mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94771 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2731 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2731 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into forms suitable for efficient execution
 | 
						|
// on the target.
 | 
						|
//
 | 
						|
// This pass performs a strength reduction on array references inside loops that
 | 
						|
// have as one or more of their components the loop induction variable, it
 | 
						|
// rewrites expressions to take advantage of scaled-index addressing modes
 | 
						|
// available on the target, and it performs a variety of other optimizations
 | 
						|
// related to loop induction variables.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reduce"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Analysis/IVUsers.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
 | 
						|
STATISTIC(NumInserted,    "Number of PHIs inserted");
 | 
						|
STATISTIC(NumVariable,    "Number of PHIs with variable strides");
 | 
						|
STATISTIC(NumEliminated,  "Number of strides eliminated");
 | 
						|
STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
 | 
						|
STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
 | 
						|
STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
 | 
						|
STATISTIC(NumCountZero,   "Number of count iv optimized to count toward zero");
 | 
						|
 | 
						|
static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
 | 
						|
                                       cl::init(false),
 | 
						|
                                       cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  struct BasedUser;
 | 
						|
 | 
						|
  /// IVInfo - This structure keeps track of one IV expression inserted during
 | 
						|
  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
 | 
						|
  /// well as the PHI node and increment value created for rewrite.
 | 
						|
  struct IVExpr {
 | 
						|
    const SCEV *Stride;
 | 
						|
    const SCEV *Base;
 | 
						|
    PHINode    *PHI;
 | 
						|
 | 
						|
    IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
 | 
						|
      : Stride(stride), Base(base), PHI(phi) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
 | 
						|
  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
 | 
						|
  struct IVsOfOneStride {
 | 
						|
    std::vector<IVExpr> IVs;
 | 
						|
 | 
						|
    void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
 | 
						|
      IVs.push_back(IVExpr(Stride, Base, PHI));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  class LoopStrengthReduce : public LoopPass {
 | 
						|
    IVUsers *IU;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    bool Changed;
 | 
						|
 | 
						|
    /// IVsByStride - Keep track of all IVs that have been inserted for a
 | 
						|
    /// particular stride.
 | 
						|
    std::map<const SCEV *, IVsOfOneStride> IVsByStride;
 | 
						|
 | 
						|
    /// DeadInsts - Keep track of instructions we may have made dead, so that
 | 
						|
    /// we can remove them after we are done working.
 | 
						|
    SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
 | 
						|
    /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | 
						|
    /// transformation profitability.
 | 
						|
    const TargetLowering *TLI;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
 | 
						|
      LoopPass(&ID), TLI(tli) {}
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      // We split critical edges, so we change the CFG.  However, we do update
 | 
						|
      // many analyses if they are around.
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addPreserved("loops");
 | 
						|
      AU.addPreserved("domfrontier");
 | 
						|
      AU.addPreserved("domtree");
 | 
						|
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addRequired<IVUsers>();
 | 
						|
      AU.addPreserved<IVUsers>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void OptimizeIndvars(Loop *L);
 | 
						|
 | 
						|
    /// OptimizeLoopTermCond - Change loop terminating condition to use the
 | 
						|
    /// postinc iv when possible.
 | 
						|
    void OptimizeLoopTermCond(Loop *L);
 | 
						|
 | 
						|
    /// OptimizeShadowIV - If IV is used in a int-to-float cast
 | 
						|
    /// inside the loop then try to eliminate the cast opeation.
 | 
						|
    void OptimizeShadowIV(Loop *L);
 | 
						|
 | 
						|
    /// OptimizeMax - Rewrite the loop's terminating condition
 | 
						|
    /// if it uses a max computation.
 | 
						|
    ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
 | 
						|
                          IVStrideUse* &CondUse);
 | 
						|
 | 
						|
    /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for
 | 
						|
    /// deciding when to exit the loop is used only for that purpose, try to
 | 
						|
    /// rearrange things so it counts down to a test against zero.
 | 
						|
    bool OptimizeLoopCountIV(Loop *L);
 | 
						|
    bool OptimizeLoopCountIVOfStride(const SCEV* &Stride,
 | 
						|
                                     IVStrideUse* &CondUse, Loop *L);
 | 
						|
 | 
						|
    /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a
 | 
						|
    /// single stride of IV.  All of the users may have different starting
 | 
						|
    /// values, and this may not be the only stride.
 | 
						|
    void StrengthReduceIVUsersOfStride(const SCEV *Stride,
 | 
						|
                                      IVUsersOfOneStride &Uses,
 | 
						|
                                      Loop *L);
 | 
						|
    void StrengthReduceIVUsers(Loop *L);
 | 
						|
 | 
						|
    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
 | 
						|
                                  IVStrideUse* &CondUse,
 | 
						|
                                  const SCEV* &CondStride,
 | 
						|
                                  bool PostPass = false);
 | 
						|
 | 
						|
    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
 | 
						|
                           const SCEV* &CondStride);
 | 
						|
    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
 | 
						|
    const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *,
 | 
						|
                             IVExpr&, const Type*,
 | 
						|
                             const std::vector<BasedUser>& UsersToProcess);
 | 
						|
    bool ValidScale(bool, int64_t,
 | 
						|
                    const std::vector<BasedUser>& UsersToProcess);
 | 
						|
    bool ValidOffset(bool, int64_t, int64_t,
 | 
						|
                     const std::vector<BasedUser>& UsersToProcess);
 | 
						|
    const SCEV *CollectIVUsers(const SCEV *Stride,
 | 
						|
                              IVUsersOfOneStride &Uses,
 | 
						|
                              Loop *L,
 | 
						|
                              bool &AllUsesAreAddresses,
 | 
						|
                              bool &AllUsesAreOutsideLoop,
 | 
						|
                              std::vector<BasedUser> &UsersToProcess);
 | 
						|
    bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc);
 | 
						|
    bool ShouldUseFullStrengthReductionMode(
 | 
						|
                                const std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                const Loop *L,
 | 
						|
                                bool AllUsesAreAddresses,
 | 
						|
                                const SCEV *Stride);
 | 
						|
    void PrepareToStrengthReduceFully(
 | 
						|
                             std::vector<BasedUser> &UsersToProcess,
 | 
						|
                             const SCEV *Stride,
 | 
						|
                             const SCEV *CommonExprs,
 | 
						|
                             const Loop *L,
 | 
						|
                             SCEVExpander &PreheaderRewriter);
 | 
						|
    void PrepareToStrengthReduceFromSmallerStride(
 | 
						|
                                         std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                         Value *CommonBaseV,
 | 
						|
                                         const IVExpr &ReuseIV,
 | 
						|
                                         Instruction *PreInsertPt);
 | 
						|
    void PrepareToStrengthReduceWithNewPhi(
 | 
						|
                                  std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                  const SCEV *Stride,
 | 
						|
                                  const SCEV *CommonExprs,
 | 
						|
                                  Value *CommonBaseV,
 | 
						|
                                  Instruction *IVIncInsertPt,
 | 
						|
                                  const Loop *L,
 | 
						|
                                  SCEVExpander &PreheaderRewriter);
 | 
						|
 | 
						|
    void DeleteTriviallyDeadInstructions();
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char LoopStrengthReduce::ID = 0;
 | 
						|
static RegisterPass<LoopStrengthReduce>
 | 
						|
X("loop-reduce", "Loop Strength Reduction");
 | 
						|
 | 
						|
Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
 | 
						|
  return new LoopStrengthReduce(TLI);
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | 
						|
/// specified set are trivially dead, delete them and see if this makes any of
 | 
						|
/// their operands subsequently dead.
 | 
						|
void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
 | 
						|
 | 
						|
    if (I == 0 || !isInstructionTriviallyDead(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | 
						|
        *OI = 0;
 | 
						|
        if (U->use_empty())
 | 
						|
          DeadInsts.push_back(U);
 | 
						|
      }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isAddressUse - Returns true if the specified instruction is using the
 | 
						|
/// specified value as an address.
 | 
						|
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
 | 
						|
  bool isAddress = isa<LoadInst>(Inst);
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
    if (SI->getOperand(1) == OperandVal)
 | 
						|
      isAddress = true;
 | 
						|
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
    // Addressing modes can also be folded into prefetches and a variety
 | 
						|
    // of intrinsics.
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::prefetch:
 | 
						|
      case Intrinsic::x86_sse2_loadu_dq:
 | 
						|
      case Intrinsic::x86_sse2_loadu_pd:
 | 
						|
      case Intrinsic::x86_sse_loadu_ps:
 | 
						|
      case Intrinsic::x86_sse_storeu_ps:
 | 
						|
      case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
      case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
      case Intrinsic::x86_sse2_storel_dq:
 | 
						|
        if (II->getOperand(1) == OperandVal)
 | 
						|
          isAddress = true;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return isAddress;
 | 
						|
}
 | 
						|
 | 
						|
/// getAccessType - Return the type of the memory being accessed.
 | 
						|
static const Type *getAccessType(const Instruction *Inst) {
 | 
						|
  const Type *AccessTy = Inst->getType();
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    AccessTy = SI->getOperand(0)->getType();
 | 
						|
  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
    // Addressing modes can also be folded into prefetches and a variety
 | 
						|
    // of intrinsics.
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::x86_sse_storeu_ps:
 | 
						|
    case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
    case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
    case Intrinsic::x86_sse2_storel_dq:
 | 
						|
      AccessTy = II->getOperand(1)->getType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return AccessTy;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// BasedUser - For a particular base value, keep information about how we've
 | 
						|
  /// partitioned the expression so far.
 | 
						|
  struct BasedUser {
 | 
						|
    /// Base - The Base value for the PHI node that needs to be inserted for
 | 
						|
    /// this use.  As the use is processed, information gets moved from this
 | 
						|
    /// field to the Imm field (below).  BasedUser values are sorted by this
 | 
						|
    /// field.
 | 
						|
    const SCEV *Base;
 | 
						|
 | 
						|
    /// Inst - The instruction using the induction variable.
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
    /// OperandValToReplace - The operand value of Inst to replace with the
 | 
						|
    /// EmittedBase.
 | 
						|
    Value *OperandValToReplace;
 | 
						|
 | 
						|
    /// Imm - The immediate value that should be added to the base immediately
 | 
						|
    /// before Inst, because it will be folded into the imm field of the
 | 
						|
    /// instruction.  This is also sometimes used for loop-variant values that
 | 
						|
    /// must be added inside the loop.
 | 
						|
    const SCEV *Imm;
 | 
						|
 | 
						|
    /// Phi - The induction variable that performs the striding that
 | 
						|
    /// should be used for this user.
 | 
						|
    PHINode *Phi;
 | 
						|
 | 
						|
    // isUseOfPostIncrementedValue - True if this should use the
 | 
						|
    // post-incremented version of this IV, not the preincremented version.
 | 
						|
    // This can only be set in special cases, such as the terminating setcc
 | 
						|
    // instruction for a loop and uses outside the loop that are dominated by
 | 
						|
    // the loop.
 | 
						|
    bool isUseOfPostIncrementedValue;
 | 
						|
 | 
						|
    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
 | 
						|
      : Base(IVSU.getOffset()), Inst(IVSU.getUser()),
 | 
						|
        OperandValToReplace(IVSU.getOperandValToReplace()),
 | 
						|
        Imm(se->getIntegerSCEV(0, Base->getType())),
 | 
						|
        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
 | 
						|
 | 
						|
    // Once we rewrite the code to insert the new IVs we want, update the
 | 
						|
    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | 
						|
    // to it.
 | 
						|
    void RewriteInstructionToUseNewBase(const SCEV *NewBase,
 | 
						|
                                        Instruction *InsertPt,
 | 
						|
                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
 | 
						|
                                        SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
                                        ScalarEvolution *SE);
 | 
						|
 | 
						|
    Value *InsertCodeForBaseAtPosition(const SCEV *NewBase,
 | 
						|
                                       const Type *Ty,
 | 
						|
                                       SCEVExpander &Rewriter,
 | 
						|
                                       Instruction *IP,
 | 
						|
                                       ScalarEvolution *SE);
 | 
						|
    void dump() const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void BasedUser::dump() const {
 | 
						|
  dbgs() << " Base=" << *Base;
 | 
						|
  dbgs() << " Imm=" << *Imm;
 | 
						|
  dbgs() << "   Inst: " << *Inst;
 | 
						|
}
 | 
						|
 | 
						|
Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *NewBase,
 | 
						|
                                              const Type *Ty,
 | 
						|
                                              SCEVExpander &Rewriter,
 | 
						|
                                              Instruction *IP,
 | 
						|
                                              ScalarEvolution *SE) {
 | 
						|
  Value *Base = Rewriter.expandCodeFor(NewBase, 0, IP);
 | 
						|
 | 
						|
  // Wrap the base in a SCEVUnknown so that ScalarEvolution doesn't try to
 | 
						|
  // re-analyze it.
 | 
						|
  const SCEV *NewValSCEV = SE->getUnknown(Base);
 | 
						|
 | 
						|
  // Always emit the immediate into the same block as the user.
 | 
						|
  NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
 | 
						|
 | 
						|
  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Once we rewrite the code to insert the new IVs we want, update the
 | 
						|
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | 
						|
// to it. NewBasePt is the last instruction which contributes to the
 | 
						|
// value of NewBase in the case that it's a diffferent instruction from
 | 
						|
// the PHI that NewBase is computed from, or null otherwise.
 | 
						|
//
 | 
						|
void BasedUser::RewriteInstructionToUseNewBase(const SCEV *NewBase,
 | 
						|
                                               Instruction *NewBasePt,
 | 
						|
                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
 | 
						|
                                      SmallVectorImpl<WeakVH> &DeadInsts,
 | 
						|
                                      ScalarEvolution *SE) {
 | 
						|
  if (!isa<PHINode>(Inst)) {
 | 
						|
    // By default, insert code at the user instruction.
 | 
						|
    BasicBlock::iterator InsertPt = Inst;
 | 
						|
 | 
						|
    // However, if the Operand is itself an instruction, the (potentially
 | 
						|
    // complex) inserted code may be shared by many users.  Because of this, we
 | 
						|
    // want to emit code for the computation of the operand right before its old
 | 
						|
    // computation.  This is usually safe, because we obviously used to use the
 | 
						|
    // computation when it was computed in its current block.  However, in some
 | 
						|
    // cases (e.g. use of a post-incremented induction variable) the NewBase
 | 
						|
    // value will be pinned to live somewhere after the original computation.
 | 
						|
    // In this case, we have to back off.
 | 
						|
    //
 | 
						|
    // If this is a use outside the loop (which means after, since it is based
 | 
						|
    // on a loop indvar) we use the post-incremented value, so that we don't
 | 
						|
    // artificially make the preinc value live out the bottom of the loop.
 | 
						|
    if (!isUseOfPostIncrementedValue && L->contains(Inst)) {
 | 
						|
      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
 | 
						|
        InsertPt = NewBasePt;
 | 
						|
        ++InsertPt;
 | 
						|
      } else if (Instruction *OpInst
 | 
						|
                 = dyn_cast<Instruction>(OperandValToReplace)) {
 | 
						|
        InsertPt = OpInst;
 | 
						|
        while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
 | 
						|
                                                OperandValToReplace->getType(),
 | 
						|
                                                Rewriter, InsertPt, SE);
 | 
						|
    // Replace the use of the operand Value with the new Phi we just created.
 | 
						|
    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "      Replacing with ");
 | 
						|
    DEBUG(WriteAsOperand(dbgs(), NewVal, /*PrintType=*/false));
 | 
						|
    DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
 | 
						|
                 << *Imm << "\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
 | 
						|
  // expression into each operand block that uses it.  Note that PHI nodes can
 | 
						|
  // have multiple entries for the same predecessor.  We use a map to make sure
 | 
						|
  // that a PHI node only has a single Value* for each predecessor (which also
 | 
						|
  // prevents us from inserting duplicate code in some blocks).
 | 
						|
  DenseMap<BasicBlock*, Value*> InsertedCode;
 | 
						|
  PHINode *PN = cast<PHINode>(Inst);
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (PN->getIncomingValue(i) == OperandValToReplace) {
 | 
						|
      // If the original expression is outside the loop, put the replacement
 | 
						|
      // code in the same place as the original expression,
 | 
						|
      // which need not be an immediate predecessor of this PHI.  This way we
 | 
						|
      // need only one copy of it even if it is referenced multiple times in
 | 
						|
      // the PHI.  We don't do this when the original expression is inside the
 | 
						|
      // loop because multiple copies sometimes do useful sinking of code in
 | 
						|
      // that case(?).
 | 
						|
      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
 | 
						|
      BasicBlock *PHIPred = PN->getIncomingBlock(i);
 | 
						|
      if (L->contains(OldLoc)) {
 | 
						|
        // If this is a critical edge, split the edge so that we do not insert
 | 
						|
        // the code on all predecessor/successor paths.  We do this unless this
 | 
						|
        // is the canonical backedge for this loop, as this can make some
 | 
						|
        // inserted code be in an illegal position.
 | 
						|
        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
 | 
						|
            !isa<IndirectBrInst>(PHIPred->getTerminator()) &&
 | 
						|
            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
 | 
						|
 | 
						|
          // First step, split the critical edge.
 | 
						|
          BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
 | 
						|
                                                P, false);
 | 
						|
 | 
						|
          // Next step: move the basic block.  In particular, if the PHI node
 | 
						|
          // is outside of the loop, and PredTI is in the loop, we want to
 | 
						|
          // move the block to be immediately before the PHI block, not
 | 
						|
          // immediately after PredTI.
 | 
						|
          if (L->contains(PHIPred) && !L->contains(PN))
 | 
						|
            NewBB->moveBefore(PN->getParent());
 | 
						|
 | 
						|
          // Splitting the edge can reduce the number of PHI entries we have.
 | 
						|
          e = PN->getNumIncomingValues();
 | 
						|
          PHIPred = NewBB;
 | 
						|
          i = PN->getBasicBlockIndex(PHIPred);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Value *&Code = InsertedCode[PHIPred];
 | 
						|
      if (!Code) {
 | 
						|
        // Insert the code into the end of the predecessor block.
 | 
						|
        Instruction *InsertPt = (L->contains(OldLoc)) ?
 | 
						|
                                PHIPred->getTerminator() :
 | 
						|
                                OldLoc->getParent()->getTerminator();
 | 
						|
        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
 | 
						|
                                           Rewriter, InsertPt, SE);
 | 
						|
 | 
						|
        DEBUG(dbgs() << "      Changing PHI use to ");
 | 
						|
        DEBUG(WriteAsOperand(dbgs(), Code, /*PrintType=*/false));
 | 
						|
        DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
 | 
						|
                     << *Imm << "\n");
 | 
						|
      }
 | 
						|
 | 
						|
      // Replace the use of the operand Value with the new Phi we just created.
 | 
						|
      PN->setIncomingValue(i, Code);
 | 
						|
      Rewriter.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // PHI node might have become a constant value after SplitCriticalEdge.
 | 
						|
  DeadInsts.push_back(Inst);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// fitsInAddressMode - Return true if V can be subsumed within an addressing
 | 
						|
/// mode, and does not need to be put in a register first.
 | 
						|
static bool fitsInAddressMode(const SCEV *V, const Type *AccessTy,
 | 
						|
                             const TargetLowering *TLI, bool HasBaseReg) {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    int64_t VC = SC->getValue()->getSExtValue();
 | 
						|
    if (TLI) {
 | 
						|
      TargetLowering::AddrMode AM;
 | 
						|
      AM.BaseOffs = VC;
 | 
						|
      AM.HasBaseReg = HasBaseReg;
 | 
						|
      return TLI->isLegalAddressingMode(AM, AccessTy);
 | 
						|
    } else {
 | 
						|
      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
 | 
						|
      return (VC > -(1 << 16) && VC < (1 << 16)-1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
 | 
						|
    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
 | 
						|
      if (TLI) {
 | 
						|
        TargetLowering::AddrMode AM;
 | 
						|
        AM.BaseGV = GV;
 | 
						|
        AM.HasBaseReg = HasBaseReg;
 | 
						|
        return TLI->isLegalAddressingMode(AM, AccessTy);
 | 
						|
      } else {
 | 
						|
        // Default: assume global addresses are not legal.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
 | 
						|
/// loop varying to the Imm operand.
 | 
						|
static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
 | 
						|
                                             Loop *L, ScalarEvolution *SE) {
 | 
						|
  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
 | 
						|
 | 
						|
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    NewOps.reserve(SAE->getNumOperands());
 | 
						|
 | 
						|
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
 | 
						|
      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
 | 
						|
        // If this is a loop-variant expression, it must stay in the immediate
 | 
						|
        // field of the expression.
 | 
						|
        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
 | 
						|
      } else {
 | 
						|
        NewOps.push_back(SAE->getOperand(i));
 | 
						|
      }
 | 
						|
 | 
						|
    if (NewOps.empty())
 | 
						|
      Val = SE->getIntegerSCEV(0, Val->getType());
 | 
						|
    else
 | 
						|
      Val = SE->getAddExpr(NewOps);
 | 
						|
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | 
						|
    // Try to pull immediates out of the start value of nested addrec's.
 | 
						|
    const SCEV *Start = SARE->getStart();
 | 
						|
    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
 | 
						|
 | 
						|
    SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
    Ops[0] = Start;
 | 
						|
    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
 | 
						|
  } else {
 | 
						|
    // Otherwise, all of Val is variant, move the whole thing over.
 | 
						|
    Imm = SE->getAddExpr(Imm, Val);
 | 
						|
    Val = SE->getIntegerSCEV(0, Val->getType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MoveImmediateValues - Look at Val, and pull out any additions of constants
 | 
						|
/// that can fit into the immediate field of instructions in the target.
 | 
						|
/// Accumulate these immediate values into the Imm value.
 | 
						|
static void MoveImmediateValues(const TargetLowering *TLI,
 | 
						|
                                const Type *AccessTy,
 | 
						|
                                const SCEV *&Val, const SCEV *&Imm,
 | 
						|
                                bool isAddress, Loop *L,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    NewOps.reserve(SAE->getNumOperands());
 | 
						|
 | 
						|
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
 | 
						|
      const SCEV *NewOp = SAE->getOperand(i);
 | 
						|
      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
 | 
						|
 | 
						|
      if (!NewOp->isLoopInvariant(L)) {
 | 
						|
        // If this is a loop-variant expression, it must stay in the immediate
 | 
						|
        // field of the expression.
 | 
						|
        Imm = SE->getAddExpr(Imm, NewOp);
 | 
						|
      } else {
 | 
						|
        NewOps.push_back(NewOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewOps.empty())
 | 
						|
      Val = SE->getIntegerSCEV(0, Val->getType());
 | 
						|
    else
 | 
						|
      Val = SE->getAddExpr(NewOps);
 | 
						|
    return;
 | 
						|
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | 
						|
    // Try to pull immediates out of the start value of nested addrec's.
 | 
						|
    const SCEV *Start = SARE->getStart();
 | 
						|
    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
 | 
						|
 | 
						|
    if (Start != SARE->getStart()) {
 | 
						|
      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
      Ops[0] = Start;
 | 
						|
      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
 | 
						|
    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
 | 
						|
    if (isAddress &&
 | 
						|
        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
 | 
						|
        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
 | 
						|
 | 
						|
      const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
 | 
						|
      const SCEV *NewOp = SME->getOperand(1);
 | 
						|
      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
 | 
						|
 | 
						|
      // If we extracted something out of the subexpressions, see if we can
 | 
						|
      // simplify this!
 | 
						|
      if (NewOp != SME->getOperand(1)) {
 | 
						|
        // Scale SubImm up by "8".  If the result is a target constant, we are
 | 
						|
        // good.
 | 
						|
        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
 | 
						|
        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
 | 
						|
          // Accumulate the immediate.
 | 
						|
          Imm = SE->getAddExpr(Imm, SubImm);
 | 
						|
 | 
						|
          // Update what is left of 'Val'.
 | 
						|
          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop-variant expressions must stay in the immediate field of the
 | 
						|
  // expression.
 | 
						|
  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
 | 
						|
      !Val->isLoopInvariant(L)) {
 | 
						|
    Imm = SE->getAddExpr(Imm, Val);
 | 
						|
    Val = SE->getIntegerSCEV(0, Val->getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, no immediates to move.
 | 
						|
}
 | 
						|
 | 
						|
static void MoveImmediateValues(const TargetLowering *TLI,
 | 
						|
                                Instruction *User,
 | 
						|
                                const SCEV *&Val, const SCEV *&Imm,
 | 
						|
                                bool isAddress, Loop *L,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  const Type *AccessTy = getAccessType(User);
 | 
						|
  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
 | 
						|
}
 | 
						|
 | 
						|
/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
 | 
						|
/// added together.  This is used to reassociate common addition subexprs
 | 
						|
/// together for maximal sharing when rewriting bases.
 | 
						|
static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
 | 
						|
                             const SCEV *Expr,
 | 
						|
                             ScalarEvolution *SE) {
 | 
						|
  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
 | 
						|
    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
 | 
						|
      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
 | 
						|
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
 | 
						|
    const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
 | 
						|
    if (SARE->getOperand(0) == Zero) {
 | 
						|
      SubExprs.push_back(Expr);
 | 
						|
    } else {
 | 
						|
      // Compute the addrec with zero as its base.
 | 
						|
      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
      Ops[0] = Zero;   // Start with zero base.
 | 
						|
      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
 | 
						|
 | 
						|
 | 
						|
      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
 | 
						|
    }
 | 
						|
  } else if (!Expr->isZero()) {
 | 
						|
    // Do not add zero.
 | 
						|
    SubExprs.push_back(Expr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This is logically local to the following function, but C++ says we have
 | 
						|
// to make it file scope.
 | 
						|
struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
 | 
						|
 | 
						|
/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
 | 
						|
/// the Uses, removing any common subexpressions, except that if all such
 | 
						|
/// subexpressions can be folded into an addressing mode for all uses inside
 | 
						|
/// the loop (this case is referred to as "free" in comments herein) we do
 | 
						|
/// not remove anything.  This looks for things like (a+b+c) and
 | 
						|
/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
 | 
						|
/// is *removed* from the Bases and returned.
 | 
						|
static const SCEV *
 | 
						|
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
 | 
						|
                                    ScalarEvolution *SE, Loop *L,
 | 
						|
                                    const TargetLowering *TLI) {
 | 
						|
  unsigned NumUses = Uses.size();
 | 
						|
 | 
						|
  // Only one use?  This is a very common case, so we handle it specially and
 | 
						|
  // cheaply.
 | 
						|
  const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
 | 
						|
  const SCEV *Result = Zero;
 | 
						|
  const SCEV *FreeResult = Zero;
 | 
						|
  if (NumUses == 1) {
 | 
						|
    // If the use is inside the loop, use its base, regardless of what it is:
 | 
						|
    // it is clearly shared across all the IV's.  If the use is outside the loop
 | 
						|
    // (which means after it) we don't want to factor anything *into* the loop,
 | 
						|
    // so just use 0 as the base.
 | 
						|
    if (L->contains(Uses[0].Inst))
 | 
						|
      std::swap(Result, Uses[0].Base);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // To find common subexpressions, count how many of Uses use each expression.
 | 
						|
  // If any subexpressions are used Uses.size() times, they are common.
 | 
						|
  // Also track whether all uses of each expression can be moved into an
 | 
						|
  // an addressing mode "for free"; such expressions are left within the loop.
 | 
						|
  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
 | 
						|
  std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
 | 
						|
 | 
						|
  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
 | 
						|
  // order we see them.
 | 
						|
  SmallVector<const SCEV *, 16> UniqueSubExprs;
 | 
						|
 | 
						|
  SmallVector<const SCEV *, 16> SubExprs;
 | 
						|
  unsigned NumUsesInsideLoop = 0;
 | 
						|
  for (unsigned i = 0; i != NumUses; ++i) {
 | 
						|
    // If the user is outside the loop, just ignore it for base computation.
 | 
						|
    // Since the user is outside the loop, it must be *after* the loop (if it
 | 
						|
    // were before, it could not be based on the loop IV).  We don't want users
 | 
						|
    // after the loop to affect base computation of values *inside* the loop,
 | 
						|
    // because we can always add their offsets to the result IV after the loop
 | 
						|
    // is done, ensuring we get good code inside the loop.
 | 
						|
    if (!L->contains(Uses[i].Inst))
 | 
						|
      continue;
 | 
						|
    NumUsesInsideLoop++;
 | 
						|
 | 
						|
    // If the base is zero (which is common), return zero now, there are no
 | 
						|
    // CSEs we can find.
 | 
						|
    if (Uses[i].Base == Zero) return Zero;
 | 
						|
 | 
						|
    // If this use is as an address we may be able to put CSEs in the addressing
 | 
						|
    // mode rather than hoisting them.
 | 
						|
    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
 | 
						|
    // We may need the AccessTy below, but only when isAddrUse, so compute it
 | 
						|
    // only in that case.
 | 
						|
    const Type *AccessTy = 0;
 | 
						|
    if (isAddrUse)
 | 
						|
      AccessTy = getAccessType(Uses[i].Inst);
 | 
						|
 | 
						|
    // Split the expression into subexprs.
 | 
						|
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
 | 
						|
    // Add one to SubExpressionUseData.Count for each subexpr present, and
 | 
						|
    // if the subexpr is not a valid immediate within an addressing mode use,
 | 
						|
    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
 | 
						|
    // hoist these out of the loop (if they are common to all uses).
 | 
						|
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
 | 
						|
      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
 | 
						|
        UniqueSubExprs.push_back(SubExprs[j]);
 | 
						|
      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
 | 
						|
        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
 | 
						|
    }
 | 
						|
    SubExprs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know how many times each is used, build Result.  Iterate over
 | 
						|
  // UniqueSubexprs so that we have a stable ordering.
 | 
						|
  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
 | 
						|
    std::map<const SCEV *, SubExprUseData>::iterator I =
 | 
						|
       SubExpressionUseData.find(UniqueSubExprs[i]);
 | 
						|
    assert(I != SubExpressionUseData.end() && "Entry not found?");
 | 
						|
    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
 | 
						|
      if (I->second.notAllUsesAreFree)
 | 
						|
        Result = SE->getAddExpr(Result, I->first);
 | 
						|
      else
 | 
						|
        FreeResult = SE->getAddExpr(FreeResult, I->first);
 | 
						|
    } else
 | 
						|
      // Remove non-cse's from SubExpressionUseData.
 | 
						|
      SubExpressionUseData.erase(I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FreeResult != Zero) {
 | 
						|
    // We have some subexpressions that can be subsumed into addressing
 | 
						|
    // modes in every use inside the loop.  However, it's possible that
 | 
						|
    // there are so many of them that the combined FreeResult cannot
 | 
						|
    // be subsumed, or that the target cannot handle both a FreeResult
 | 
						|
    // and a Result in the same instruction (for example because it would
 | 
						|
    // require too many registers).  Check this.
 | 
						|
    for (unsigned i=0; i<NumUses; ++i) {
 | 
						|
      if (!L->contains(Uses[i].Inst))
 | 
						|
        continue;
 | 
						|
      // We know this is an addressing mode use; if there are any uses that
 | 
						|
      // are not, FreeResult would be Zero.
 | 
						|
      const Type *AccessTy = getAccessType(Uses[i].Inst);
 | 
						|
      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
 | 
						|
        // FIXME:  could split up FreeResult into pieces here, some hoisted
 | 
						|
        // and some not.  There is no obvious advantage to this.
 | 
						|
        Result = SE->getAddExpr(Result, FreeResult);
 | 
						|
        FreeResult = Zero;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found no CSE's, return now.
 | 
						|
  if (Result == Zero) return Result;
 | 
						|
 | 
						|
  // If we still have a FreeResult, remove its subexpressions from
 | 
						|
  // SubExpressionUseData.  This means they will remain in the use Bases.
 | 
						|
  if (FreeResult != Zero) {
 | 
						|
    SeparateSubExprs(SubExprs, FreeResult, SE);
 | 
						|
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
 | 
						|
      std::map<const SCEV *, SubExprUseData>::iterator I =
 | 
						|
         SubExpressionUseData.find(SubExprs[j]);
 | 
						|
      SubExpressionUseData.erase(I);
 | 
						|
    }
 | 
						|
    SubExprs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, remove all of the CSE's we found from each of the base values.
 | 
						|
  for (unsigned i = 0; i != NumUses; ++i) {
 | 
						|
    // Uses outside the loop don't necessarily include the common base, but
 | 
						|
    // the final IV value coming into those uses does.  Instead of trying to
 | 
						|
    // remove the pieces of the common base, which might not be there,
 | 
						|
    // subtract off the base to compensate for this.
 | 
						|
    if (!L->contains(Uses[i].Inst)) {
 | 
						|
      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Split the expression into subexprs.
 | 
						|
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
 | 
						|
 | 
						|
    // Remove any common subexpressions.
 | 
						|
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | 
						|
      if (SubExpressionUseData.count(SubExprs[j])) {
 | 
						|
        SubExprs.erase(SubExprs.begin()+j);
 | 
						|
        --j; --e;
 | 
						|
      }
 | 
						|
 | 
						|
    // Finally, add the non-shared expressions together.
 | 
						|
    if (SubExprs.empty())
 | 
						|
      Uses[i].Base = Zero;
 | 
						|
    else
 | 
						|
      Uses[i].Base = SE->getAddExpr(SubExprs);
 | 
						|
    SubExprs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// ValidScale - Check whether the given Scale is valid for all loads and
 | 
						|
/// stores in UsersToProcess.
 | 
						|
///
 | 
						|
bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
 | 
						|
                               const std::vector<BasedUser>& UsersToProcess) {
 | 
						|
  if (!TLI)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
 | 
						|
    // If this is a load or other access, pass the type of the access in.
 | 
						|
    const Type *AccessTy =
 | 
						|
        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
 | 
						|
    if (isAddressUse(UsersToProcess[i].Inst,
 | 
						|
                     UsersToProcess[i].OperandValToReplace))
 | 
						|
      AccessTy = getAccessType(UsersToProcess[i].Inst);
 | 
						|
    else if (isa<PHINode>(UsersToProcess[i].Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    TargetLowering::AddrMode AM;
 | 
						|
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
 | 
						|
      AM.BaseOffs = SC->getValue()->getSExtValue();
 | 
						|
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
 | 
						|
    AM.Scale = Scale;
 | 
						|
 | 
						|
    // If load[imm+r*scale] is illegal, bail out.
 | 
						|
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ValidOffset - Check whether the given Offset is valid for all loads and
 | 
						|
/// stores in UsersToProcess.
 | 
						|
///
 | 
						|
bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
 | 
						|
                               int64_t Offset,
 | 
						|
                               int64_t Scale,
 | 
						|
                               const std::vector<BasedUser>& UsersToProcess) {
 | 
						|
  if (!TLI)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
 | 
						|
    // If this is a load or other access, pass the type of the access in.
 | 
						|
    const Type *AccessTy =
 | 
						|
        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
 | 
						|
    if (isAddressUse(UsersToProcess[i].Inst,
 | 
						|
                     UsersToProcess[i].OperandValToReplace))
 | 
						|
      AccessTy = getAccessType(UsersToProcess[i].Inst);
 | 
						|
    else if (isa<PHINode>(UsersToProcess[i].Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    TargetLowering::AddrMode AM;
 | 
						|
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
 | 
						|
      AM.BaseOffs = SC->getValue()->getSExtValue();
 | 
						|
    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
 | 
						|
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
 | 
						|
    AM.Scale = Scale;
 | 
						|
 | 
						|
    // If load[imm+r*scale] is illegal, bail out.
 | 
						|
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
 | 
						|
/// a nop.
 | 
						|
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
 | 
						|
                                                const Type *Ty2) {
 | 
						|
  if (Ty1 == Ty2)
 | 
						|
    return false;
 | 
						|
  Ty1 = SE->getEffectiveSCEVType(Ty1);
 | 
						|
  Ty2 = SE->getEffectiveSCEVType(Ty2);
 | 
						|
  if (Ty1 == Ty2)
 | 
						|
    return false;
 | 
						|
  if (Ty1->canLosslesslyBitCastTo(Ty2))
 | 
						|
    return false;
 | 
						|
  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckForIVReuse - Returns the multiple if the stride is the multiple
 | 
						|
/// of a previous stride and it is a legal value for the target addressing
 | 
						|
/// mode scale component and optional base reg. This allows the users of
 | 
						|
/// this stride to be rewritten as prev iv * factor. It returns 0 if no
 | 
						|
/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
 | 
						|
///
 | 
						|
/// If all uses are outside the loop, we don't require that all multiplies
 | 
						|
/// be folded into the addressing mode, nor even that the factor be constant;
 | 
						|
/// a multiply (executed once) outside the loop is better than another IV
 | 
						|
/// within.  Well, usually.
 | 
						|
const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
 | 
						|
                                bool AllUsesAreAddresses,
 | 
						|
                                bool AllUsesAreOutsideLoop,
 | 
						|
                                const SCEV *Stride,
 | 
						|
                                IVExpr &IV, const Type *Ty,
 | 
						|
                                const std::vector<BasedUser>& UsersToProcess) {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
 | 
						|
    int64_t SInt = SC->getValue()->getSExtValue();
 | 
						|
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | 
						|
         NewStride != e; ++NewStride) {
 | 
						|
      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
 | 
						|
                IVsByStride.find(IU->StrideOrder[NewStride]);
 | 
						|
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
 | 
						|
        continue;
 | 
						|
      // The other stride has no uses, don't reuse it.
 | 
						|
      std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI =
 | 
						|
        IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
 | 
						|
      if (UI->second->Users.empty())
 | 
						|
        continue;
 | 
						|
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | 
						|
      if (SI->first != Stride &&
 | 
						|
          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
 | 
						|
        continue;
 | 
						|
      int64_t Scale = SInt / SSInt;
 | 
						|
      // Check that this stride is valid for all the types used for loads and
 | 
						|
      // stores; if it can be used for some and not others, we might as well use
 | 
						|
      // the original stride everywhere, since we have to create the IV for it
 | 
						|
      // anyway. If the scale is 1, then we don't need to worry about folding
 | 
						|
      // multiplications.
 | 
						|
      if (Scale == 1 ||
 | 
						|
          (AllUsesAreAddresses &&
 | 
						|
           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
 | 
						|
        // Prefer to reuse an IV with a base of zero.
 | 
						|
        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | 
						|
               IE = SI->second.IVs.end(); II != IE; ++II)
 | 
						|
          // Only reuse previous IV if it would not require a type conversion
 | 
						|
          // and if the base difference can be folded.
 | 
						|
          if (II->Base->isZero() &&
 | 
						|
              !RequiresTypeConversion(II->Base->getType(), Ty)) {
 | 
						|
            IV = *II;
 | 
						|
            return SE->getIntegerSCEV(Scale, Stride->getType());
 | 
						|
          }
 | 
						|
        // Otherwise, settle for an IV with a foldable base.
 | 
						|
        if (AllUsesAreAddresses)
 | 
						|
          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | 
						|
                 IE = SI->second.IVs.end(); II != IE; ++II)
 | 
						|
            // Only reuse previous IV if it would not require a type conversion
 | 
						|
            // and if the base difference can be folded.
 | 
						|
            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
 | 
						|
                SE->getEffectiveSCEVType(Ty) &&
 | 
						|
                isa<SCEVConstant>(II->Base)) {
 | 
						|
              int64_t Base =
 | 
						|
                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
 | 
						|
              if (Base > INT32_MIN && Base <= INT32_MAX &&
 | 
						|
                  ValidOffset(HasBaseReg, -Base * Scale,
 | 
						|
                              Scale, UsersToProcess)) {
 | 
						|
                IV = *II;
 | 
						|
                return SE->getIntegerSCEV(Scale, Stride->getType());
 | 
						|
              }
 | 
						|
            }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (AllUsesAreOutsideLoop) {
 | 
						|
    // Accept nonconstant strides here; it is really really right to substitute
 | 
						|
    // an existing IV if we can.
 | 
						|
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | 
						|
         NewStride != e; ++NewStride) {
 | 
						|
      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
 | 
						|
                IVsByStride.find(IU->StrideOrder[NewStride]);
 | 
						|
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
 | 
						|
        continue;
 | 
						|
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | 
						|
      if (SI->first != Stride && SSInt != 1)
 | 
						|
        continue;
 | 
						|
      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | 
						|
             IE = SI->second.IVs.end(); II != IE; ++II)
 | 
						|
        // Accept nonzero base here.
 | 
						|
        // Only reuse previous IV if it would not require a type conversion.
 | 
						|
        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
 | 
						|
          IV = *II;
 | 
						|
          return Stride;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // Special case, old IV is -1*x and this one is x.  Can treat this one as
 | 
						|
    // -1*old.
 | 
						|
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | 
						|
         NewStride != e; ++NewStride) {
 | 
						|
      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
 | 
						|
                IVsByStride.find(IU->StrideOrder[NewStride]);
 | 
						|
      if (SI == IVsByStride.end())
 | 
						|
        continue;
 | 
						|
      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
 | 
						|
        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
 | 
						|
          if (Stride == ME->getOperand(1) &&
 | 
						|
              SC->getValue()->getSExtValue() == -1LL)
 | 
						|
            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | 
						|
                   IE = SI->second.IVs.end(); II != IE; ++II)
 | 
						|
              // Accept nonzero base here.
 | 
						|
              // Only reuse previous IV if it would not require type conversion.
 | 
						|
              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
 | 
						|
                IV = *II;
 | 
						|
                return SE->getIntegerSCEV(-1LL, Stride->getType());
 | 
						|
              }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SE->getIntegerSCEV(0, Stride->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
 | 
						|
/// returns true if Val's isUseOfPostIncrementedValue is true.
 | 
						|
static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
 | 
						|
  return Val.isUseOfPostIncrementedValue;
 | 
						|
}
 | 
						|
 | 
						|
/// isNonConstantNegative - Return true if the specified scev is negated, but
 | 
						|
/// not a constant.
 | 
						|
static bool isNonConstantNegative(const SCEV *Expr) {
 | 
						|
  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
 | 
						|
  if (!Mul) return false;
 | 
						|
 | 
						|
  // If there is a constant factor, it will be first.
 | 
						|
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
 | 
						|
  if (!SC) return false;
 | 
						|
 | 
						|
  // Return true if the value is negative, this matches things like (-42 * V).
 | 
						|
  return SC->getValue()->getValue().isNegative();
 | 
						|
}
 | 
						|
 | 
						|
/// CollectIVUsers - Transform our list of users and offsets to a bit more
 | 
						|
/// complex table. In this new vector, each 'BasedUser' contains 'Base', the
 | 
						|
/// base of the strided accesses, as well as the old information from Uses. We
 | 
						|
/// progressively move information from the Base field to the Imm field, until
 | 
						|
/// we eventually have the full access expression to rewrite the use.
 | 
						|
const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *Stride,
 | 
						|
                                               IVUsersOfOneStride &Uses,
 | 
						|
                                               Loop *L,
 | 
						|
                                               bool &AllUsesAreAddresses,
 | 
						|
                                               bool &AllUsesAreOutsideLoop,
 | 
						|
                                       std::vector<BasedUser> &UsersToProcess) {
 | 
						|
  // FIXME: Generalize to non-affine IV's.
 | 
						|
  if (!Stride->isLoopInvariant(L))
 | 
						|
    return SE->getIntegerSCEV(0, Stride->getType());
 | 
						|
 | 
						|
  UsersToProcess.reserve(Uses.Users.size());
 | 
						|
  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
 | 
						|
       E = Uses.Users.end(); I != E; ++I) {
 | 
						|
    UsersToProcess.push_back(BasedUser(*I, SE));
 | 
						|
 | 
						|
    // Move any loop variant operands from the offset field to the immediate
 | 
						|
    // field of the use, so that we don't try to use something before it is
 | 
						|
    // computed.
 | 
						|
    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
 | 
						|
                                     UsersToProcess.back().Imm, L, SE);
 | 
						|
    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
 | 
						|
           "Base value is not loop invariant!");
 | 
						|
  }
 | 
						|
 | 
						|
  // We now have a whole bunch of uses of like-strided induction variables, but
 | 
						|
  // they might all have different bases.  We want to emit one PHI node for this
 | 
						|
  // stride which we fold as many common expressions (between the IVs) into as
 | 
						|
  // possible.  Start by identifying the common expressions in the base values
 | 
						|
  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
 | 
						|
  // "A+B"), emit it to the preheader, then remove the expression from the
 | 
						|
  // UsersToProcess base values.
 | 
						|
  const SCEV *CommonExprs =
 | 
						|
    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
 | 
						|
 | 
						|
  // Next, figure out what we can represent in the immediate fields of
 | 
						|
  // instructions.  If we can represent anything there, move it to the imm
 | 
						|
  // fields of the BasedUsers.  We do this so that it increases the commonality
 | 
						|
  // of the remaining uses.
 | 
						|
  unsigned NumPHI = 0;
 | 
						|
  bool HasAddress = false;
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | 
						|
    // If the user is not in the current loop, this means it is using the exit
 | 
						|
    // value of the IV.  Do not put anything in the base, make sure it's all in
 | 
						|
    // the immediate field to allow as much factoring as possible.
 | 
						|
    if (!L->contains(UsersToProcess[i].Inst)) {
 | 
						|
      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
 | 
						|
                                             UsersToProcess[i].Base);
 | 
						|
      UsersToProcess[i].Base =
 | 
						|
        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
 | 
						|
    } else {
 | 
						|
      // Not all uses are outside the loop.
 | 
						|
      AllUsesAreOutsideLoop = false;
 | 
						|
 | 
						|
      // Addressing modes can be folded into loads and stores.  Be careful that
 | 
						|
      // the store is through the expression, not of the expression though.
 | 
						|
      bool isPHI = false;
 | 
						|
      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
 | 
						|
                                    UsersToProcess[i].OperandValToReplace);
 | 
						|
      if (isa<PHINode>(UsersToProcess[i].Inst)) {
 | 
						|
        isPHI = true;
 | 
						|
        ++NumPHI;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isAddress)
 | 
						|
        HasAddress = true;
 | 
						|
 | 
						|
      // If this use isn't an address, then not all uses are addresses.
 | 
						|
      if (!isAddress && !isPHI)
 | 
						|
        AllUsesAreAddresses = false;
 | 
						|
 | 
						|
      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
 | 
						|
                          UsersToProcess[i].Imm, isAddress, L, SE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If one of the use is a PHI node and all other uses are addresses, still
 | 
						|
  // allow iv reuse. Essentially we are trading one constant multiplication
 | 
						|
  // for one fewer iv.
 | 
						|
  if (NumPHI > 1)
 | 
						|
    AllUsesAreAddresses = false;
 | 
						|
 | 
						|
  // There are no in-loop address uses.
 | 
						|
  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
 | 
						|
    AllUsesAreAddresses = false;
 | 
						|
 | 
						|
  return CommonExprs;
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
 | 
						|
/// is valid and profitable for the given set of users of a stride. In
 | 
						|
/// full strength-reduction mode, all addresses at the current stride are
 | 
						|
/// strength-reduced all the way down to pointer arithmetic.
 | 
						|
///
 | 
						|
bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
 | 
						|
                                   const std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                   const Loop *L,
 | 
						|
                                   bool AllUsesAreAddresses,
 | 
						|
                                   const SCEV *Stride) {
 | 
						|
  if (!EnableFullLSRMode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The heuristics below aim to avoid increasing register pressure, but
 | 
						|
  // fully strength-reducing all the addresses increases the number of
 | 
						|
  // add instructions, so don't do this when optimizing for size.
 | 
						|
  // TODO: If the loop is large, the savings due to simpler addresses
 | 
						|
  // may oughtweight the costs of the extra increment instructions.
 | 
						|
  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: For now, don't do full strength reduction if there could
 | 
						|
  // potentially be greater-stride multiples of the current stride
 | 
						|
  // which could reuse the current stride IV.
 | 
						|
  if (IU->StrideOrder.back() != Stride)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Iterate through the uses to find conditions that automatically rule out
 | 
						|
  // full-lsr mode.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
 | 
						|
    const SCEV *Base = UsersToProcess[i].Base;
 | 
						|
    const SCEV *Imm = UsersToProcess[i].Imm;
 | 
						|
    // If any users have a loop-variant component, they can't be fully
 | 
						|
    // strength-reduced.
 | 
						|
    if (Imm && !Imm->isLoopInvariant(L))
 | 
						|
      return false;
 | 
						|
    // If there are to users with the same base and the difference between
 | 
						|
    // the two Imm values can't be folded into the address, full
 | 
						|
    // strength reduction would increase register pressure.
 | 
						|
    do {
 | 
						|
      const SCEV *CurImm = UsersToProcess[i].Imm;
 | 
						|
      if ((CurImm || Imm) && CurImm != Imm) {
 | 
						|
        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
 | 
						|
        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
 | 
						|
        const Instruction *Inst = UsersToProcess[i].Inst;
 | 
						|
        const Type *AccessTy = getAccessType(Inst);
 | 
						|
        const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
 | 
						|
        if (!Diff->isZero() &&
 | 
						|
            (!AllUsesAreAddresses ||
 | 
						|
             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    } while (++i != e && Base == UsersToProcess[i].Base);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's exactly one user in this stride, fully strength-reducing it
 | 
						|
  // won't increase register pressure. If it's starting from a non-zero base,
 | 
						|
  // it'll be simpler this way.
 | 
						|
  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise, if there are any users in this stride that don't require
 | 
						|
  // a register for their base, full strength-reduction will increase
 | 
						|
  // register pressure.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | 
						|
    if (UsersToProcess[i].Base->isZero())
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Otherwise, go for it.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertAffinePhi Create and insert a PHI node for an induction variable
 | 
						|
/// with the specified start and step values in the specified loop.
 | 
						|
///
 | 
						|
/// If NegateStride is true, the stride should be negated by using a
 | 
						|
/// subtract instead of an add.
 | 
						|
///
 | 
						|
/// Return the created phi node.
 | 
						|
///
 | 
						|
static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
 | 
						|
                                Instruction *IVIncInsertPt,
 | 
						|
                                const Loop *L,
 | 
						|
                                SCEVExpander &Rewriter) {
 | 
						|
  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
 | 
						|
  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  const Type *Ty = Start->getType();
 | 
						|
  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
 | 
						|
  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
 | 
						|
                  Preheader);
 | 
						|
 | 
						|
  // If the stride is negative, insert a sub instead of an add for the
 | 
						|
  // increment.
 | 
						|
  bool isNegative = isNonConstantNegative(Step);
 | 
						|
  const SCEV *IncAmount = Step;
 | 
						|
  if (isNegative)
 | 
						|
    IncAmount = Rewriter.SE.getNegativeSCEV(Step);
 | 
						|
 | 
						|
  // Insert an add instruction right before the terminator corresponding
 | 
						|
  // to the back-edge or just before the only use. The location is determined
 | 
						|
  // by the caller and passed in as IVIncInsertPt.
 | 
						|
  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
 | 
						|
                                        Preheader->getTerminator());
 | 
						|
  Instruction *IncV;
 | 
						|
  if (isNegative) {
 | 
						|
    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
 | 
						|
                                     IVIncInsertPt);
 | 
						|
  } else {
 | 
						|
    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
 | 
						|
                                     IVIncInsertPt);
 | 
						|
  }
 | 
						|
  if (!isa<ConstantInt>(StepV)) ++NumVariable;
 | 
						|
 | 
						|
  PN->addIncoming(IncV, LatchBlock);
 | 
						|
 | 
						|
  ++NumInserted;
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
 | 
						|
static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
 | 
						|
  // We want to emit code for users inside the loop first.  To do this, we
 | 
						|
  // rearrange BasedUser so that the entries at the end have
 | 
						|
  // isUseOfPostIncrementedValue = false, because we pop off the end of the
 | 
						|
  // vector (so we handle them first).
 | 
						|
  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
 | 
						|
                 PartitionByIsUseOfPostIncrementedValue);
 | 
						|
 | 
						|
  // Sort this by base, so that things with the same base are handled
 | 
						|
  // together.  By partitioning first and stable-sorting later, we are
 | 
						|
  // guaranteed that within each base we will pop off users from within the
 | 
						|
  // loop before users outside of the loop with a particular base.
 | 
						|
  //
 | 
						|
  // We would like to use stable_sort here, but we can't.  The problem is that
 | 
						|
  // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
 | 
						|
  // we don't have anything to do a '<' comparison on.  Because we think the
 | 
						|
  // number of uses is small, do a horrible bubble sort which just relies on
 | 
						|
  // ==.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | 
						|
    // Get a base value.
 | 
						|
    const SCEV *Base = UsersToProcess[i].Base;
 | 
						|
 | 
						|
    // Compact everything with this base to be consecutive with this one.
 | 
						|
    for (unsigned j = i+1; j != e; ++j) {
 | 
						|
      if (UsersToProcess[j].Base == Base) {
 | 
						|
        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
 | 
						|
        ++i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
 | 
						|
/// UsersToProcess, meaning lowering addresses all the way down to direct
 | 
						|
/// pointer arithmetic.
 | 
						|
///
 | 
						|
void
 | 
						|
LoopStrengthReduce::PrepareToStrengthReduceFully(
 | 
						|
                                        std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                        const SCEV *Stride,
 | 
						|
                                        const SCEV *CommonExprs,
 | 
						|
                                        const Loop *L,
 | 
						|
                                        SCEVExpander &PreheaderRewriter) {
 | 
						|
  DEBUG(dbgs() << "  Fully reducing all users\n");
 | 
						|
 | 
						|
  // Rewrite the UsersToProcess records, creating a separate PHI for each
 | 
						|
  // unique Base value.
 | 
						|
  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
 | 
						|
    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
 | 
						|
    // pick the first Imm value here to start with, and adjust it for the
 | 
						|
    // other uses.
 | 
						|
    const SCEV *Imm = UsersToProcess[i].Imm;
 | 
						|
    const SCEV *Base = UsersToProcess[i].Base;
 | 
						|
    const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
 | 
						|
    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
 | 
						|
                                   PreheaderRewriter);
 | 
						|
    // Loop over all the users with the same base.
 | 
						|
    do {
 | 
						|
      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
 | 
						|
      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
 | 
						|
      UsersToProcess[i].Phi = Phi;
 | 
						|
      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
 | 
						|
             "ShouldUseFullStrengthReductionMode should reject this!");
 | 
						|
    } while (++i != e && Base == UsersToProcess[i].Base);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FindIVIncInsertPt - Return the location to insert the increment instruction.
 | 
						|
/// If the only use if a use of postinc value, (must be the loop termination
 | 
						|
/// condition), then insert it just before the use.
 | 
						|
static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                      const Loop *L) {
 | 
						|
  if (UsersToProcess.size() == 1 &&
 | 
						|
      UsersToProcess[0].isUseOfPostIncrementedValue &&
 | 
						|
      L->contains(UsersToProcess[0].Inst))
 | 
						|
    return UsersToProcess[0].Inst;
 | 
						|
  return L->getLoopLatch()->getTerminator();
 | 
						|
}
 | 
						|
 | 
						|
/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
 | 
						|
/// given users to share.
 | 
						|
///
 | 
						|
void
 | 
						|
LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
 | 
						|
                                         std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                         const SCEV *Stride,
 | 
						|
                                         const SCEV *CommonExprs,
 | 
						|
                                         Value *CommonBaseV,
 | 
						|
                                         Instruction *IVIncInsertPt,
 | 
						|
                                         const Loop *L,
 | 
						|
                                         SCEVExpander &PreheaderRewriter) {
 | 
						|
  DEBUG(dbgs() << "  Inserting new PHI:\n");
 | 
						|
 | 
						|
  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
 | 
						|
                                 Stride, IVIncInsertPt, L,
 | 
						|
                                 PreheaderRewriter);
 | 
						|
 | 
						|
  // Remember this in case a later stride is multiple of this.
 | 
						|
  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
 | 
						|
 | 
						|
  // All the users will share this new IV.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | 
						|
    UsersToProcess[i].Phi = Phi;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    IV=");
 | 
						|
  DEBUG(WriteAsOperand(dbgs(), Phi, /*PrintType=*/false));
 | 
						|
  DEBUG(dbgs() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
 | 
						|
/// reuse an induction variable with a stride that is a factor of the current
 | 
						|
/// induction variable.
 | 
						|
///
 | 
						|
void
 | 
						|
LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
 | 
						|
                                         std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                         Value *CommonBaseV,
 | 
						|
                                         const IVExpr &ReuseIV,
 | 
						|
                                         Instruction *PreInsertPt) {
 | 
						|
  DEBUG(dbgs() << "  Rewriting in terms of existing IV of STRIDE "
 | 
						|
               << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
 | 
						|
 | 
						|
  // All the users will share the reused IV.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | 
						|
    UsersToProcess[i].Phi = ReuseIV.PHI;
 | 
						|
 | 
						|
  Constant *C = dyn_cast<Constant>(CommonBaseV);
 | 
						|
  if (C &&
 | 
						|
      (!C->isNullValue() &&
 | 
						|
       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
 | 
						|
                         TLI, false)))
 | 
						|
    // We want the common base emitted into the preheader! This is just
 | 
						|
    // using cast as a copy so BitCast (no-op cast) is appropriate
 | 
						|
    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
 | 
						|
                                  "commonbase", PreInsertPt);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
 | 
						|
                                    const Type *AccessTy,
 | 
						|
                                   std::vector<BasedUser> &UsersToProcess,
 | 
						|
                                   const TargetLowering *TLI) {
 | 
						|
  SmallVector<Instruction*, 16> AddrModeInsts;
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | 
						|
    if (UsersToProcess[i].isUseOfPostIncrementedValue)
 | 
						|
      continue;
 | 
						|
    ExtAddrMode AddrMode =
 | 
						|
      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
 | 
						|
                                   AccessTy, UsersToProcess[i].Inst,
 | 
						|
                                   AddrModeInsts, *TLI);
 | 
						|
    if (GV && GV != AddrMode.BaseGV)
 | 
						|
      return false;
 | 
						|
    if (Offset && !AddrMode.BaseOffs)
 | 
						|
      // FIXME: How to accurate check it's immediate offset is folded.
 | 
						|
      return false;
 | 
						|
    AddrModeInsts.clear();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a single
 | 
						|
/// stride of IV.  All of the users may have different starting values, and this
 | 
						|
/// may not be the only stride.
 | 
						|
void
 | 
						|
LoopStrengthReduce::StrengthReduceIVUsersOfStride(const SCEV *Stride,
 | 
						|
                                                  IVUsersOfOneStride &Uses,
 | 
						|
                                                  Loop *L) {
 | 
						|
  // If all the users are moved to another stride, then there is nothing to do.
 | 
						|
  if (Uses.Users.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Keep track if every use in UsersToProcess is an address. If they all are,
 | 
						|
  // we may be able to rewrite the entire collection of them in terms of a
 | 
						|
  // smaller-stride IV.
 | 
						|
  bool AllUsesAreAddresses = true;
 | 
						|
 | 
						|
  // Keep track if every use of a single stride is outside the loop.  If so,
 | 
						|
  // we want to be more aggressive about reusing a smaller-stride IV; a
 | 
						|
  // multiply outside the loop is better than another IV inside.  Well, usually.
 | 
						|
  bool AllUsesAreOutsideLoop = true;
 | 
						|
 | 
						|
  // Transform our list of users and offsets to a bit more complex table.  In
 | 
						|
  // this new vector, each 'BasedUser' contains 'Base' the base of the strided
 | 
						|
  // access as well as the old information from Uses. We progressively move
 | 
						|
  // information from the Base field to the Imm field until we eventually have
 | 
						|
  // the full access expression to rewrite the use.
 | 
						|
  std::vector<BasedUser> UsersToProcess;
 | 
						|
  const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
 | 
						|
                                           AllUsesAreOutsideLoop,
 | 
						|
                                           UsersToProcess);
 | 
						|
 | 
						|
  // Sort the UsersToProcess array so that users with common bases are
 | 
						|
  // next to each other.
 | 
						|
  SortUsersToProcess(UsersToProcess);
 | 
						|
 | 
						|
  // If we managed to find some expressions in common, we'll need to carry
 | 
						|
  // their value in a register and add it in for each use. This will take up
 | 
						|
  // a register operand, which potentially restricts what stride values are
 | 
						|
  // valid.
 | 
						|
  bool HaveCommonExprs = !CommonExprs->isZero();
 | 
						|
  const Type *ReplacedTy = CommonExprs->getType();
 | 
						|
 | 
						|
  // If all uses are addresses, consider sinking the immediate part of the
 | 
						|
  // common expression back into uses if they can fit in the immediate fields.
 | 
						|
  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
 | 
						|
    const SCEV *NewCommon = CommonExprs;
 | 
						|
    const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
 | 
						|
    MoveImmediateValues(TLI, Type::getVoidTy(
 | 
						|
                        L->getLoopPreheader()->getContext()),
 | 
						|
                        NewCommon, Imm, true, L, SE);
 | 
						|
    if (!Imm->isZero()) {
 | 
						|
      bool DoSink = true;
 | 
						|
 | 
						|
      // If the immediate part of the common expression is a GV, check if it's
 | 
						|
      // possible to fold it into the target addressing mode.
 | 
						|
      GlobalValue *GV = 0;
 | 
						|
      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
 | 
						|
        GV = dyn_cast<GlobalValue>(SU->getValue());
 | 
						|
      int64_t Offset = 0;
 | 
						|
      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
 | 
						|
        Offset = SC->getValue()->getSExtValue();
 | 
						|
      if (GV || Offset)
 | 
						|
        // Pass VoidTy as the AccessTy to be conservative, because
 | 
						|
        // there could be multiple access types among all the uses.
 | 
						|
        DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
 | 
						|
                          Type::getVoidTy(L->getLoopPreheader()->getContext()),
 | 
						|
                                         UsersToProcess, TLI);
 | 
						|
 | 
						|
      if (DoSink) {
 | 
						|
        DEBUG(dbgs() << "  Sinking " << *Imm << " back down into uses\n");
 | 
						|
        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | 
						|
          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
 | 
						|
        CommonExprs = NewCommon;
 | 
						|
        HaveCommonExprs = !CommonExprs->isZero();
 | 
						|
        ++NumImmSunk;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know what we need to do, insert the PHI node itself.
 | 
						|
  //
 | 
						|
  DEBUG(dbgs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
 | 
						|
               << *Stride << ":\n"
 | 
						|
               << "  Common base: " << *CommonExprs << '\n');
 | 
						|
 | 
						|
  SCEVExpander Rewriter(*SE);
 | 
						|
  SCEVExpander PreheaderRewriter(*SE);
 | 
						|
 | 
						|
  BasicBlock  *Preheader = L->getLoopPreheader();
 | 
						|
  Instruction *PreInsertPt = Preheader->getTerminator();
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  Instruction *IVIncInsertPt = LatchBlock->getTerminator();
 | 
						|
 | 
						|
  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
 | 
						|
 | 
						|
  const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
 | 
						|
  IVExpr   ReuseIV(SE->getIntegerSCEV(0,
 | 
						|
                                    Type::getInt32Ty(Preheader->getContext())),
 | 
						|
                   SE->getIntegerSCEV(0,
 | 
						|
                                    Type::getInt32Ty(Preheader->getContext())),
 | 
						|
                   0);
 | 
						|
 | 
						|
  // Choose a strength-reduction strategy and prepare for it by creating
 | 
						|
  // the necessary PHIs and adjusting the bookkeeping.
 | 
						|
  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
 | 
						|
                                         AllUsesAreAddresses, Stride)) {
 | 
						|
    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
 | 
						|
                                 PreheaderRewriter);
 | 
						|
  } else {
 | 
						|
    // Emit the initial base value into the loop preheader.
 | 
						|
    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
 | 
						|
                                                  PreInsertPt);
 | 
						|
 | 
						|
    // If all uses are addresses, check if it is possible to reuse an IV.  The
 | 
						|
    // new IV must have a stride that is a multiple of the old stride; the
 | 
						|
    // multiple must be a number that can be encoded in the scale field of the
 | 
						|
    // target addressing mode; and we must have a valid instruction after this
 | 
						|
    // substitution, including the immediate field, if any.
 | 
						|
    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
 | 
						|
                                    AllUsesAreOutsideLoop,
 | 
						|
                                    Stride, ReuseIV, ReplacedTy,
 | 
						|
                                    UsersToProcess);
 | 
						|
    if (!RewriteFactor->isZero())
 | 
						|
      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
 | 
						|
                                               ReuseIV, PreInsertPt);
 | 
						|
    else {
 | 
						|
      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
 | 
						|
      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
 | 
						|
                                        CommonBaseV, IVIncInsertPt,
 | 
						|
                                        L, PreheaderRewriter);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all the users now, replacing their strided uses with
 | 
						|
  // strength-reduced forms.  This outer loop handles all bases, the inner
 | 
						|
  // loop handles all users of a particular base.
 | 
						|
  while (!UsersToProcess.empty()) {
 | 
						|
    const SCEV *Base = UsersToProcess.back().Base;
 | 
						|
    Instruction *Inst = UsersToProcess.back().Inst;
 | 
						|
 | 
						|
    // Emit the code for Base into the preheader.
 | 
						|
    Value *BaseV = 0;
 | 
						|
    if (!Base->isZero()) {
 | 
						|
      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  INSERTING code for BASE = " << *Base << ":");
 | 
						|
      if (BaseV->hasName())
 | 
						|
        DEBUG(dbgs() << " Result value name = %" << BaseV->getName());
 | 
						|
      DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
      // If BaseV is a non-zero constant, make sure that it gets inserted into
 | 
						|
      // the preheader, instead of being forward substituted into the uses.  We
 | 
						|
      // do this by forcing a BitCast (noop cast) to be inserted into the
 | 
						|
      // preheader in this case.
 | 
						|
      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
 | 
						|
          isa<Constant>(BaseV)) {
 | 
						|
        // We want this constant emitted into the preheader! This is just
 | 
						|
        // using cast as a copy so BitCast (no-op cast) is appropriate
 | 
						|
        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
 | 
						|
                                PreInsertPt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit the code to add the immediate offset to the Phi value, just before
 | 
						|
    // the instructions that we identified as using this stride and base.
 | 
						|
    do {
 | 
						|
      // FIXME: Use emitted users to emit other users.
 | 
						|
      BasedUser &User = UsersToProcess.back();
 | 
						|
 | 
						|
      DEBUG(dbgs() << "    Examining ");
 | 
						|
      if (User.isUseOfPostIncrementedValue)
 | 
						|
        DEBUG(dbgs() << "postinc");
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "preinc");
 | 
						|
      DEBUG(dbgs() << " use ");
 | 
						|
      DEBUG(WriteAsOperand(dbgs(), UsersToProcess.back().OperandValToReplace,
 | 
						|
                           /*PrintType=*/false));
 | 
						|
      DEBUG(dbgs() << " in Inst: " << *User.Inst << '\n');
 | 
						|
 | 
						|
      // If this instruction wants to use the post-incremented value, move it
 | 
						|
      // after the post-inc and use its value instead of the PHI.
 | 
						|
      Value *RewriteOp = User.Phi;
 | 
						|
      if (User.isUseOfPostIncrementedValue) {
 | 
						|
        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
 | 
						|
        // If this user is in the loop, make sure it is the last thing in the
 | 
						|
        // loop to ensure it is dominated by the increment. In case it's the
 | 
						|
        // only use of the iv, the increment instruction is already before the
 | 
						|
        // use.
 | 
						|
        if (L->contains(User.Inst) && User.Inst != IVIncInsertPt)
 | 
						|
          User.Inst->moveBefore(IVIncInsertPt);
 | 
						|
      }
 | 
						|
 | 
						|
      const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
 | 
						|
 | 
						|
      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
 | 
						|
          SE->getEffectiveSCEVType(ReplacedTy)) {
 | 
						|
        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
 | 
						|
               SE->getTypeSizeInBits(ReplacedTy) &&
 | 
						|
               "Unexpected widening cast!");
 | 
						|
        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we had to insert new instructions for RewriteOp, we have to
 | 
						|
      // consider that they may not have been able to end up immediately
 | 
						|
      // next to RewriteOp, because non-PHI instructions may never precede
 | 
						|
      // PHI instructions in a block. In this case, remember where the last
 | 
						|
      // instruction was inserted so that if we're replacing a different
 | 
						|
      // PHI node, we can use the later point to expand the final
 | 
						|
      // RewriteExpr.
 | 
						|
      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
 | 
						|
      if (RewriteOp == User.Phi) NewBasePt = 0;
 | 
						|
 | 
						|
      // Clear the SCEVExpander's expression map so that we are guaranteed
 | 
						|
      // to have the code emitted where we expect it.
 | 
						|
      Rewriter.clear();
 | 
						|
 | 
						|
      // If we are reusing the iv, then it must be multiplied by a constant
 | 
						|
      // factor to take advantage of the addressing mode scale component.
 | 
						|
      if (!RewriteFactor->isZero()) {
 | 
						|
        // If we're reusing an IV with a nonzero base (currently this happens
 | 
						|
        // only when all reuses are outside the loop) subtract that base here.
 | 
						|
        // The base has been used to initialize the PHI node but we don't want
 | 
						|
        // it here.
 | 
						|
        if (!ReuseIV.Base->isZero()) {
 | 
						|
          const SCEV *typedBase = ReuseIV.Base;
 | 
						|
          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
 | 
						|
              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
 | 
						|
            // It's possible the original IV is a larger type than the new IV,
 | 
						|
            // in which case we have to truncate the Base.  We checked in
 | 
						|
            // RequiresTypeConversion that this is valid.
 | 
						|
            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
 | 
						|
                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
 | 
						|
                   "Unexpected lengthening conversion!");
 | 
						|
            typedBase = SE->getTruncateExpr(ReuseIV.Base,
 | 
						|
                                            RewriteExpr->getType());
 | 
						|
          }
 | 
						|
          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
 | 
						|
        }
 | 
						|
 | 
						|
        // Multiply old variable, with base removed, by new scale factor.
 | 
						|
        RewriteExpr = SE->getMulExpr(RewriteFactor,
 | 
						|
                                     RewriteExpr);
 | 
						|
 | 
						|
        // The common base is emitted in the loop preheader. But since we
 | 
						|
        // are reusing an IV, it has not been used to initialize the PHI node.
 | 
						|
        // Add it to the expression used to rewrite the uses.
 | 
						|
        // When this use is outside the loop, we earlier subtracted the
 | 
						|
        // common base, and are adding it back here.  Use the same expression
 | 
						|
        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
 | 
						|
        if (!CommonExprs->isZero()) {
 | 
						|
          if (L->contains(User.Inst))
 | 
						|
            RewriteExpr = SE->getAddExpr(RewriteExpr,
 | 
						|
                                       SE->getUnknown(CommonBaseV));
 | 
						|
          else
 | 
						|
            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Now that we know what we need to do, insert code before User for the
 | 
						|
      // immediate and any loop-variant expressions.
 | 
						|
      if (BaseV)
 | 
						|
        // Add BaseV to the PHI value if needed.
 | 
						|
        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
 | 
						|
 | 
						|
      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
 | 
						|
                                          Rewriter, L, this,
 | 
						|
                                          DeadInsts, SE);
 | 
						|
 | 
						|
      // Mark old value we replaced as possibly dead, so that it is eliminated
 | 
						|
      // if we just replaced the last use of that value.
 | 
						|
      DeadInsts.push_back(User.OperandValToReplace);
 | 
						|
 | 
						|
      UsersToProcess.pop_back();
 | 
						|
      ++NumReduced;
 | 
						|
 | 
						|
      // If there are any more users to process with the same base, process them
 | 
						|
      // now.  We sorted by base above, so we just have to check the last elt.
 | 
						|
    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
 | 
						|
    // TODO: Next, find out which base index is the most common, pull it out.
 | 
						|
  }
 | 
						|
 | 
						|
  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
 | 
						|
  // different starting values, into different PHIs.
 | 
						|
}
 | 
						|
 | 
						|
void LoopStrengthReduce::StrengthReduceIVUsers(Loop *L) {
 | 
						|
  // Note: this processes each stride/type pair individually.  All users
 | 
						|
  // passed into StrengthReduceIVUsersOfStride have the same type AND stride.
 | 
						|
  // Also, note that we iterate over IVUsesByStride indirectly by using
 | 
						|
  // StrideOrder. This extra layer of indirection makes the ordering of
 | 
						|
  // strides deterministic - not dependent on map order.
 | 
						|
  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; ++Stride) {
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    // FIXME: Generalize to non-affine IV's.
 | 
						|
    if (!SI->first->isLoopInvariant(L))
 | 
						|
      continue;
 | 
						|
    StrengthReduceIVUsersOfStride(SI->first, *SI->second, L);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
 | 
						|
/// set the IV user and stride information and return true, otherwise return
 | 
						|
/// false.
 | 
						|
bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond,
 | 
						|
                                           IVStrideUse *&CondUse,
 | 
						|
                                           const SCEV* &CondStride) {
 | 
						|
  for (unsigned Stride = 0, e = IU->StrideOrder.size();
 | 
						|
       Stride != e && !CondUse; ++Stride) {
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
 | 
						|
    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | 
						|
         E = SI->second->Users.end(); UI != E; ++UI)
 | 
						|
      if (UI->getUser() == Cond) {
 | 
						|
        // NOTE: we could handle setcc instructions with multiple uses here, but
 | 
						|
        // InstCombine does it as well for simple uses, it's not clear that it
 | 
						|
        // occurs enough in real life to handle.
 | 
						|
        CondUse = UI;
 | 
						|
        CondStride = SI->first;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Constant strides come first which in turns are sorted by their absolute
 | 
						|
  // values. If absolute values are the same, then positive strides comes first.
 | 
						|
  // e.g.
 | 
						|
  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
 | 
						|
  struct StrideCompare {
 | 
						|
    const ScalarEvolution *SE;
 | 
						|
    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
 | 
						|
 | 
						|
    bool operator()(const SCEV *LHS, const SCEV *RHS) {
 | 
						|
      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
 | 
						|
      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
 | 
						|
      if (LHSC && RHSC) {
 | 
						|
        int64_t  LV = LHSC->getValue()->getSExtValue();
 | 
						|
        int64_t  RV = RHSC->getValue()->getSExtValue();
 | 
						|
        uint64_t ALV = (LV < 0) ? -LV : LV;
 | 
						|
        uint64_t ARV = (RV < 0) ? -RV : RV;
 | 
						|
        if (ALV == ARV) {
 | 
						|
          if (LV != RV)
 | 
						|
            return LV > RV;
 | 
						|
        } else {
 | 
						|
          return ALV < ARV;
 | 
						|
        }
 | 
						|
 | 
						|
        // If it's the same value but different type, sort by bit width so
 | 
						|
        // that we emit larger induction variables before smaller
 | 
						|
        // ones, letting the smaller be re-written in terms of larger ones.
 | 
						|
        return SE->getTypeSizeInBits(RHS->getType()) <
 | 
						|
               SE->getTypeSizeInBits(LHS->getType());
 | 
						|
      }
 | 
						|
      return LHSC && !RHSC;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// ChangeCompareStride - If a loop termination compare instruction is the only
 | 
						|
/// use of its stride, and the comparison is against a constant value, try to
 | 
						|
/// eliminate the stride by moving the compare instruction to another stride and
 | 
						|
/// changing its constant operand accordingly. E.g.
 | 
						|
///
 | 
						|
/// loop:
 | 
						|
/// ...
 | 
						|
///   v1 = v1 + 3
 | 
						|
///   v2 = v2 + 1
 | 
						|
///   if (v2 < 10) goto loop
 | 
						|
/// =>
 | 
						|
/// loop:
 | 
						|
/// ...
 | 
						|
///   v1 = v1 + 3
 | 
						|
///   if (v1 < 30) goto loop
 | 
						|
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
 | 
						|
                                                  IVStrideUse* &CondUse,
 | 
						|
                                                  const SCEV* &CondStride,
 | 
						|
                                                  bool PostPass) {
 | 
						|
  // If there's only one stride in the loop, there's nothing to do here.
 | 
						|
  if (IU->StrideOrder.size() < 2)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  // If there are other users of the condition's stride, don't bother trying to
 | 
						|
  // change the condition because the stride will still remain.
 | 
						|
  std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
 | 
						|
    IU->IVUsesByStride.find(CondStride);
 | 
						|
  if (I == IU->IVUsesByStride.end())
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  if (I->second->Users.size() > 1) {
 | 
						|
    for (ilist<IVStrideUse>::iterator II = I->second->Users.begin(),
 | 
						|
           EE = I->second->Users.end(); II != EE; ++II) {
 | 
						|
      if (II->getUser() == Cond)
 | 
						|
        continue;
 | 
						|
      if (!isInstructionTriviallyDead(II->getUser()))
 | 
						|
        return Cond;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle constant strides for now.
 | 
						|
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(CondStride);
 | 
						|
  if (!SC) return Cond;
 | 
						|
 | 
						|
  ICmpInst::Predicate Predicate = Cond->getPredicate();
 | 
						|
  int64_t CmpSSInt = SC->getValue()->getSExtValue();
 | 
						|
  unsigned BitWidth = SE->getTypeSizeInBits(CondStride->getType());
 | 
						|
  uint64_t SignBit = 1ULL << (BitWidth-1);
 | 
						|
  const Type *CmpTy = Cond->getOperand(0)->getType();
 | 
						|
  const Type *NewCmpTy = NULL;
 | 
						|
  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
 | 
						|
  unsigned NewTyBits = 0;
 | 
						|
  const SCEV *NewStride = NULL;
 | 
						|
  Value *NewCmpLHS = NULL;
 | 
						|
  Value *NewCmpRHS = NULL;
 | 
						|
  int64_t Scale = 1;
 | 
						|
  const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
 | 
						|
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
 | 
						|
    int64_t CmpVal = C->getValue().getSExtValue();
 | 
						|
 | 
						|
    // Check the relevant induction variable for conformance to the pattern.
 | 
						|
    const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
 | 
						|
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | 
						|
    if (!AR || !AR->isAffine())
 | 
						|
      return Cond;
 | 
						|
 | 
						|
    const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
 | 
						|
    // Check stride constant and the comparision constant signs to detect
 | 
						|
    // overflow.
 | 
						|
    if (StartC) {
 | 
						|
      if ((StartC->getValue()->getSExtValue() < CmpVal && CmpSSInt < 0) ||
 | 
						|
          (StartC->getValue()->getSExtValue() > CmpVal && CmpSSInt > 0))
 | 
						|
        return Cond;
 | 
						|
    } else {
 | 
						|
      // More restrictive check for the other cases.
 | 
						|
      if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
 | 
						|
        return Cond;
 | 
						|
    }
 | 
						|
 | 
						|
    // Look for a suitable stride / iv as replacement.
 | 
						|
    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
      std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
        IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | 
						|
      if (!isa<SCEVConstant>(SI->first) || SI->second->Users.empty())
 | 
						|
        continue;
 | 
						|
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | 
						|
      if (SSInt == CmpSSInt ||
 | 
						|
          abs64(SSInt) < abs64(CmpSSInt) ||
 | 
						|
          (SSInt % CmpSSInt) != 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Scale = SSInt / CmpSSInt;
 | 
						|
      int64_t NewCmpVal = CmpVal * Scale;
 | 
						|
 | 
						|
      // If old icmp value fits in icmp immediate field, but the new one doesn't
 | 
						|
      // try something else.
 | 
						|
      if (TLI &&
 | 
						|
          TLI->isLegalICmpImmediate(CmpVal) &&
 | 
						|
          !TLI->isLegalICmpImmediate(NewCmpVal))
 | 
						|
        continue;
 | 
						|
 | 
						|
      APInt Mul = APInt(BitWidth*2, CmpVal, true);
 | 
						|
      Mul = Mul * APInt(BitWidth*2, Scale, true);
 | 
						|
      // Check for overflow.
 | 
						|
      if (!Mul.isSignedIntN(BitWidth))
 | 
						|
        continue;
 | 
						|
      // Check for overflow in the stride's type too.
 | 
						|
      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Watch out for overflow.
 | 
						|
      if (ICmpInst::isSigned(Predicate) &&
 | 
						|
          (CmpVal & SignBit) != (NewCmpVal & SignBit))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Pick the best iv to use trying to avoid a cast.
 | 
						|
      NewCmpLHS = NULL;
 | 
						|
      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | 
						|
             E = SI->second->Users.end(); UI != E; ++UI) {
 | 
						|
        Value *Op = UI->getOperandValToReplace();
 | 
						|
 | 
						|
        // If the IVStrideUse implies a cast, check for an actual cast which
 | 
						|
        // can be used to find the original IV expression.
 | 
						|
        if (SE->getEffectiveSCEVType(Op->getType()) !=
 | 
						|
            SE->getEffectiveSCEVType(SI->first->getType())) {
 | 
						|
          CastInst *CI = dyn_cast<CastInst>(Op);
 | 
						|
          // If it's not a simple cast, it's complicated.
 | 
						|
          if (!CI)
 | 
						|
            continue;
 | 
						|
          // If it's a cast from a type other than the stride type,
 | 
						|
          // it's complicated.
 | 
						|
          if (CI->getOperand(0)->getType() != SI->first->getType())
 | 
						|
            continue;
 | 
						|
          // Ok, we found the IV expression in the stride's type.
 | 
						|
          Op = CI->getOperand(0);
 | 
						|
        }
 | 
						|
 | 
						|
        NewCmpLHS = Op;
 | 
						|
        if (NewCmpLHS->getType() == CmpTy)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (!NewCmpLHS)
 | 
						|
        continue;
 | 
						|
 | 
						|
      NewCmpTy = NewCmpLHS->getType();
 | 
						|
      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
 | 
						|
      const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
 | 
						|
      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
 | 
						|
        // Check if it is possible to rewrite it using
 | 
						|
        // an iv / stride of a smaller integer type.
 | 
						|
        unsigned Bits = NewTyBits;
 | 
						|
        if (ICmpInst::isSigned(Predicate))
 | 
						|
          --Bits;
 | 
						|
        uint64_t Mask = (1ULL << Bits) - 1;
 | 
						|
        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't rewrite if use offset is non-constant and the new type is
 | 
						|
      // of a different type.
 | 
						|
      // FIXME: too conservative?
 | 
						|
      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!PostPass) {
 | 
						|
        bool AllUsesAreAddresses = true;
 | 
						|
        bool AllUsesAreOutsideLoop = true;
 | 
						|
        std::vector<BasedUser> UsersToProcess;
 | 
						|
        const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
 | 
						|
                                                 AllUsesAreAddresses,
 | 
						|
                                                 AllUsesAreOutsideLoop,
 | 
						|
                                                 UsersToProcess);
 | 
						|
        // Avoid rewriting the compare instruction with an iv of new stride
 | 
						|
        // if it's likely the new stride uses will be rewritten using the
 | 
						|
        // stride of the compare instruction.
 | 
						|
        if (AllUsesAreAddresses &&
 | 
						|
            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Avoid rewriting the compare instruction with an iv which has
 | 
						|
      // implicit extension or truncation built into it.
 | 
						|
      // TODO: This is over-conservative.
 | 
						|
      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If scale is negative, use swapped predicate unless it's testing
 | 
						|
      // for equality.
 | 
						|
      if (Scale < 0 && !Cond->isEquality())
 | 
						|
        Predicate = ICmpInst::getSwappedPredicate(Predicate);
 | 
						|
 | 
						|
      NewStride = IU->StrideOrder[i];
 | 
						|
      if (!isa<PointerType>(NewCmpTy))
 | 
						|
        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
 | 
						|
      else {
 | 
						|
        Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
 | 
						|
        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
 | 
						|
      }
 | 
						|
      NewOffset = TyBits == NewTyBits
 | 
						|
        ? SE->getMulExpr(CondUse->getOffset(),
 | 
						|
                         SE->getConstant(CmpTy, Scale))
 | 
						|
        : SE->getConstant(NewCmpIntTy,
 | 
						|
          cast<SCEVConstant>(CondUse->getOffset())->getValue()
 | 
						|
            ->getSExtValue()*Scale);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Forgo this transformation if it the increment happens to be
 | 
						|
  // unfortunately positioned after the condition, and the condition
 | 
						|
  // has multiple uses which prevent it from being moved immediately
 | 
						|
  // before the branch. See
 | 
						|
  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
 | 
						|
  // for an example of this situation.
 | 
						|
  if (!Cond->hasOneUse()) {
 | 
						|
    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (I == NewCmpLHS)
 | 
						|
        return Cond;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewCmpRHS) {
 | 
						|
    // Create a new compare instruction using new stride / iv.
 | 
						|
    ICmpInst *OldCond = Cond;
 | 
						|
    // Insert new compare instruction.
 | 
						|
    Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
 | 
						|
                        L->getHeader()->getName() + ".termcond");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "    Change compare stride in Inst " << *OldCond);
 | 
						|
    DEBUG(dbgs() << " to " << *Cond << '\n');
 | 
						|
 | 
						|
    // Remove the old compare instruction. The old indvar is probably dead too.
 | 
						|
    DeadInsts.push_back(CondUse->getOperandValToReplace());
 | 
						|
    OldCond->replaceAllUsesWith(Cond);
 | 
						|
    OldCond->eraseFromParent();
 | 
						|
 | 
						|
    IU->IVUsesByStride[NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
 | 
						|
    CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
 | 
						|
    CondStride = NewStride;
 | 
						|
    ++NumEliminated;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeMax - Rewrite the loop's terminating condition if it uses
 | 
						|
/// a max computation.
 | 
						|
///
 | 
						|
/// This is a narrow solution to a specific, but acute, problem. For loops
 | 
						|
/// like this:
 | 
						|
///
 | 
						|
///   i = 0;
 | 
						|
///   do {
 | 
						|
///     p[i] = 0.0;
 | 
						|
///   } while (++i < n);
 | 
						|
///
 | 
						|
/// the trip count isn't just 'n', because 'n' might not be positive. And
 | 
						|
/// unfortunately this can come up even for loops where the user didn't use
 | 
						|
/// a C do-while loop. For example, seemingly well-behaved top-test loops
 | 
						|
/// will commonly be lowered like this:
 | 
						|
//
 | 
						|
///   if (n > 0) {
 | 
						|
///     i = 0;
 | 
						|
///     do {
 | 
						|
///       p[i] = 0.0;
 | 
						|
///     } while (++i < n);
 | 
						|
///   }
 | 
						|
///
 | 
						|
/// and then it's possible for subsequent optimization to obscure the if
 | 
						|
/// test in such a way that indvars can't find it.
 | 
						|
///
 | 
						|
/// When indvars can't find the if test in loops like this, it creates a
 | 
						|
/// max expression, which allows it to give the loop a canonical
 | 
						|
/// induction variable:
 | 
						|
///
 | 
						|
///   i = 0;
 | 
						|
///   max = n < 1 ? 1 : n;
 | 
						|
///   do {
 | 
						|
///     p[i] = 0.0;
 | 
						|
///   } while (++i != max);
 | 
						|
///
 | 
						|
/// Canonical induction variables are necessary because the loop passes
 | 
						|
/// are designed around them. The most obvious example of this is the
 | 
						|
/// LoopInfo analysis, which doesn't remember trip count values. It
 | 
						|
/// expects to be able to rediscover the trip count each time it is
 | 
						|
/// needed, and it does this using a simple analyis that only succeeds if
 | 
						|
/// the loop has a canonical induction variable.
 | 
						|
///
 | 
						|
/// However, when it comes time to generate code, the maximum operation
 | 
						|
/// can be quite costly, especially if it's inside of an outer loop.
 | 
						|
///
 | 
						|
/// This function solves this problem by detecting this type of loop and
 | 
						|
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
 | 
						|
/// the instructions for the maximum computation.
 | 
						|
///
 | 
						|
ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
 | 
						|
                                          IVStrideUse* &CondUse) {
 | 
						|
  // Check that the loop matches the pattern we're looking for.
 | 
						|
  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
 | 
						|
      Cond->getPredicate() != CmpInst::ICMP_NE)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
 | 
						|
  if (!Sel || !Sel->hasOneUse()) return Cond;
 | 
						|
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    return Cond;
 | 
						|
  const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
 | 
						|
 | 
						|
  // Add one to the backedge-taken count to get the trip count.
 | 
						|
  const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
 | 
						|
 | 
						|
  // Check for a max calculation that matches the pattern.
 | 
						|
  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
 | 
						|
    return Cond;
 | 
						|
  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
 | 
						|
  if (Max != SE->getSCEV(Sel)) return Cond;
 | 
						|
 | 
						|
  // To handle a max with more than two operands, this optimization would
 | 
						|
  // require additional checking and setup.
 | 
						|
  if (Max->getNumOperands() != 2)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  const SCEV *MaxLHS = Max->getOperand(0);
 | 
						|
  const SCEV *MaxRHS = Max->getOperand(1);
 | 
						|
  if (!MaxLHS || MaxLHS != One) return Cond;
 | 
						|
 | 
						|
  // Check the relevant induction variable for conformance to
 | 
						|
  // the pattern.
 | 
						|
  const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | 
						|
  if (!AR || !AR->isAffine() ||
 | 
						|
      AR->getStart() != One ||
 | 
						|
      AR->getStepRecurrence(*SE) != One)
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  assert(AR->getLoop() == L &&
 | 
						|
         "Loop condition operand is an addrec in a different loop!");
 | 
						|
 | 
						|
  // Check the right operand of the select, and remember it, as it will
 | 
						|
  // be used in the new comparison instruction.
 | 
						|
  Value *NewRHS = 0;
 | 
						|
  if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
 | 
						|
    NewRHS = Sel->getOperand(1);
 | 
						|
  else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
 | 
						|
    NewRHS = Sel->getOperand(2);
 | 
						|
  if (!NewRHS) return Cond;
 | 
						|
 | 
						|
  // Determine the new comparison opcode. It may be signed or unsigned,
 | 
						|
  // and the original comparison may be either equality or inequality.
 | 
						|
  CmpInst::Predicate Pred =
 | 
						|
    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
 | 
						|
  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
 | 
						|
    Pred = CmpInst::getInversePredicate(Pred);
 | 
						|
 | 
						|
  // Ok, everything looks ok to change the condition into an SLT or SGE and
 | 
						|
  // delete the max calculation.
 | 
						|
  ICmpInst *NewCond =
 | 
						|
    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
 | 
						|
 | 
						|
  // Delete the max calculation instructions.
 | 
						|
  Cond->replaceAllUsesWith(NewCond);
 | 
						|
  CondUse->setUser(NewCond);
 | 
						|
  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
 | 
						|
  Cond->eraseFromParent();
 | 
						|
  Sel->eraseFromParent();
 | 
						|
  if (Cmp->use_empty())
 | 
						|
    Cmp->eraseFromParent();
 | 
						|
  return NewCond;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeShadowIV - If IV is used in a int-to-float cast
 | 
						|
/// inside the loop then try to eliminate the cast opeation.
 | 
						|
void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
 | 
						|
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
 | 
						|
       ++Stride) {
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    if (!isa<SCEVConstant>(SI->first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | 
						|
           E = SI->second->Users.end(); UI != E; /* empty */) {
 | 
						|
      ilist<IVStrideUse>::iterator CandidateUI = UI;
 | 
						|
      ++UI;
 | 
						|
      Instruction *ShadowUse = CandidateUI->getUser();
 | 
						|
      const Type *DestTy = NULL;
 | 
						|
 | 
						|
      /* If shadow use is a int->float cast then insert a second IV
 | 
						|
         to eliminate this cast.
 | 
						|
 | 
						|
           for (unsigned i = 0; i < n; ++i)
 | 
						|
             foo((double)i);
 | 
						|
 | 
						|
         is transformed into
 | 
						|
 | 
						|
           double d = 0.0;
 | 
						|
           for (unsigned i = 0; i < n; ++i, ++d)
 | 
						|
             foo(d);
 | 
						|
      */
 | 
						|
      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
 | 
						|
        DestTy = UCast->getDestTy();
 | 
						|
      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
 | 
						|
        DestTy = SCast->getDestTy();
 | 
						|
      if (!DestTy) continue;
 | 
						|
 | 
						|
      if (TLI) {
 | 
						|
        // If target does not support DestTy natively then do not apply
 | 
						|
        // this transformation.
 | 
						|
        EVT DVT = TLI->getValueType(DestTy);
 | 
						|
        if (!TLI->isTypeLegal(DVT)) continue;
 | 
						|
      }
 | 
						|
 | 
						|
      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
 | 
						|
      if (!PH) continue;
 | 
						|
      if (PH->getNumIncomingValues() != 2) continue;
 | 
						|
 | 
						|
      const Type *SrcTy = PH->getType();
 | 
						|
      int Mantissa = DestTy->getFPMantissaWidth();
 | 
						|
      if (Mantissa == -1) continue;
 | 
						|
      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned Entry, Latch;
 | 
						|
      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
 | 
						|
        Entry = 0;
 | 
						|
        Latch = 1;
 | 
						|
      } else {
 | 
						|
        Entry = 1;
 | 
						|
        Latch = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
 | 
						|
      if (!Init) continue;
 | 
						|
      Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
 | 
						|
 | 
						|
      BinaryOperator *Incr =
 | 
						|
        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
 | 
						|
      if (!Incr) continue;
 | 
						|
      if (Incr->getOpcode() != Instruction::Add
 | 
						|
          && Incr->getOpcode() != Instruction::Sub)
 | 
						|
        continue;
 | 
						|
 | 
						|
      /* Initialize new IV, double d = 0.0 in above example. */
 | 
						|
      ConstantInt *C = NULL;
 | 
						|
      if (Incr->getOperand(0) == PH)
 | 
						|
        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
 | 
						|
      else if (Incr->getOperand(1) == PH)
 | 
						|
        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
 | 
						|
      else
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!C) continue;
 | 
						|
 | 
						|
      // Ignore negative constants, as the code below doesn't handle them
 | 
						|
      // correctly. TODO: Remove this restriction.
 | 
						|
      if (!C->getValue().isStrictlyPositive()) continue;
 | 
						|
 | 
						|
      /* Add new PHINode. */
 | 
						|
      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
 | 
						|
 | 
						|
      /* create new increment. '++d' in above example. */
 | 
						|
      Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
 | 
						|
      BinaryOperator *NewIncr =
 | 
						|
        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
 | 
						|
                                 Instruction::FAdd : Instruction::FSub,
 | 
						|
                               NewPH, CFP, "IV.S.next.", Incr);
 | 
						|
 | 
						|
      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
 | 
						|
      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
 | 
						|
 | 
						|
      /* Remove cast operation */
 | 
						|
      ShadowUse->replaceAllUsesWith(NewPH);
 | 
						|
      ShadowUse->eraseFromParent();
 | 
						|
      NumShadow++;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
 | 
						|
/// uses in the loop, look to see if we can eliminate some, in favor of using
 | 
						|
/// common indvars for the different uses.
 | 
						|
void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
 | 
						|
  // TODO: implement optzns here.
 | 
						|
 | 
						|
  OptimizeShadowIV(L);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L,
 | 
						|
                                             bool CheckPreInc) {
 | 
						|
  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
 | 
						|
  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | 
						|
    const SCEV *Share = SI->first;
 | 
						|
    if (!isa<SCEVConstant>(SI->first) || Share == Stride)
 | 
						|
      continue;
 | 
						|
    int64_t SSInt = cast<SCEVConstant>(Share)->getValue()->getSExtValue();
 | 
						|
    if (SSInt == SInt)
 | 
						|
      return true; // This can definitely be reused.
 | 
						|
    if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
 | 
						|
      continue;
 | 
						|
    int64_t Scale = SSInt / SInt;
 | 
						|
    bool AllUsesAreAddresses = true;
 | 
						|
    bool AllUsesAreOutsideLoop = true;
 | 
						|
    std::vector<BasedUser> UsersToProcess;
 | 
						|
    const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
 | 
						|
                                             AllUsesAreAddresses,
 | 
						|
                                             AllUsesAreOutsideLoop,
 | 
						|
                                             UsersToProcess);
 | 
						|
    if (AllUsesAreAddresses &&
 | 
						|
        ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) {
 | 
						|
      if (!CheckPreInc)
 | 
						|
        return true;
 | 
						|
      // Any pre-inc iv use?
 | 
						|
      IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[Share];
 | 
						|
      for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
 | 
						|
             E = StrideUses.Users.end(); I != E; ++I) {
 | 
						|
        if (!I->isUseOfPostIncrementedValue())
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedByExitBranch - Return true if icmp is used by a loop terminating
 | 
						|
/// conditional branch or it's and / or with other conditions before being used
 | 
						|
/// as the condition.
 | 
						|
static bool isUsedByExitBranch(ICmpInst *Cond, Loop *L) {
 | 
						|
  BasicBlock *CondBB = Cond->getParent();
 | 
						|
  if (!L->isLoopExiting(CondBB))
 | 
						|
    return false;
 | 
						|
  BranchInst *TermBr = dyn_cast<BranchInst>(CondBB->getTerminator());
 | 
						|
  if (!TermBr || !TermBr->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *User = *Cond->use_begin();
 | 
						|
  Instruction *UserInst = dyn_cast<Instruction>(User);
 | 
						|
  while (UserInst &&
 | 
						|
         (UserInst->getOpcode() == Instruction::And ||
 | 
						|
          UserInst->getOpcode() == Instruction::Or)) {
 | 
						|
    if (!UserInst->hasOneUse() || UserInst->getParent() != CondBB)
 | 
						|
      return false;
 | 
						|
    User = *User->use_begin();
 | 
						|
    UserInst = dyn_cast<Instruction>(User);
 | 
						|
  }
 | 
						|
  return User == TermBr;
 | 
						|
}
 | 
						|
 | 
						|
static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse,
 | 
						|
                              ScalarEvolution *SE, Loop *L,
 | 
						|
                              const TargetLowering *TLI = 0) {
 | 
						|
  if (!L->contains(Cond))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isa<SCEVConstant>(CondUse->getOffset()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle only tests for equality for the moment.
 | 
						|
  if (!Cond->isEquality() || !Cond->hasOneUse())
 | 
						|
    return false;
 | 
						|
  if (!isUsedByExitBranch(Cond, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *CondOp0 = Cond->getOperand(0);
 | 
						|
  const SCEV *IV = SE->getSCEV(CondOp0);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | 
						|
  if (!AR || !AR->isAffine())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
 | 
						|
  if (!SC || SC->getValue()->getSExtValue() < 0)
 | 
						|
    // If it's already counting down, don't do anything.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the RHS of the comparison is not an loop invariant, the rewrite
 | 
						|
  // cannot be done. Also bail out if it's already comparing against a zero.
 | 
						|
  // If we are checking this before cmp stride optimization, check if it's
 | 
						|
  // comparing against a already legal immediate.
 | 
						|
  Value *RHS = Cond->getOperand(1);
 | 
						|
  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
 | 
						|
  if (!L->isLoopInvariant(RHS) ||
 | 
						|
      (RHSC && RHSC->isZero()) ||
 | 
						|
      (RHSC && TLI && TLI->isLegalICmpImmediate(RHSC->getSExtValue())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the IV is only used for counting.  Value may be preinc or
 | 
						|
  // postinc; 2 uses in either case.
 | 
						|
  if (!CondOp0->hasNUses(2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeLoopTermCond - Change loop terminating condition to use the
 | 
						|
/// postinc iv when possible.
 | 
						|
void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  bool LatchExit = L->isLoopExiting(LatchBlock);
 | 
						|
  SmallVector<BasicBlock*, 8> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitingBlock = ExitingBlocks[i];
 | 
						|
 | 
						|
    // Finally, get the terminating condition for the loop if possible.  If we
 | 
						|
    // can, we want to change it to use a post-incremented version of its
 | 
						|
    // induction variable, to allow coalescing the live ranges for the IV into
 | 
						|
    // one register value.
 | 
						|
 | 
						|
    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
    if (!TermBr)
 | 
						|
      continue;
 | 
						|
    // FIXME: Overly conservative, termination condition could be an 'or' etc..
 | 
						|
    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Search IVUsesByStride to find Cond's IVUse if there is one.
 | 
						|
    IVStrideUse *CondUse = 0;
 | 
						|
    const SCEV *CondStride = 0;
 | 
						|
    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
 | 
						|
    if (!FindIVUserForCond(Cond, CondUse, CondStride))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the latch block is exiting and it's not a single block loop, it's
 | 
						|
    // not safe to use postinc iv in other exiting blocks. FIXME: overly
 | 
						|
    // conservative? How about icmp stride optimization?
 | 
						|
    bool UsePostInc =  !(e > 1 && LatchExit && ExitingBlock != LatchBlock);
 | 
						|
    if (UsePostInc && ExitingBlock != LatchBlock) {
 | 
						|
      if (!Cond->hasOneUse())
 | 
						|
        // See below, we don't want the condition to be cloned.
 | 
						|
        UsePostInc = false;
 | 
						|
      else {
 | 
						|
        // If exiting block is the latch block, we know it's safe and profitable
 | 
						|
        // to transform the icmp to use post-inc iv. Otherwise do so only if it
 | 
						|
        // would not reuse another iv and its iv would be reused by other uses.
 | 
						|
        // We are optimizing for the case where the icmp is the only use of the
 | 
						|
        // iv.
 | 
						|
        IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[CondStride];
 | 
						|
        for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
 | 
						|
               E = StrideUses.Users.end(); I != E; ++I) {
 | 
						|
          if (I->getUser() == Cond)
 | 
						|
            continue;
 | 
						|
          if (!I->isUseOfPostIncrementedValue()) {
 | 
						|
            UsePostInc = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If iv for the stride might be shared and any of the users use pre-inc
 | 
						|
      // iv might be used, then it's not safe to use post-inc iv.
 | 
						|
      if (UsePostInc &&
 | 
						|
          isa<SCEVConstant>(CondStride) &&
 | 
						|
          StrideMightBeShared(CondStride, L, true))
 | 
						|
        UsePostInc = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the trip count is computed in terms of a max (due to ScalarEvolution
 | 
						|
    // being unable to find a sufficient guard, for example), change the loop
 | 
						|
    // comparison to use SLT or ULT instead of NE.
 | 
						|
    Cond = OptimizeMax(L, Cond, CondUse);
 | 
						|
 | 
						|
    // If possible, change stride and operands of the compare instruction to
 | 
						|
    // eliminate one stride. However, avoid rewriting the compare instruction
 | 
						|
    // with an iv of new stride if it's likely the new stride uses will be
 | 
						|
    // rewritten using the stride of the compare instruction.
 | 
						|
    if (ExitingBlock == LatchBlock && isa<SCEVConstant>(CondStride)) {
 | 
						|
      // If the condition stride is a constant and it's the only use, we might
 | 
						|
      // want to optimize it first by turning it to count toward zero.
 | 
						|
      if (!StrideMightBeShared(CondStride, L, false) &&
 | 
						|
          !ShouldCountToZero(Cond, CondUse, SE, L, TLI))
 | 
						|
        Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!UsePostInc)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
 | 
						|
          << *Cond << '\n');
 | 
						|
 | 
						|
    // It's possible for the setcc instruction to be anywhere in the loop, and
 | 
						|
    // possible for it to have multiple users.  If it is not immediately before
 | 
						|
    // the exiting block branch, move it.
 | 
						|
    if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
 | 
						|
      if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
 | 
						|
        Cond->moveBefore(TermBr);
 | 
						|
      } else {
 | 
						|
        // Otherwise, clone the terminating condition and insert into the
 | 
						|
        // loopend.
 | 
						|
        Cond = cast<ICmpInst>(Cond->clone());
 | 
						|
        Cond->setName(L->getHeader()->getName() + ".termcond");
 | 
						|
        ExitingBlock->getInstList().insert(TermBr, Cond);
 | 
						|
 | 
						|
        // Clone the IVUse, as the old use still exists!
 | 
						|
        IU->IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond,
 | 
						|
                                             CondUse->getOperandValToReplace());
 | 
						|
        CondUse = &IU->IVUsesByStride[CondStride]->Users.back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get to here, we know that we can transform the setcc instruction to
 | 
						|
    // use the post-incremented version of the IV, allowing us to coalesce the
 | 
						|
    // live ranges for the IV correctly.
 | 
						|
    CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), CondStride));
 | 
						|
    CondUse->setIsUseOfPostIncrementedValue(true);
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    ++NumLoopCond;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopStrengthReduce::OptimizeLoopCountIVOfStride(const SCEV* &Stride,
 | 
						|
                                                     IVStrideUse* &CondUse,
 | 
						|
                                                     Loop *L) {
 | 
						|
  // If the only use is an icmp of a loop exiting conditional branch, then
 | 
						|
  // attempt the optimization.
 | 
						|
  BasedUser User = BasedUser(*CondUse, SE);
 | 
						|
  assert(isa<ICmpInst>(User.Inst) && "Expecting an ICMPInst!");
 | 
						|
  ICmpInst *Cond = cast<ICmpInst>(User.Inst);
 | 
						|
 | 
						|
  // Less strict check now that compare stride optimization is done.
 | 
						|
  if (!ShouldCountToZero(Cond, CondUse, SE, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *CondOp0 = Cond->getOperand(0);
 | 
						|
  PHINode *PHIExpr = dyn_cast<PHINode>(CondOp0);
 | 
						|
  Instruction *Incr;
 | 
						|
  if (!PHIExpr) {
 | 
						|
    // Value tested is postinc. Find the phi node.
 | 
						|
    Incr = dyn_cast<BinaryOperator>(CondOp0);
 | 
						|
    // FIXME: Just use User.OperandValToReplace here?
 | 
						|
    if (!Incr || Incr->getOpcode() != Instruction::Add)
 | 
						|
      return false;
 | 
						|
 | 
						|
    PHIExpr = dyn_cast<PHINode>(Incr->getOperand(0));
 | 
						|
    if (!PHIExpr)
 | 
						|
      return false;
 | 
						|
    // 1 use for preinc value, the increment.
 | 
						|
    if (!PHIExpr->hasOneUse())
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    assert(isa<PHINode>(CondOp0) &&
 | 
						|
           "Unexpected loop exiting counting instruction sequence!");
 | 
						|
    PHIExpr = cast<PHINode>(CondOp0);
 | 
						|
    // Value tested is preinc.  Find the increment.
 | 
						|
    // A CmpInst is not a BinaryOperator; we depend on this.
 | 
						|
    Instruction::use_iterator UI = PHIExpr->use_begin();
 | 
						|
    Incr = dyn_cast<BinaryOperator>(UI);
 | 
						|
    if (!Incr)
 | 
						|
      Incr = dyn_cast<BinaryOperator>(++UI);
 | 
						|
    // One use for postinc value, the phi.  Unnecessarily conservative?
 | 
						|
    if (!Incr || !Incr->hasOneUse() || Incr->getOpcode() != Instruction::Add)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace the increment with a decrement.
 | 
						|
  DEBUG(dbgs() << "LSR: Examining use ");
 | 
						|
  DEBUG(WriteAsOperand(dbgs(), CondOp0, /*PrintType=*/false));
 | 
						|
  DEBUG(dbgs() << " in Inst: " << *Cond << '\n');
 | 
						|
  BinaryOperator *Decr =  BinaryOperator::Create(Instruction::Sub,
 | 
						|
                         Incr->getOperand(0), Incr->getOperand(1), "tmp", Incr);
 | 
						|
  Incr->replaceAllUsesWith(Decr);
 | 
						|
  Incr->eraseFromParent();
 | 
						|
 | 
						|
  // Substitute endval-startval for the original startval, and 0 for the
 | 
						|
  // original endval.  Since we're only testing for equality this is OK even
 | 
						|
  // if the computation wraps around.
 | 
						|
  BasicBlock  *Preheader = L->getLoopPreheader();
 | 
						|
  Instruction *PreInsertPt = Preheader->getTerminator();
 | 
						|
  unsigned InBlock = L->contains(PHIExpr->getIncomingBlock(0)) ? 1 : 0;
 | 
						|
  Value *StartVal = PHIExpr->getIncomingValue(InBlock);
 | 
						|
  Value *EndVal = Cond->getOperand(1);
 | 
						|
  DEBUG(dbgs() << "    Optimize loop counting iv to count down ["
 | 
						|
        << *EndVal << " .. " << *StartVal << "]\n");
 | 
						|
 | 
						|
  // FIXME: check for case where both are constant.
 | 
						|
  Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
 | 
						|
  BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub,
 | 
						|
                                          EndVal, StartVal, "tmp", PreInsertPt);
 | 
						|
  PHIExpr->setIncomingValue(InBlock, NewStartVal);
 | 
						|
  Cond->setOperand(1, Zero);
 | 
						|
  DEBUG(dbgs() << "    New icmp: " << *Cond << "\n");
 | 
						|
 | 
						|
  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
 | 
						|
  const SCEV *NewStride = 0;
 | 
						|
  bool Found = false;
 | 
						|
  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
    const SCEV *OldStride = IU->StrideOrder[i];
 | 
						|
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OldStride))
 | 
						|
      if (SC->getValue()->getSExtValue() == -SInt) {
 | 
						|
        Found = true;
 | 
						|
        NewStride = OldStride;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Found)
 | 
						|
    NewStride = SE->getIntegerSCEV(-SInt, Stride->getType());
 | 
						|
  IU->AddUser(NewStride, CondUse->getOffset(), Cond, Cond->getOperand(0));
 | 
						|
  IU->IVUsesByStride[Stride]->removeUser(CondUse);
 | 
						|
 | 
						|
  CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
 | 
						|
  Stride = NewStride;
 | 
						|
 | 
						|
  ++NumCountZero;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
 | 
						|
/// when to exit the loop is used only for that purpose, try to rearrange things
 | 
						|
/// so it counts down to a test against zero.
 | 
						|
bool LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
 | 
						|
  bool ThisChanged = false;
 | 
						|
  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
    const SCEV *Stride = IU->StrideOrder[i];
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(Stride);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    // FIXME: Generalize to non-affine IV's.
 | 
						|
    if (!SI->first->isLoopInvariant(L))
 | 
						|
      continue;
 | 
						|
    // If stride is a constant and it has an icmpinst use, check if we can
 | 
						|
    // optimize the loop to count down.
 | 
						|
    if (isa<SCEVConstant>(Stride) && SI->second->Users.size() == 1) {
 | 
						|
      Instruction *User = SI->second->Users.begin()->getUser();
 | 
						|
      if (!isa<ICmpInst>(User))
 | 
						|
        continue;
 | 
						|
      const SCEV *CondStride = Stride;
 | 
						|
      IVStrideUse *Use = &*SI->second->Users.begin();
 | 
						|
      if (!OptimizeLoopCountIVOfStride(CondStride, Use, L))
 | 
						|
        continue;
 | 
						|
      ThisChanged = true;
 | 
						|
 | 
						|
      // Now check if it's possible to reuse this iv for other stride uses.
 | 
						|
      for (unsigned j = 0, ee = IU->StrideOrder.size(); j != ee; ++j) {
 | 
						|
        const SCEV *SStride = IU->StrideOrder[j];
 | 
						|
        if (SStride == CondStride)
 | 
						|
          continue;
 | 
						|
        std::map<const SCEV *, IVUsersOfOneStride *>::iterator SII =
 | 
						|
          IU->IVUsesByStride.find(SStride);
 | 
						|
        assert(SII != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
        // FIXME: Generalize to non-affine IV's.
 | 
						|
        if (!SII->first->isLoopInvariant(L))
 | 
						|
          continue;
 | 
						|
        // FIXME: Rewrite other stride using CondStride.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Changed |= ThisChanged;
 | 
						|
  return ThisChanged;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  IU = &getAnalysis<IVUsers>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  Changed = false;
 | 
						|
 | 
						|
  // If LoopSimplify form is not available, stay out of trouble.
 | 
						|
  if (!L->getLoopPreheader() || !L->getLoopLatch())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!IU->IVUsesByStride.empty()) {
 | 
						|
    DEBUG(dbgs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
 | 
						|
          << "\" ";
 | 
						|
          L->print(dbgs()));
 | 
						|
 | 
						|
    // Sort the StrideOrder so we process larger strides first.
 | 
						|
    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
 | 
						|
                     StrideCompare(SE));
 | 
						|
 | 
						|
    // Optimize induction variables.  Some indvar uses can be transformed to use
 | 
						|
    // strides that will be needed for other purposes.  A common example of this
 | 
						|
    // is the exit test for the loop, which can often be rewritten to use the
 | 
						|
    // computation of some other indvar to decide when to terminate the loop.
 | 
						|
    OptimizeIndvars(L);
 | 
						|
 | 
						|
    // Change loop terminating condition to use the postinc iv when possible
 | 
						|
    // and optimize loop terminating compare. FIXME: Move this after
 | 
						|
    // StrengthReduceIVUsersOfStride?
 | 
						|
    OptimizeLoopTermCond(L);
 | 
						|
 | 
						|
    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
 | 
						|
    // computation in i64 values and the target doesn't support i64, demote
 | 
						|
    // the computation to 32-bit if safe.
 | 
						|
 | 
						|
    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
 | 
						|
    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
 | 
						|
    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
 | 
						|
    // Need to be careful that IV's are all the same type.  Only works for
 | 
						|
    // intptr_t indvars.
 | 
						|
 | 
						|
    // IVsByStride keeps IVs for one particular loop.
 | 
						|
    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
 | 
						|
 | 
						|
    StrengthReduceIVUsers(L);
 | 
						|
 | 
						|
    // After all sharing is done, see if we can adjust the loop to test against
 | 
						|
    // zero instead of counting up to a maximum.  This is usually faster.
 | 
						|
    OptimizeLoopCountIV(L);
 | 
						|
 | 
						|
    // We're done analyzing this loop; release all the state we built up for it.
 | 
						|
    IVsByStride.clear();
 | 
						|
 | 
						|
    // Clean up after ourselves
 | 
						|
    DeleteTriviallyDeadInstructions();
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, it is worth checking to see if any recurrence PHIs are also
 | 
						|
  // dead, so that we can remove them as well.
 | 
						|
  Changed |= DeleteDeadPHIs(L->getHeader());
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |