
/// instruction with an immediate operand using fastEmit_ri.
 | 
						|
/// If that fails, it materializes the immediate into a register and try
 | 
						|
/// fastEmit_rr instead.
 | 
						|
unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
 | 
						|
                                bool Op0IsKill, uint64_t Imm, MVT ImmType) {
 | 
						|
  // If this is a multiply by a power of two, emit this as a shift left.
 | 
						|
  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
 | 
						|
    Opcode = ISD::SHL;
 | 
						|
    Imm = Log2_64(Imm);
 | 
						|
  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
 | 
						|
    // div x, 8 -> srl x, 3
 | 
						|
    Opcode = ISD::SRL;
 | 
						|
    Imm = Log2_64(Imm);
 | 
						|
  }
 | 
						|
 | 
						|
  // Horrible hack (to be removed), check to make sure shift amounts are
 | 
						|
  // in-range.
 | 
						|
  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
 | 
						|
      Imm >= VT.getSizeInBits())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // First check if immediate type is legal. If not, we can't use the ri form.
 | 
						|
  unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
 | 
						|
  if (ResultReg)
 | 
						|
    return ResultReg;
 | 
						|
  unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
 | 
						|
  if (!MaterialReg) {
 | 
						|
    // This is a bit ugly/slow, but failing here means falling out of
 | 
						|
    // fast-isel, which would be very slow.
 | 
						|
    IntegerType *ITy =
 | 
						|
        IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
 | 
						|
    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
 | 
						|
    if (!MaterialReg)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg,
 | 
						|
                     /*IsKill=*/true);
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
 | 
						|
  return MRI.createVirtualRegister(RC);
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
 | 
						|
                                            unsigned OpNum) {
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Op)) {
 | 
						|
    const TargetRegisterClass *RegClass =
 | 
						|
        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
 | 
						|
    if (!MRI.constrainRegClass(Op, RegClass)) {
 | 
						|
      // If it's not legal to COPY between the register classes, something
 | 
						|
      // has gone very wrong before we got here.
 | 
						|
      unsigned NewOp = createResultReg(RegClass);
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
              TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
 | 
						|
      return NewOp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
 | 
						|
                                 const TargetRegisterClass *RC) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
 | 
						|
                                  const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                  bool Op0IsKill) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill));
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                   bool Op0IsKill, unsigned Op1,
 | 
						|
                                   bool Op1IsKill) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill));
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
 | 
						|
                                    const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                    bool Op0IsKill, unsigned Op1,
 | 
						|
                                    bool Op1IsKill, unsigned Op2,
 | 
						|
                                    bool Op2IsKill) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | 
						|
  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addReg(Op2, getKillRegState(Op2IsKill));
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addReg(Op2, getKillRegState(Op2IsKill));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                   bool Op0IsKill, uint64_t Imm) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addImm(Imm);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
 | 
						|
                                    const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                    bool Op0IsKill, uint64_t Imm1,
 | 
						|
                                    uint64_t Imm2) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                   bool Op0IsKill, const ConstantFP *FPImm) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addFPImm(FPImm);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addFPImm(FPImm);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
 | 
						|
                                    const TargetRegisterClass *RC, unsigned Op0,
 | 
						|
                                    bool Op0IsKill, unsigned Op1,
 | 
						|
                                    bool Op1IsKill, uint64_t Imm) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addImm(Imm);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode,
 | 
						|
                                     const TargetRegisterClass *RC,
 | 
						|
                                     unsigned Op0, bool Op0IsKill, unsigned Op1,
 | 
						|
                                     bool Op1IsKill, uint64_t Imm1,
 | 
						|
                                     uint64_t Imm2) {
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | 
						|
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | 
						|
        .addReg(Op0, getKillRegState(Op0IsKill))
 | 
						|
        .addReg(Op1, getKillRegState(Op1IsKill))
 | 
						|
        .addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
 | 
						|
                                  const TargetRegisterClass *RC, uint64_t Imm) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC, uint64_t Imm1,
 | 
						|
                                   uint64_t Imm2) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | 
						|
        .addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
  else {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1)
 | 
						|
        .addImm(Imm2);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | 
						|
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
 | 
						|
                                              bool Op0IsKill, uint32_t Idx) {
 | 
						|
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
 | 
						|
         "Cannot yet extract from physregs");
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
 | 
						|
  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | 
						|
          ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit MachineInstrs to compute the value of Op with all but the least
 | 
						|
/// significant bit set to zero.
 | 
						|
unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
 | 
						|
  return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
 | 
						|
}
 | 
						|
 | 
						|
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
 | 
						|
/// Emit code to ensure constants are copied into registers when needed.
 | 
						|
/// Remember the virtual registers that need to be added to the Machine PHI
 | 
						|
/// nodes as input.  We cannot just directly add them, because expansion
 | 
						|
/// might result in multiple MBB's for one BB.  As such, the start of the
 | 
						|
/// BB might correspond to a different MBB than the end.
 | 
						|
bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | 
						|
  const TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | 
						|
  FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
 | 
						|
 | 
						|
  // Check successor nodes' PHI nodes that expect a constant to be available
 | 
						|
  // from this block.
 | 
						|
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | 
						|
    const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | 
						|
    if (!isa<PHINode>(SuccBB->begin()))
 | 
						|
      continue;
 | 
						|
    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | 
						|
 | 
						|
    // If this terminator has multiple identical successors (common for
 | 
						|
    // switches), only handle each succ once.
 | 
						|
    if (!SuccsHandled.insert(SuccMBB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | 
						|
 | 
						|
    // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | 
						|
    // nodes and Machine PHI nodes, but the incoming operands have not been
 | 
						|
    // emitted yet.
 | 
						|
    for (BasicBlock::const_iterator I = SuccBB->begin();
 | 
						|
         const auto *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
 | 
						|
      // Ignore dead phi's.
 | 
						|
      if (PN->use_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Only handle legal types. Two interesting things to note here. First,
 | 
						|
      // by bailing out early, we may leave behind some dead instructions,
 | 
						|
      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
 | 
						|
      // own moves. Second, this check is necessary because FastISel doesn't
 | 
						|
      // use CreateRegs to create registers, so it always creates
 | 
						|
      // exactly one register for each non-void instruction.
 | 
						|
      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
 | 
						|
      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
 | 
						|
        // Handle integer promotions, though, because they're common and easy.
 | 
						|
        if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
 | 
						|
          FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | 
						|
 | 
						|
      // Set the DebugLoc for the copy. Prefer the location of the operand
 | 
						|
      // if there is one; use the location of the PHI otherwise.
 | 
						|
      DbgLoc = PN->getDebugLoc();
 | 
						|
      if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
 | 
						|
        DbgLoc = Inst->getDebugLoc();
 | 
						|
 | 
						|
      unsigned Reg = getRegForValue(PHIOp);
 | 
						|
      if (!Reg) {
 | 
						|
        FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
 | 
						|
      DbgLoc = DebugLoc();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
 | 
						|
  assert(LI->hasOneUse() &&
 | 
						|
         "tryToFoldLoad expected a LoadInst with a single use");
 | 
						|
  // We know that the load has a single use, but don't know what it is.  If it
 | 
						|
  // isn't one of the folded instructions, then we can't succeed here.  Handle
 | 
						|
  // this by scanning the single-use users of the load until we get to FoldInst.
 | 
						|
  unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
 | 
						|
 | 
						|
  const Instruction *TheUser = LI->user_back();
 | 
						|
  while (TheUser != FoldInst && // Scan up until we find FoldInst.
 | 
						|
         // Stay in the right block.
 | 
						|
         TheUser->getParent() == FoldInst->getParent() &&
 | 
						|
         --MaxUsers) { // Don't scan too far.
 | 
						|
    // If there are multiple or no uses of this instruction, then bail out.
 | 
						|
    if (!TheUser->hasOneUse())
 | 
						|
      return false;
 | 
						|
 | 
						|
    TheUser = TheUser->user_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find the fold instruction, then we failed to collapse the
 | 
						|
  // sequence.
 | 
						|
  if (TheUser != FoldInst)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't try to fold volatile loads.  Target has to deal with alignment
 | 
						|
  // constraints.
 | 
						|
  if (LI->isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Figure out which vreg this is going into.  If there is no assigned vreg yet
 | 
						|
  // then there actually was no reference to it.  Perhaps the load is referenced
 | 
						|
  // by a dead instruction.
 | 
						|
  unsigned LoadReg = getRegForValue(LI);
 | 
						|
  if (!LoadReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
 | 
						|
  // may mean that the instruction got lowered to multiple MIs, or the use of
 | 
						|
  // the loaded value ended up being multiple operands of the result.
 | 
						|
  if (!MRI.hasOneUse(LoadReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
 | 
						|
  MachineInstr *User = RI->getParent();
 | 
						|
 | 
						|
  // Set the insertion point properly.  Folding the load can cause generation of
 | 
						|
  // other random instructions (like sign extends) for addressing modes; make
 | 
						|
  // sure they get inserted in a logical place before the new instruction.
 | 
						|
  FuncInfo.InsertPt = User;
 | 
						|
  FuncInfo.MBB = User->getParent();
 | 
						|
 | 
						|
  // Ask the target to try folding the load.
 | 
						|
  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
 | 
						|
  // Must be an add.
 | 
						|
  if (!isa<AddOperator>(Add))
 | 
						|
    return false;
 | 
						|
  // Type size needs to match.
 | 
						|
  if (DL.getTypeSizeInBits(GEP->getType()) !=
 | 
						|
      DL.getTypeSizeInBits(Add->getType()))
 | 
						|
    return false;
 | 
						|
  // Must be in the same basic block.
 | 
						|
  if (isa<Instruction>(Add) &&
 | 
						|
      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
 | 
						|
    return false;
 | 
						|
  // Must have a constant operand.
 | 
						|
  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
MachineMemOperand *
 | 
						|
FastISel::createMachineMemOperandFor(const Instruction *I) const {
 | 
						|
  const Value *Ptr;
 | 
						|
  Type *ValTy;
 | 
						|
  unsigned Alignment;
 | 
						|
  unsigned Flags;
 | 
						|
  bool IsVolatile;
 | 
						|
 | 
						|
  if (const auto *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    Alignment = LI->getAlignment();
 | 
						|
    IsVolatile = LI->isVolatile();
 | 
						|
    Flags = MachineMemOperand::MOLoad;
 | 
						|
    Ptr = LI->getPointerOperand();
 | 
						|
    ValTy = LI->getType();
 | 
						|
  } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    Alignment = SI->getAlignment();
 | 
						|
    IsVolatile = SI->isVolatile();
 | 
						|
    Flags = MachineMemOperand::MOStore;
 | 
						|
    Ptr = SI->getPointerOperand();
 | 
						|
    ValTy = SI->getValueOperand()->getType();
 | 
						|
  } else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
 | 
						|
  bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
 | 
						|
  const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
 | 
						|
 | 
						|
  AAMDNodes AAInfo;
 | 
						|
  I->getAAMetadata(AAInfo);
 | 
						|
 | 
						|
  if (Alignment == 0) // Ensure that codegen never sees alignment 0.
 | 
						|
    Alignment = DL.getABITypeAlignment(ValTy);
 | 
						|
 | 
						|
  unsigned Size = DL.getTypeStoreSize(ValTy);
 | 
						|
 | 
						|
  if (IsVolatile)
 | 
						|
    Flags |= MachineMemOperand::MOVolatile;
 | 
						|
  if (IsNonTemporal)
 | 
						|
    Flags |= MachineMemOperand::MONonTemporal;
 | 
						|
  if (IsInvariant)
 | 
						|
    Flags |= MachineMemOperand::MOInvariant;
 | 
						|
 | 
						|
  return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
 | 
						|
                                           Alignment, AAInfo, Ranges);
 | 
						|
}
 | 
						|
 | 
						|
CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
 | 
						|
  // If both operands are the same, then try to optimize or fold the cmp.
 | 
						|
  CmpInst::Predicate Predicate = CI->getPredicate();
 | 
						|
  if (CI->getOperand(0) != CI->getOperand(1))
 | 
						|
    return Predicate;
 | 
						|
 | 
						|
  switch (Predicate) {
 | 
						|
  default: llvm_unreachable("Invalid predicate!");
 | 
						|
  case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
 | 
						|
  case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
 | 
						|
  case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
 | 
						|
  case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
 | 
						|
  case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
 | 
						|
  case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
 | 
						|
  case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
 | 
						|
  case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
 | 
						|
  case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
 | 
						|
  case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
 | 
						|
  case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Predicate;
 | 
						|
}
 |