mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88884 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			583 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interface for lazy computation of value constraint
 | |
| // information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "lazy-value-info"
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| char LazyValueInfo::ID = 0;
 | |
| static RegisterPass<LazyValueInfo>
 | |
| X("lazy-value-info", "Lazy Value Information Analysis", false, true);
 | |
| 
 | |
| namespace llvm {
 | |
|   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               LVILatticeVal
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
 | |
| /// value.
 | |
| ///
 | |
| /// FIXME: This is basically just for bringup, this can be made a lot more rich
 | |
| /// in the future.
 | |
| ///
 | |
| namespace {
 | |
| class LVILatticeVal {
 | |
|   enum LatticeValueTy {
 | |
|     /// undefined - This LLVM Value has no known value yet.
 | |
|     undefined,
 | |
|     /// constant - This LLVM Value has a specific constant value.
 | |
|     constant,
 | |
|     
 | |
|     /// notconstant - This LLVM value is known to not have the specified value.
 | |
|     notconstant,
 | |
|     
 | |
|     /// overdefined - This instruction is not known to be constant, and we know
 | |
|     /// it has a value.
 | |
|     overdefined
 | |
|   };
 | |
|   
 | |
|   /// Val: This stores the current lattice value along with the Constant* for
 | |
|   /// the constant if this is a 'constant' or 'notconstant' value.
 | |
|   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
 | |
|   
 | |
| public:
 | |
|   LVILatticeVal() : Val(0, undefined) {}
 | |
| 
 | |
|   static LVILatticeVal get(Constant *C) {
 | |
|     LVILatticeVal Res;
 | |
|     Res.markConstant(C);
 | |
|     return Res;
 | |
|   }
 | |
|   static LVILatticeVal getNot(Constant *C) {
 | |
|     LVILatticeVal Res;
 | |
|     Res.markNotConstant(C);
 | |
|     return Res;
 | |
|   }
 | |
|   
 | |
|   bool isUndefined() const   { return Val.getInt() == undefined; }
 | |
|   bool isConstant() const    { return Val.getInt() == constant; }
 | |
|   bool isNotConstant() const { return Val.getInt() == notconstant; }
 | |
|   bool isOverdefined() const { return Val.getInt() == overdefined; }
 | |
|   
 | |
|   Constant *getConstant() const {
 | |
|     assert(isConstant() && "Cannot get the constant of a non-constant!");
 | |
|     return Val.getPointer();
 | |
|   }
 | |
|   
 | |
|   Constant *getNotConstant() const {
 | |
|     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
 | |
|     return Val.getPointer();
 | |
|   }
 | |
|   
 | |
|   /// markOverdefined - Return true if this is a change in status.
 | |
|   bool markOverdefined() {
 | |
|     if (isOverdefined())
 | |
|       return false;
 | |
|     Val.setInt(overdefined);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// markConstant - Return true if this is a change in status.
 | |
|   bool markConstant(Constant *V) {
 | |
|     if (isConstant()) {
 | |
|       assert(getConstant() == V && "Marking constant with different value");
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     assert(isUndefined());
 | |
|     Val.setInt(constant);
 | |
|     assert(V && "Marking constant with NULL");
 | |
|     Val.setPointer(V);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// markNotConstant - Return true if this is a change in status.
 | |
|   bool markNotConstant(Constant *V) {
 | |
|     if (isNotConstant()) {
 | |
|       assert(getNotConstant() == V && "Marking !constant with different value");
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     if (isConstant())
 | |
|       assert(getConstant() != V && "Marking not constant with different value");
 | |
|     else
 | |
|       assert(isUndefined());
 | |
| 
 | |
|     Val.setInt(notconstant);
 | |
|     assert(V && "Marking constant with NULL");
 | |
|     Val.setPointer(V);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// mergeIn - Merge the specified lattice value into this one, updating this
 | |
|   /// one and returning true if anything changed.
 | |
|   bool mergeIn(const LVILatticeVal &RHS) {
 | |
|     if (RHS.isUndefined() || isOverdefined()) return false;
 | |
|     if (RHS.isOverdefined()) return markOverdefined();
 | |
| 
 | |
|     if (RHS.isNotConstant()) {
 | |
|       if (isNotConstant()) {
 | |
|         if (getNotConstant() != RHS.getNotConstant() ||
 | |
|             isa<ConstantExpr>(getNotConstant()) ||
 | |
|             isa<ConstantExpr>(RHS.getNotConstant()))
 | |
|           return markOverdefined();
 | |
|         return false;
 | |
|       }
 | |
|       if (isConstant()) {
 | |
|         if (getConstant() == RHS.getNotConstant() ||
 | |
|             isa<ConstantExpr>(RHS.getNotConstant()) ||
 | |
|             isa<ConstantExpr>(getConstant()))
 | |
|           return markOverdefined();
 | |
|         return markNotConstant(RHS.getNotConstant());
 | |
|       }
 | |
|       
 | |
|       assert(isUndefined() && "Unexpected lattice");
 | |
|       return markNotConstant(RHS.getNotConstant());
 | |
|     }
 | |
|     
 | |
|     // RHS must be a constant, we must be undef, constant, or notconstant.
 | |
|     if (isUndefined())
 | |
|       return markConstant(RHS.getConstant());
 | |
|     
 | |
|     if (isConstant()) {
 | |
|       if (getConstant() != RHS.getConstant())
 | |
|         return markOverdefined();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we are known "!=4" and RHS is "==5", stay at "!=4".
 | |
|     if (getNotConstant() == RHS.getConstant() ||
 | |
|         isa<ConstantExpr>(getNotConstant()) ||
 | |
|         isa<ConstantExpr>(RHS.getConstant()))
 | |
|       return markOverdefined();
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
| };
 | |
|   
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| namespace llvm {
 | |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
 | |
|   if (Val.isUndefined())
 | |
|     return OS << "undefined";
 | |
|   if (Val.isOverdefined())
 | |
|     return OS << "overdefined";
 | |
| 
 | |
|   if (Val.isNotConstant())
 | |
|     return OS << "notconstant<" << *Val.getNotConstant() << '>';
 | |
|   return OS << "constant<" << *Val.getConstant() << '>';
 | |
| }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          LazyValueInfoCache Decl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
 | |
|   /// maintains information about queries across the clients' queries.
 | |
|   class LazyValueInfoCache {
 | |
|   public:
 | |
|     /// BlockCacheEntryTy - This is a computed lattice value at the end of the
 | |
|     /// specified basic block for a Value* that depends on context.
 | |
|     typedef std::pair<BasicBlock*, LVILatticeVal> BlockCacheEntryTy;
 | |
|     
 | |
|     /// ValueCacheEntryTy - This is all of the cached block information for
 | |
|     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
 | |
|     /// entries, allowing us to do a lookup with a binary search.
 | |
|     typedef std::vector<BlockCacheEntryTy> ValueCacheEntryTy;
 | |
| 
 | |
|   private:
 | |
|     /// ValueCache - This is all of the cached information for all values,
 | |
|     /// mapped from Value* to key information.
 | |
|     DenseMap<Value*, ValueCacheEntryTy> ValueCache;
 | |
|   public:
 | |
|     
 | |
|     /// getValueInBlock - This is the query interface to determine the lattice
 | |
|     /// value for the specified Value* at the end of the specified block.
 | |
|     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
 | |
| 
 | |
|     /// getValueOnEdge - This is the query interface to determine the lattice
 | |
|     /// value for the specified Value* that is true on the specified edge.
 | |
|     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   struct BlockCacheEntryComparator {
 | |
|     static int Compare(const void *LHSv, const void *RHSv) {
 | |
|       const LazyValueInfoCache::BlockCacheEntryTy *LHS =
 | |
|         static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(LHSv);
 | |
|       const LazyValueInfoCache::BlockCacheEntryTy *RHS =
 | |
|         static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(RHSv);
 | |
|       if (LHS->first < RHS->first)
 | |
|         return -1;
 | |
|       if (LHS->first > RHS->first)
 | |
|         return 1;
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     bool operator()(const LazyValueInfoCache::BlockCacheEntryTy &LHS,
 | |
|                     const LazyValueInfoCache::BlockCacheEntryTy &RHS) const {
 | |
|       return LHS.first < RHS.first;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              LVIQuery Impl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// LVIQuery - This is a transient object that exists while a query is
 | |
|   /// being performed.
 | |
|   ///
 | |
|   /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids
 | |
|   /// reallocation of the densemap on every query.
 | |
|   class LVIQuery {
 | |
|     typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy;
 | |
|     typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy;
 | |
|     
 | |
|     /// This is the current value being queried for.
 | |
|     Value *Val;
 | |
|     
 | |
|     /// This is all of the cached information about this value.
 | |
|     ValueCacheEntryTy &Cache;
 | |
|     
 | |
|     ///  NewBlocks - This is a mapping of the new BasicBlocks which have been
 | |
|     /// added to cache but that are not in sorted order.
 | |
|     DenseMap<BasicBlock*, LVILatticeVal> NewBlockInfo;
 | |
|   public:
 | |
|     
 | |
|     LVIQuery(Value *V, ValueCacheEntryTy &VC) : Val(V), Cache(VC) {
 | |
|     }
 | |
| 
 | |
|     ~LVIQuery() {
 | |
|       // When the query is done, insert the newly discovered facts into the
 | |
|       // cache in sorted order.
 | |
|       if (NewBlockInfo.empty()) return;
 | |
| 
 | |
|       // Grow the cache to exactly fit the new data.
 | |
|       Cache.reserve(Cache.size() + NewBlockInfo.size());
 | |
|       
 | |
|       // If we only have one new entry, insert it instead of doing a full-on
 | |
|       // sort.
 | |
|       if (NewBlockInfo.size() == 1) {
 | |
|         BlockCacheEntryTy Entry = *NewBlockInfo.begin();
 | |
|         ValueCacheEntryTy::iterator I =
 | |
|           std::lower_bound(Cache.begin(), Cache.end(), Entry,
 | |
|                            BlockCacheEntryComparator());
 | |
|         assert((I == Cache.end() || I->first != Entry.first) &&
 | |
|                "Entry already in map!");
 | |
|         
 | |
|         Cache.insert(I, Entry);
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       // TODO: If we only have two new elements, INSERT them both.
 | |
|       
 | |
|       Cache.insert(Cache.end(), NewBlockInfo.begin(), NewBlockInfo.end());
 | |
|       array_pod_sort(Cache.begin(), Cache.end(),
 | |
|                      BlockCacheEntryComparator::Compare);
 | |
|       
 | |
|     }
 | |
| 
 | |
|     LVILatticeVal getBlockValue(BasicBlock *BB);
 | |
|     LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB);
 | |
| 
 | |
|   private:
 | |
|     LVILatticeVal &getCachedEntryForBlock(BasicBlock *BB);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// getCachedEntryForBlock - See if we already have a value for this block.  If
 | |
| /// so, return it, otherwise create a new entry in the NewBlockInfo map to use.
 | |
| LVILatticeVal &LVIQuery::getCachedEntryForBlock(BasicBlock *BB) {
 | |
|   
 | |
|   // Do a binary search to see if we already have an entry for this block in
 | |
|   // the cache set.  If so, find it.
 | |
|   if (!Cache.empty()) {
 | |
|     ValueCacheEntryTy::iterator Entry =
 | |
|       std::lower_bound(Cache.begin(), Cache.end(),
 | |
|                        BlockCacheEntryTy(BB, LVILatticeVal()),
 | |
|                        BlockCacheEntryComparator());
 | |
|     if (Entry != Cache.end() && Entry->first == BB)
 | |
|       return Entry->second;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, check to see if it's in NewBlockInfo or create a new entry if
 | |
|   // not.
 | |
|   return NewBlockInfo[BB];
 | |
| }
 | |
| 
 | |
| LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
 | |
|   // See if we already have a value for this block.
 | |
|   LVILatticeVal &BBLV = getCachedEntryForBlock(BB);
 | |
|   
 | |
|   // If we've already computed this block's value, return it.
 | |
|   if (!BBLV.isUndefined()) {
 | |
|     DEBUG(errs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
 | |
|     return BBLV;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is the first time we're seeing this block.  Reset the
 | |
|   // lattice value to overdefined, so that cycles will terminate and be
 | |
|   // conservatively correct.
 | |
|   BBLV.markOverdefined();
 | |
|   
 | |
|   // If V is live into BB, see if our predecessors know anything about it.
 | |
|   Instruction *BBI = dyn_cast<Instruction>(Val);
 | |
|   if (BBI == 0 || BBI->getParent() != BB) {
 | |
|     LVILatticeVal Result;  // Start Undefined.
 | |
|     unsigned NumPreds = 0;
 | |
|     
 | |
|     // Loop over all of our predecessors, merging what we know from them into
 | |
|     // result.
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|       Result.mergeIn(getEdgeValue(*PI, BB));
 | |
|       
 | |
|       // If we hit overdefined, exit early.  The BlockVals entry is already set
 | |
|       // to overdefined.
 | |
|       if (Result.isOverdefined()) {
 | |
|         DEBUG(errs() << " compute BB '" << BB->getName()
 | |
|                      << "' - overdefined because of pred.\n");
 | |
|         return Result;
 | |
|       }
 | |
|       ++NumPreds;
 | |
|     }
 | |
|     
 | |
|     // If this is the entry block, we must be asking about an argument.  The
 | |
|     // value is overdefined.
 | |
|     if (NumPreds == 0 && BB == &BB->getParent()->front()) {
 | |
|       assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
 | |
|       Result.markOverdefined();
 | |
|       return Result;
 | |
|     }
 | |
|     
 | |
|     // Return the merged value, which is more precise than 'overdefined'.
 | |
|     assert(!Result.isOverdefined());
 | |
|     return getCachedEntryForBlock(BB) = Result;
 | |
|   }
 | |
|   
 | |
|   // If this value is defined by an instruction in this block, we have to
 | |
|   // process it here somehow or return overdefined.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | |
|     (void)PN;
 | |
|     // TODO: PHI Translation in preds.
 | |
|   } else {
 | |
|     
 | |
|   }
 | |
|   
 | |
|   DEBUG(errs() << " compute BB '" << BB->getName()
 | |
|                << "' - overdefined because inst def found.\n");
 | |
| 
 | |
|   LVILatticeVal Result;
 | |
|   Result.markOverdefined();
 | |
|   return getCachedEntryForBlock(BB) = Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getEdgeValue - This method attempts to infer more complex 
 | |
| LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
 | |
|   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
 | |
|   // know that v != 0.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
 | |
|     // If this is a conditional branch and only one successor goes to BBTo, then
 | |
|     // we maybe able to infer something from the condition. 
 | |
|     if (BI->isConditional() &&
 | |
|         BI->getSuccessor(0) != BI->getSuccessor(1)) {
 | |
|       bool isTrueDest = BI->getSuccessor(0) == BBTo;
 | |
|       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
 | |
|              "BBTo isn't a successor of BBFrom");
 | |
|       
 | |
|       // If V is the condition of the branch itself, then we know exactly what
 | |
|       // it is.
 | |
|       if (BI->getCondition() == Val)
 | |
|         return LVILatticeVal::get(ConstantInt::get(
 | |
|                                Type::getInt1Ty(Val->getContext()), isTrueDest));
 | |
|       
 | |
|       // If the condition of the branch is an equality comparison, we may be
 | |
|       // able to infer the value.
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
 | |
|         if (ICI->isEquality() && ICI->getOperand(0) == Val &&
 | |
|             isa<Constant>(ICI->getOperand(1))) {
 | |
|           // We know that V has the RHS constant if this is a true SETEQ or
 | |
|           // false SETNE. 
 | |
|           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
 | |
|             return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
 | |
|           return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the edge was formed by a switch on the value, then we may know exactly
 | |
|   // what it is.
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
 | |
|     // If BBTo is the default destination of the switch, we don't know anything.
 | |
|     // Given a more powerful range analysis we could know stuff.
 | |
|     if (SI->getCondition() == Val && SI->getDefaultDest() != BBTo) {
 | |
|       // We only know something if there is exactly one value that goes from
 | |
|       // BBFrom to BBTo.
 | |
|       unsigned NumEdges = 0;
 | |
|       ConstantInt *EdgeVal = 0;
 | |
|       for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|         if (SI->getSuccessor(i) != BBTo) continue;
 | |
|         if (NumEdges++) break;
 | |
|         EdgeVal = SI->getCaseValue(i);
 | |
|       }
 | |
|       assert(EdgeVal && "Missing successor?");
 | |
|       if (NumEdges == 1)
 | |
|         return LVILatticeVal::get(EdgeVal);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise see if the value is known in the block.
 | |
|   return getBlockValue(BBFrom);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         LazyValueInfoCache Impl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(V))
 | |
|     return LVILatticeVal::get(VC);
 | |
|   
 | |
|   DEBUG(errs() << "LVI Getting block end value " << *V << " at '"
 | |
|         << BB->getName() << "'\n");
 | |
|   
 | |
|   LVILatticeVal Result = LVIQuery(V, ValueCache[V]).getBlockValue(BB);
 | |
|   
 | |
|   DEBUG(errs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::
 | |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(V))
 | |
|     return LVILatticeVal::get(VC);
 | |
|   
 | |
|   DEBUG(errs() << "LVI Getting edge value " << *V << " from '"
 | |
|         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
 | |
|   LVILatticeVal Result =
 | |
|     LVIQuery(V, ValueCache[V]).getEdgeValue(FromBB, ToBB);
 | |
|   
 | |
|   DEBUG(errs() << "  Result = " << Result << "\n");
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            LazyValueInfo Impl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LazyValueInfo::runOnFunction(Function &F) {
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   // Fully lazy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getCache - This lazily constructs the LazyValueInfoCache.
 | |
| static LazyValueInfoCache &getCache(void *&PImpl) {
 | |
|   if (!PImpl)
 | |
|     PImpl = new LazyValueInfoCache();
 | |
|   return *static_cast<LazyValueInfoCache*>(PImpl);
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::releaseMemory() {
 | |
|   // If the cache was allocated, free it.
 | |
|   if (PImpl) {
 | |
|     delete &getCache(PImpl);
 | |
|     PImpl = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
 | |
|   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
 | |
|   
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getConstantOnEdge - Determine whether the specified value is known to be a
 | |
| /// constant on the specified edge.  Return null if not.
 | |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
 | |
|                                            BasicBlock *ToBB) {
 | |
|   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | |
|   
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getPredicateOnEdge - Determine whether the specified value comparison
 | |
| /// with a constant is known to be true or false on the specified CFG edge.
 | |
| /// Pred is a CmpInst predicate.
 | |
| LazyValueInfo::Tristate
 | |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
 | |
|                                   BasicBlock *FromBB, BasicBlock *ToBB) {
 | |
|   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | |
|   
 | |
|   // If we know the value is a constant, evaluate the conditional.
 | |
|   Constant *Res = 0;
 | |
|   if (Result.isConstant()) {
 | |
|     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
 | |
|     if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
 | |
|       return ResCI->isZero() ? False : True;
 | |
|     return Unknown;
 | |
|   }
 | |
|   
 | |
|   if (Result.isNotConstant()) {
 | |
|     // If this is an equality comparison, we can try to fold it knowing that
 | |
|     // "V != C1".
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       // !C1 == C -> false iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Result.getNotConstant(), C, TD);
 | |
|       if (Res->isNullValue())
 | |
|         return False;
 | |
|     } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|       // !C1 != C -> true iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Result.getNotConstant(), C, TD);
 | |
|       if (Res->isNullValue())
 | |
|         return True;
 | |
|     }
 | |
|     return Unknown;
 | |
|   }
 | |
|   
 | |
|   return Unknown;
 | |
| }
 | |
| 
 | |
| 
 |