Richard Sandiford aedb288d86 Add TargetLowering::prepareVolatileOrAtomicLoad
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.

Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.

The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences.  It is a no-op for targets other than SystemZ.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196906 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-10 10:49:34 +00:00

175 lines
4.3 KiB
Plaintext

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//
The initial backend is deliberately restricted to z10. We should add support
for later architectures at some point.
--
SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
inline asm memory constraints; it doesn't get to see the original constraint.
This means that it must conservatively treat all inline asm constraints
as the most restricted type, "R".
--
If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:
define void @f4(i32 *%dst) {
%val = call i32 asm "blah $0", "=r,0" (i64 103)
store i32 %val, i32 *%dst
ret void
}
from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103. This seems to be a general target-independent problem.
--
The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect. It should be tweaked based on
performance measurements.
--
There is no scheduling support.
--
We don't use the BRANCH ON INDEX instructions.
--
We might want to use BRANCH ON CONDITION for conditional indirect calls
and conditional returns.
--
We don't use the TEST DATA CLASS instructions.
--
We could use the generic floating-point forms of LOAD COMPLEMENT,
LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
condition codes. For example, we could use LCDFR instead of LCDBR.
--
We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.
MVCIN, MVCLE and CLCLE may be worthwhile too.
--
We don't use CUSE or the TRANSLATE family of instructions for string
operations. The TRANSLATE ones are probably more difficult to exploit.
--
We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.
--
ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry. SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow. (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)
--
We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
(LRVH and STRVH).
--
We don't use ICM or STCM.
--
DAGCombiner doesn't yet fold truncations of extended loads. Functions like:
unsigned long f (unsigned long x, unsigned short *y)
{
return (x << 32) | *y;
}
therefore end up as:
sllg %r2, %r2, 32
llgh %r0, 0(%r3)
lr %r2, %r0
br %r14
but truncating the load would give:
sllg %r2, %r2, 32
lh %r2, 0(%r3)
br %r14
--
Functions like:
define i64 @f1(i64 %a) {
%and = and i64 %a, 1
ret i64 %and
}
ought to be implemented as:
lhi %r0, 1
ngr %r2, %r0
br %r14
but two-address optimisations reverse the order of the AND and force:
lhi %r0, 1
ngr %r0, %r2
lgr %r2, %r0
br %r14
CodeGen/SystemZ/and-04.ll has several examples of this.
--
Out-of-range displacements are usually handled by loading the full
address into a register. In many cases it would be better to create
an anchor point instead. E.g. for:
define void @f4a(i128 *%aptr, i64 %base) {
%addr = add i64 %base, 524288
%bptr = inttoptr i64 %addr to i128 *
%a = load volatile i128 *%aptr
%b = load i128 *%bptr
%add = add i128 %a, %b
store i128 %add, i128 *%aptr
ret void
}
(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.
--
Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount. It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.
--
If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.
--
We might want to model all access registers and use them to spill
32-bit values.